1
|
Ibrahim NS, Shoukry EH, Sharaky M, Diab HM, Elwahy AHM, Abdelhamid IA. Synthesis, cytotoxicity, oxidative stress, anti-metastatic and anti-inflammatory effects of novel 2-methylene-1H-indene-1,3-dione tethered 2-(2-methoxyphenoxy)-N-arylacetamide: induction of apoptosis in HCT116 and HeLa cells. Chem Biol Interact 2025; 416:111549. [PMID: 40355039 DOI: 10.1016/j.cbi.2025.111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/20/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Six novel chalcones were synthesized, and their structures were confirmed using various spectral tools. All the prepared compounds were subjected to SRB cytotoxic screening against nine cancer and two normal cell lines. Compound 7a showed the highest impact against colorectal carcinoma (HCT116) and cervical cancer (HeLa) with IC50 values of 4.6 ± 0.03 and 5.5 ± 0.1 μg/mL, respectively, compared to doxorubicin (4.8 ± 0.4 and 5.7 ± 0.4 μg/mL, respectively). ELISA assay revealed that the apoptotic proteins (P53, Bax, caspases-3, -8, and -9) and the oxidative marker (Malondialdehyde (MDA)) were significantly activated in 7a treated HCT116 and HeLa cells. However, the anti-metastatic markers (Matrix metalloproteinase 2 (MMP2) and Matrix metalloproteinase-9 (MMP9)), anti-apoptotic Bcl2, antioxidant Glutathione (GSH), and anti-inflammatory (interleukin (IL)-6, and IL-1β) were inhibited in HCT116 and HeLa cells treated with 7a. Flow-cytometric analysis of the cell cycle revealed that the percentage of cells in S and G2/M phases in 7a treated HCT116 cells was increased. After 24 h of treatment, Hela-treated cells had a slightly higher proportion of G0/G1 cells. Comet assay demonstrated that compound 7a caused DNA damage with a percentage of 26.22 ± 1.1 % in HCT116 compared to the untreated cells (6.18 ± 0.88 %). Theoretical molecular modeling against P53 cancer mutant Y220C and Bcl2 showed binding energies of -22.7 and -23.3 kcal/mol, respectively, which confirmed our ELISA results.
Collapse
Affiliation(s)
- Nada S Ibrahim
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Eman Hatem Shoukry
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hadeer M Diab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed H M Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Fitriastuti D, Miura K, Okada S, Hirano H, Osada H, Nakamura H. Discovery of niclosamide as a p300/transcription factor protein-protein interaction inhibitor. Bioorg Med Chem 2025; 121:118114. [PMID: 39970485 DOI: 10.1016/j.bmc.2025.118114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Protein-protein interactions (PPIs) are crucial in various biological processes and are attractive targets for drug discovery. In this study, we identified niclosamide (9) as a novel inhibitor of the hypoxia-inducible factor 1α (HIF-1α)/p300 PPI from the RIKEN NPDepo compound library using a fluorescence anisotropy-based screening method. We synthesized niclosamide azide (10) as a photoaffinity labelling probe to identify the p300 binding site of compound 9 and elucidated the binding mode using photoaffinity labelling experiments and molecular docking simulations. Furthermore, we demonstrated that compound 9 inhibited not only HIF-1α/p300 PPI but also p300-transcription factor PPIs, including interaction with p53 and STAT3, thereby suppressing the expression of BAX and c-MYC, respectively.
Collapse
Affiliation(s)
- Dhina Fitriastuti
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kazuki Miura
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Satoshi Okada
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Institute of Microbial Chemistry (BIKAKEN), 3-13-23, Kamiosaki, Shinagawa, Tokyo 141-0021, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
3
|
McDermott A, Tavassoli A. Hypoxia-inducible transcription factors: architects of tumorigenesis and targets for anticancer drug discovery. Transcription 2025; 16:86-117. [PMID: 39470609 PMCID: PMC11970764 DOI: 10.1080/21541264.2024.2417475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play a pivotal role as master regulators of tumor survival and growth, controlling a wide array of cellular processes in response to hypoxic stress. Clinical data correlates upregulated HIF-1 and HIF-2 levels with an aggressive tumor phenotype and poor patient outcome. Despite extensive validation as a target in cancer, pharmaceutical targeting of HIFs, particularly the interaction between α and βsubunits that forms the active transcription factor, has proved challenging. Nonetheless, many indirect inhibitors of HIFs have been identified, targeting diverse parts of this pathway. Significant strides have also been made in the development of direct inhibitors of HIF-2, exemplified by the FDA approval of Belzutifan for the treatment of metastatic clear cell renal carcinoma. While efforts to target HIF-1 using various therapeutic modalities have shown promise, no clinical candidates have yet emerged. This review aims to provide insights into the intricate and extensive role played by HIFs in cancer, and the ongoing efforts to develop therapeutic agents against this target.
Collapse
Affiliation(s)
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Gronkowska K, Robaszkiewicz A. Genetic dysregulation of EP300 in cancers in light of cancer epigenome control - targeting of p300-proficient and -deficient cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200871. [PMID: 39351073 PMCID: PMC11440307 DOI: 10.1016/j.omton.2024.200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Some cancer types including bladder, cervical, and uterine cancers are characterized by frequent mutations in EP300 that encode histone acetyltransferase p300. This enzyme can act both as a tumor suppressor and oncogene. In this review, we describe the role of p300 in cancer initiation and progression regarding EP300 aberrations that have been identified in TGCA Pan-Cancer Atlas studies and we also discuss possible anticancer strategies that target EP300 mutated cancers. Copy number alterations, truncating mutations, and abnormal EP300 transcriptions that affect p300 abundance and activity are associated with several pathological features such as tumor grading, metastases, and patient survival. Elevated EP300 correlates with a higher mRNA level of other epigenetic factors and chromatin remodeling enzymes that co-operate with p300 in creating permissive conditions for malignant transformation, tumor growth and metastases. The status of EP300 expression can be considered as a prognostic marker for anticancer immunotherapy efficacy, as EP300 mutations are followed by an increased expression of PDL-1.HAT activators such as CTB or YF2 can be applied for p300-deficient patients, whereas the natural and synthetic inhibitors of p300 activity, as well as dual HAT/bromodomain inhibitors and the PROTAC degradation of p300, may serve as strategies in the fight against p300-fueled cancers.
Collapse
Affiliation(s)
- Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
5
|
Effects of the Acetyltransferase p300 on Tumour Regulation from the Novel Perspective of Posttranslational Protein Modification. Biomolecules 2023; 13:biom13030417. [PMID: 36979352 PMCID: PMC10046601 DOI: 10.3390/biom13030417] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
p300 acts as a transcription coactivator and an acetyltransferase that plays an important role in tumourigenesis and progression. In previous studies, it has been confirmed that p300 is an important regulator in regulating the evolution of malignant tumours and it also has extensive functions. From the perspective of non-posttranslational modification, it has been proven that p300 can participate in regulating many pathophysiological processes, such as activating oncogene transcription, promoting tumour cell growth, inducing apoptosis, regulating immune function and affecting embryo development. In recent years, p300 has been found to act as an acetyltransferase that catalyses a variety of protein modification types, such as acetylation, propanylation, butyylation, 2-hydroxyisobutyration, and lactylation. Under the catalysis of this acetyltransferase, it plays its crucial tumourigenic driving role in many malignant tumours. Therefore, the function of p300 acetyltransferase has gradually become a research hotspot. From a posttranslational modification perspective, p300 is involved in the activation of multiple transcription factors and additional processes that promote malignant biological behaviours, such as tumour cell proliferation, migration, and invasion, as well as tumour cell apoptosis, drug resistance, and metabolism. Inhibitors of p300 have been developed and are expected to become novel anticancer drugs for several malignancies. We review the characteristics of the p300 protein and its functional role in tumour from the posttranslational modification perspective, as well as the current status of p300-related inhibitor research, with a view to gaining a comprehensive understanding of p300.
Collapse
|
6
|
Iwai K, Hikasa A, Yoshioka K, Tani S, Umezu K, Nishiwaki N. Synthesis of Bis(functionalized) Aminals via Successive Nucleophilic Amidation and Amination. J Org Chem 2023; 88:2207-2213. [PMID: 36745736 DOI: 10.1021/acs.joc.2c02647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The central carbonyl group of diethyl mesoxalate (DEMO) exhibits high electrophilicity that allows it to be attacked by versatile nucleophiles. Even a less nucleophilic acid amide serves as a nucleophile to produce N,O-acetal upon treatment with DEMO in the presence of acetic anhydride. When the obtained N,O-acetal was treated with a base, the elimination of acetic acid generated N-acylimine in situ. N-Acylimine is also highly electrophilic, allowing it to accept the second nucleophilic addition by an amine, resulting in α,α-bis(functionalized) aminals. This protocol facilitates the modification of the two different amino groups by altering nucleophiles, resulting in the production of tetra-functionalized methane derivatives on demand. The ring closure between the amide moiety and the amino group was achieved using the structural features to form a six-membered ring.
Collapse
Affiliation(s)
- Kento Iwai
- School of Engineering Science, Kochi University of Technology, Tosayamada, Kami 782-8502, Kochi, Japan.,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami 782-8502, Kochi, Japan
| | - Akari Hikasa
- School of Engineering Science, Kochi University of Technology, Tosayamada, Kami 782-8502, Kochi, Japan
| | - Kotaro Yoshioka
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji 421-3306, Shizuoka, Japan
| | - Shinki Tani
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji 421-3306, Shizuoka, Japan
| | - Kazuto Umezu
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji 421-3306, Shizuoka, Japan
| | - Nagatoshi Nishiwaki
- School of Engineering Science, Kochi University of Technology, Tosayamada, Kami 782-8502, Kochi, Japan.,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami 782-8502, Kochi, Japan
| |
Collapse
|
7
|
Devaux CA, Raoult D. The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication. Front Physiol 2022; 13:960308. [PMID: 36091390 PMCID: PMC9454615 DOI: 10.3389/fphys.2022.960308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cases of coronavirus disease 2019 (COVID-19) have been reported worldwide. However, one epidemiological report has claimed a lower incidence of the disease in people living at high altitude (>2,500 m), proposing the hypothesis that adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection. This publication was initially greeted with skepticism, because social, genetic, or environmental parametric variables could underlie a difference in susceptibility to the virus for people living in chronic hypobaric hypoxia atmospheres. Moreover, in some patients positive for SARS-CoV-2, early post-infection ‘happy hypoxia” requires immediate ventilation, since it is associated with poor clinical outcome. If, however, we accept to consider the hypothesis according to which the adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection, identification of the molecular rational behind it is needed. Among several possibilities, HIF-1 regulation appears to be a molecular hub from which different signaling pathways linking hypoxia and COVID-19 are controlled. Interestingly, HIF-1α was reported to inhibit the infection of lung cells by SARS-CoV-2 by reducing ACE2 viral receptor expression. Moreover, an association of the rs11549465 variant of HIF-1α with COVID-19 susceptibility was recently discovered. Here, we review the evidence for a link between HIF-1α, ACE2 and AT1R expression, and the incidence/severity of COVID-19. We highlight the central role played by the HIF-1α signaling pathway in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique, Marseille, France
- *Correspondence: Christian Albert Devaux,
| | - Didier Raoult
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
8
|
Dreab A, Bayse CA. Molecular Dynamics Simulations of Reduced and Oxidized TFIIIA Zinc Fingers Free and Interacting with 5S RNA. J Chem Inf Model 2022; 62:903-913. [PMID: 35143196 DOI: 10.1021/acs.jcim.1c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interactions of zinc finger (ZF) proteins with nucleic acids and proteins play an important role in DNA transcription and repair, biochemical recognition, and protein regulation. The release of Zn2+ through oxidation of cysteine thiolates is associated with disruption of gene expression and DNA repair, preventing tumor growth. Multi-microsecond molecular dynamics (MD) simulations were carried out to examine the effect of Cys oxidation on the ZF456 fragment of transcription factor III A (TFIIIA) and its complex with 5S RNA. In the absence of 5S RNA, the reduced ZF456 peptide undergoes conformational changes in the secondary structure due to the reorientation of the intact ZF domains. Upon oxidation, the individual ZF domains unfold to various degrees, yielding a globular ZF456 peptide with ZF4 and ZF6, responsible for base-specific hydrogen bonds with 5S RNA, losing their ββα-folds. ZF5, on the other hand, participates in nonspecific interactions through its α-helix that conditionally unravels early in the simulation. In the presence of RNA, oxidation of the ZF456 peptide disrupts the key hydrogen bonding interactions between ZF5/ZF6 and 5S RNA. However, interactions with ZF4 are dependent on the protonation state of His119.
Collapse
Affiliation(s)
- Ana Dreab
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
9
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
10
|
Liakhov SA, Schepetkin IA, Karpenko OS, Duma HI, Haidarzhy NM, Kirpotina LN, Kovrizhina AR, Khlebnikov AI, Bagryanskaya IY, Quinn MT. Novel c-Jun N-Terminal Kinase (JNK) Inhibitors with an 11 H-Indeno[1,2- b]quinoxalin-11-one Scaffold. Molecules 2021; 26:molecules26185688. [PMID: 34577159 PMCID: PMC8464905 DOI: 10.3390/molecules26185688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) plays a central role in stress signaling pathways implicated in important pathological processes, including rheumatoid arthritis and ischemia-reperfusion injury. Therefore, inhibition of JNK is of interest for molecular targeted therapy to treat various diseases. We synthesized 13 derivatives of our reported JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime and evaluated their binding to the three JNK isoforms and their biological effects. Eight compounds exhibited submicromolar binding affinity for at least one JNK isoform. Most of these compounds also inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) activation and interleukin-6 (IL-6) production in human monocytic THP1-Blue cells and human MonoMac-6 cells, respectively. Selected compounds (4f and 4m) also inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. We conclude that indenoquinoxaline-based oximes can serve as specific small-molecule modulators for mechanistic studies of JNKs, as well as potential leads for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Serhii A. Liakhov
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odessa, Ukraine; (S.A.L.); (O.S.K.); (H.I.D.)
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Olexander S. Karpenko
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odessa, Ukraine; (S.A.L.); (O.S.K.); (H.I.D.)
| | - Hanna I. Duma
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odessa, Ukraine; (S.A.L.); (O.S.K.); (H.I.D.)
| | | | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Anastasia R. Kovrizhina
- Kizhner Research Center, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.R.K.); (A.I.K.)
| | - Andrei I. Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.R.K.); (A.I.K.)
| | - Irina Y. Bagryanskaya
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
- Correspondence: ; Tel.: +406-994-4707; Fax: +406-994-4303
| |
Collapse
|
11
|
Berthelet J, Michail C, Bui LC, Le Coadou L, Sirri V, Wang L, Dulphy N, Dupret JM, Chomienne C, Guidez F, Rodrigues-Lima F. The Benzene Hematotoxic and Reactive Metabolite 1,4-Benzoquinone Impairs the Activity of the Histone Methyltransferase SET Domain Containing 2 (SETD2) and Causes Aberrant Histone H3 Lysine 36 Trimethylation (H3K36me3). Mol Pharmacol 2021; 100:283-294. [PMID: 34266924 DOI: 10.1124/molpharm.121.000303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Human SETD2 is the unique histone methyltransferase that generates H3K36 trimethylation (H3K36me3), an epigenetic mark that plays a key role in normal hematopoiesis. Interestingly, recurrent inactivating mutations of SETD2 and aberrant H3K36me3 are increasingly reported to be involved in hematopoietic malignancies. Benzene (BZ) is a ubiquitous environmental pollutant and carcinogen that causes leukemia. The leukemogenic properties of BZ depend on its biotransformation in the bone marrow into oxidative metabolites, in particular 1,4-benzoquinone (BQ). This hematotoxic metabolite can form DNA and protein adducts that result in the damage and the alteration of cellular processes. Recent studies suggest that BZ-dependent leukemogenesis could depend on epigenetic perturbations, notably aberrant histone methylation. We investigated whether H3K36 trimethylation by SETD2 could be impacted by BZ and its hematotoxic metabolites. Herein, we show that BQ, the major leukemogenic metabolite of BZ, inhibits irreversibly the human histone methyltransferase SETD2, resulting in decreased H3K36me3. Our mechanistic studies further indicate that the BQ-dependent inactivation of SETD2 is due to covalent binding of BQ to reactive Zn-finger cysteines within the catalytic domain of the enzyme. The formation of these quinoprotein adducts results in loss of enzyme activity and protein crosslinks/oligomers. Experiments conducted in hematopoietic cells confirm that exposure to BQ results in the formation of SETD2 crosslinks/oligomers and concomitant loss of H3K36me3 in cells. Taken together, our data indicate that BQ, a major hematotoxic metabolite of BZ, could contribute to BZ-dependent leukemogenesis by perturbing the functions of SETD2, a histone lysine methyltransferase of hematopoietic relevance. SIGNIFICANCE STATEMENT: Benzoquinone is a major leukemogenic metabolite of benzene. Dysregulation of histone methyltransferase is involved in hematopoietic malignancies. This study found that benzoquinone irreversibly impairs SET domain containing 2, a histone H3K36 methyltransferase that plays a key role in hematopoiesis. Benzoquinone forms covalent adducts on Zn-finger cysteines within the catalytic site, leading to loss of activity, protein crosslinks/oligomers, and concomitant decrease of H3K36me3 histone mark. These data provide evidence that a leukemogenic metabolite of benzene can impair a key epigenetic enzyme.
Collapse
Affiliation(s)
- Jérémy Berthelet
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.)
| | - Christina Michail
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.)
| | - Linh-Chi Bui
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.)
| | - Louise Le Coadou
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.)
| | - Valentina Sirri
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.)
| | - Li Wang
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.)
| | - Nicolas Dulphy
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.)
| | - Jean-Marie Dupret
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.)
| | - Christine Chomienne
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.)
| | - Fabien Guidez
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.)
| | - Fernando Rodrigues-Lima
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, Paris, France (J.B., C.M., L.-C.B., L.L.C., V.S., J.-M.D., F.R.-L.); The First Affiliated Hospital of Chongqing Medical University, Department of Hematology, Chongqing, China (L.W.); Université de Paris, Institut de Recherche Saint-Louis (IRSL), UMRS 1160 (N.D.), UMRS 1131 (C.C., F.G.), INSERM, Paris, France; and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France (C.C.) fernando.rodrigues-lima@univ-paris-diderot
| |
Collapse
|
12
|
de Souza APM, Costa MCA, de Aguiar AR, Bressan GC, de Almeida Lima GD, Lima WP, Borsodi MPG, Bergmann BR, Ferreira MMC, Teixeira RR. Leishmanicidal and cytotoxic activities and 4D-QSAR of 2-arylidene indan-1,3-diones. Arch Pharm (Weinheim) 2021; 354:e2100081. [PMID: 34323311 DOI: 10.1002/ardp.202100081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023]
Abstract
The indan-1,3-dione and its derivatives are important building blocks in organic synthesis and present important biological activities. Herein, the leishmanicidal and cytotoxicity evaluation of 16 2-arylidene indan-1,3-diones is described. The compounds were evaluated against the leukemia cell lines HL60 and Nalm6, and the most effective ones were 2-(4-nitrobenzylidene)-1H-indene-1,3(2H)-dione (4) and 4-[(1,3-dioxo-1H-inden-2(3H)-ylidene)methyl]benzonitrile (10), presenting IC50 values of around 30 µmol/L against Nalm6. The leishmanicidal activity was assessed on Leishmania amazonensis, with derivative 4 (IC50 = 16.6 µmol/L) being the most active. A four-dimensional quantitative structure-activity analysis (4D-QSAR) was applied to the indandione derivatives, through partial least-squares regression. The statistics presented by the regression models built with the selected field descriptors of Coulomb (C) and Lennard-Jones (L) nature, considering the activities against L. amazonensis, HL60, and Nalm6 leukemia cells, were, respectively, R2 = 0.88, 0.92, and 0.98; Q2 = 0.83, 0.88, and 0.97. The presence of positive Coulomb descriptors near the carbonyl groups indicates that these polar groups are related to the activities. Besides, the presence of positive Lennard-Jones descriptors close to substituents R3 or R1 indicates that bulky nonpolar substituents in these positions tend to increase the activities. This study provides useful insights into the mode of action of indandione derivatives for each biological activity involved.
Collapse
Affiliation(s)
- Ana P M de Souza
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maria C A Costa
- Theoretical and Applied Chemometrics Laboratory (LQTA), Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Alex R de Aguiar
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Gustavo C Bressan
- Escola de Ciências da Saúde, Universidade do Grande Rio, Duque de Caxias, Brazil
| | | | - Wallace P Lima
- Escola de Ciências da Saúde, Universidade do Grande Rio, Duque de Caxias, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria P G Borsodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bartira R Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia M C Ferreira
- Theoretical and Applied Chemometrics Laboratory (LQTA), Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Róbson R Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
13
|
Zhang W, Berthelet J, Michail C, Bui LC, Gou P, Liu R, Duval R, Renault J, Dupret JM, Guidez F, Chomienne C, Rodrigues Lima F. Human CREBBP acetyltransferase is impaired by etoposide quinone, an oxidative and leukemogenic metabolite of the anticancer drug etoposide through modification of redox-sensitive zinc-finger cysteine residues. Free Radic Biol Med 2021; 162:27-37. [PMID: 33278510 DOI: 10.1016/j.freeradbiomed.2020.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Etoposide is an extensively prescribed anticancer drug that, unfortunately, causes therapy-related leukemia. The mechanisms by which etoposide induces secondary hematopoietic malignancies are poorly documented. However, etoposide-related leukemogenesis is known to depend on oxidative metabolites of etoposide, notably etoposide quinone, that can react with protein cysteine residues such as in topoisomerases II. CREBBP is a major histone acetyltransferase that functions mainly as a transcriptional co-activator. This epigenetic enzyme is considered as a tumor suppressor that plays a major role in hematopoiesis. Genetic alterations affecting CREBBP activity are highly common in hematopoietic malignancies. We report here that CREBBP is impaired by etoposide quinone. Molecular and kinetic analyses show that this inhibition occurs through the rapid and covalent (kinhib = 16.102 M-1. s-1) adduction of etoposide quinone with redox sensitive cysteine residues within the RING and PHD Zn2+-fingers of CREBBP catalytic core leading to subsequent release of Zn2+. In agreement with these findings, experiments conducted in cells and in mice treated with etoposide showed irreversible inhibition of endogenous CREBBP activity and decreased H3K18 and H3K27 acetylation. As shown for topoisomerases II, our work thus suggests that the leukemogenic metabolite etoposide quinone can impair the epigenetic CREBBP acetyltransferase through reaction with redox sensitive cysteine residues.
Collapse
Affiliation(s)
- Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Jérémy Berthelet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France; Université de Paris, CEDC, UMR 7216, CNRS, F-75013, Paris, France
| | | | - Linh-Chi Bui
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Panhong Gou
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France
| | - Rongxing Liu
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Romain Duval
- Université de Paris, BIGR, UMRS 1134, INSERM, F-75015, Paris, France
| | - Justine Renault
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | | | - Fabien Guidez
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France
| | - Christine Chomienne
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France; Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | | |
Collapse
|
14
|
Shimizu T, Takahashi N, Huber VJ, Asawa Y, Ueda H, Yoshimori A, Muramatsu Y, Seimiya H, Kouji H, Nakamura H, Oguri H. Design and synthesis of 14 and 15-membered macrocyclic scaffolds exhibiting inhibitory activities of hypoxia-inducible factor 1α. Bioorg Med Chem 2020; 30:115949. [PMID: 33360196 DOI: 10.1016/j.bmc.2020.115949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Inspired by the privileged molecular skeletons of 14- and 15-membered antibiotics, we adopted a relatively unexplored synthetic approach that exploits alkaloidal macrocyclic scaffolds to generate modulators of protein-protein interactions (PPIs). As mimetics of hot-spot residues in the α-helices responsible for the transcriptional regulation, three hydrophobic sidechains were displayed on each of the four distinct macrocyclic scaffolds generating diversity of their spatial arrangements. Modular assembly of the building blocks followed by ring-closing olefin metathesis reaction and subsequent hydrogenation allowed concise and divergent synthesis of scaffolds 1-4. The 14-membered alkaloidal macrocycles 2-4 demonstrated similar inhibition of hypoxia-inducible factor (HIF)-1α transcriptional activities (IC50 between 8.7 and 10 µM), and 4 demonstrated the most potent inhibition of cell proliferation in vitro (IC50 = 12 µM against HTC116 colon cancer cell line). A docking model suggested that 4 could mimic the LLxxL motif in HIF-1α, in which the three sidechains are capable of matching the spatial arrangements of the protein hot-spot residues. Unlike most of the stapled peptides, the 14-membered alkaloidal scaffold has a similar size to the α-helix backbone and does not require additional atoms to induce α-helix mimetic structure. These experimental results underscore the potential of alkaloidal macrocyclic scaffolds featuring flexibly customizable skeletal, stereochemical, substitutional, and conformational properties for the development of non-peptidyl PPI modulators targeting α-helix-forming consensus sequences responsible for the transcriptional regulation.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Norihito Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Vincent J Huber
- Oita University Institute of Advanced Medicine, Inc., 17-20 Higashi kasuga-machi, Oita-shi, Oita 870-0037, Japan
| | - Yasunobu Asawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine, Inc., 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Muramatsu
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hiroyuki Kouji
- Oita University Institute of Advanced Medicine, Inc., 17-20 Higashi kasuga-machi, Oita-shi, Oita 870-0037, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Oguri
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
Rahman Z, Bazaz MR, Devabattula G, Khan MA, Godugu C. Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer. J Biochem Mol Toxicol 2020; 35:e22674. [PMID: 33283949 DOI: 10.1002/jbt.22674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
H3K9 methyltransferase (G9a) and its relevant molecule GLP are the SET domain proteins that specifically add mono, di and trimethyl groups on to the histone H3K9, which lead to the transcriptional inactivation of chromatin and reduce the expression of cancer suppressor genes, which trigger growth and progress of several cancer types. Various studies have demonstrated that overexpression of H3K9 methyltransferase G9a and GLP in different kinds of tumors, like lung, breast, bladder, colon, cervical, gastric, skin cancers, hepatocellular carcinoma and hematological malignancies. Several G9a and GLP inhibitors such as BIX-01294, UNC0642, A-366 and DCG066 were developed to combat various cancers; however, there is a need for more effective and less toxic compounds. The current molecular docking study suggested that the selected new compounds such as ninhydrin, naphthoquinone, cysteamine and disulfide cysteamine could be suitable molecules as a G9a and GLP inhibitors. Furthermore, detailed cell based and preclinical animal studies are required to confirm their properties. In the current review, we discussed the role of G9a and GLP mediated epigenetic regulation in the cancers. A thorough literature review was done related to G9a and GLP. The databases used extensively for retrieval of information were PubMed, Medline, Scopus and Science-direct. Further, molecular docking was performed using Maestro Schrodinger version 9.2 software to investigate the binding profile of compounds with Human G9a HMT (PDB ID: 3FPD, 3RJW) and Human GLP MT (PDB ID: 6MBO, 6MBP).
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Geetanjali Devabattula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Abrar Khan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
16
|
Hetherington K, Hegedus Z, Edwards TA, Sessions RB, Nelson A, Wilson AJ. Stapled Peptides as HIF-1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Chemistry 2020; 26:7638-7646. [PMID: 32307728 PMCID: PMC7318359 DOI: 10.1002/chem.202000417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions (PPIs) control virtually all cellular processes and have thus emerged as potential targets for development of molecular therapeutics. Peptide-based inhibitors of PPIs are attractive given that they offer recognition potency and selectivity features that are ideal for function, yet, they do not predominantly populate the bioactive conformation, frequently suffer from poor cellular uptake and are easily degraded, for example, by proteases. The constraint of peptides in a bioactive conformation has emerged as a promising strategy to mitigate against these liabilities. In this work, using peptides derived from hypoxia-inducible factor 1 (HIF-1α) together with dibromomaleimide stapling, we identify constrained peptide inhibitors of the HIF-1α/p300 interaction that are more potent than their unconstrained sequences. Contrary to expectation, the increased potency does not correlate with an increased population of an α-helical conformation in the unbound state as demonstrated by experimental circular dichroism analysis. Rather, the ability of the peptide to adopt a bioactive α-helical conformation in the p300 bound state is better supported in the constrained variant as demonstrated by molecular dynamics simulations and circular dichroism difference spectra.
Collapse
Affiliation(s)
- Kristina Hetherington
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Zsofia Hegedus
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Thomas A. Edwards
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Richard B. Sessions
- School of BiochemistryUniversity of BristolMedical Sciences Building, University WalkBristolBS8 1TDUK
- BrisSynBioUniversity of Bristol, Life Sciences BuildingTyndall AvenueBristolBS8 1TQUK
| | - Adam Nelson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
17
|
The Cancer Clock Is (Not) Ticking: Links between Circadian Rhythms and Cancer. Clocks Sleep 2019; 1:435-458. [PMID: 33089179 PMCID: PMC7445810 DOI: 10.3390/clockssleep1040034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythms regulate many physiological and behavioral processes, including sleep, metabolism and cell division, which have a 24-h oscillation pattern. Rhythmicity is generated by a transcriptional–translational feedback loop in individual cells, which are synchronized by the central pacemaker in the brain and external cues. Epidemiological and clinical studies indicate that disruption of these rhythms can increase both tumorigenesis and cancer progression. Environmental changes (shift work, jet lag, exposure to light at night), mutations in circadian regulating genes, and changes to clock gene expression are recognized forms of disruption and are associated with cancer risk and/or cancer progression. Experimental data in animals and cell cultures further supports the role of the cellular circadian clock in coordinating cell division and DNA repair, and disrupted cellular clocks accelerate cancer cell growth. This review will summarize studies linking circadian disruption to cancer biology and explore how such disruptions may be further altered by common characteristics of tumors including hypoxia and acidosis. We will highlight how circadian rhythms might be exploited for cancer drug development, including how delivery of current chemotherapies may be enhanced using chronotherapy. Understanding the role of circadian rhythms in carcinogenesis and tumor progression will enable us to better understand causes of cancer and how to treat them.
Collapse
|
18
|
Yu Z, Liu Y, Zhu J, Han J, Tian X, Han W, Zhao L. Insights from molecular dynamics simulations and steered molecular dynamics simulations to exploit new trends of the interaction between HIF-1α and p300. J Biomol Struct Dyn 2019; 38:1-12. [DOI: 10.1080/07391102.2019.1580616] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zhengfei Yu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Ye Liu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jiarui Han
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Xiaopian Tian
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Li Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
19
|
Li J, Xi W, Li X, Sun H, Li Y. Advances in inhibition of protein-protein interactions targeting hypoxia-inducible factor-1 for cancer therapy. Bioorg Med Chem 2019; 27:1145-1158. [PMID: 30819620 DOI: 10.1016/j.bmc.2019.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
Abstract
Hypoxia is a common characteristic of many types of solid tumors and is associated with tumor propagation, malignant progression, and resistance to anti-cancer therapy. HIF-1 pathway is one of the survival pathways activated in tumor in response to hypoxia. In hypoxic condition, hypoxia-inducible factor-1α (HIF-1α) is stabilized and translocated into nucleus where it forms heterodimer with HIF-1β and regulates the expression of a plethora of genes involved in different processes, such as cell proliferation, differentiation, apoptosis, vascularization/angiogenesis, tumor invasion and metastasis. Recruitment of co-activator p300 or CBP to HIF-1α is critical to the transactivation activity of HIF-1 dimer, therefore, small molecules which can block the dimerization of HIF-1α and HIF-1β or inhibit the interaction between HIF-1α and p300 can function as inhibitors of HIF-1 and have the potential to be developed as novel therapies for the treatment of human cancers. In this review, recent progress of small molecular inhibitors of protein-protein interactions targeting HIF-1 is summarized, the mechanism of functions of these compounds and their potential usage as anti-cancer agents have also been discussed.
Collapse
Affiliation(s)
- Jia Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wanlin Xi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaofang Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
20
|
Li Z, You Q, Zhang X. Small-Molecule Modulators of the Hypoxia-Inducible Factor Pathway: Development and Therapeutic Applications. J Med Chem 2019; 62:5725-5749. [DOI: 10.1021/acs.jmedchem.8b01596] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
21
|
Martinez CA, Kerr B, Jin C, Cistulli PA, Cook KM. Obstructive Sleep Apnea Activates HIF-1 in a Hypoxia Dose-Dependent Manner in HCT116 Colorectal Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20020445. [PMID: 30669593 PMCID: PMC6359625 DOI: 10.3390/ijms20020445] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) affects a significant proportion of the population and is linked to increased rates of cancer development and a worse cancer outcome. OSA is characterized by nocturnal intermittent hypoxia and animal models of OSA-like intermittent hypoxia show increased tumor growth and metastasis. Advanced tumors typically have regions of chronic hypoxia, activating the transcription factor, HIF-1, which controls the expression of genes involved in cancer progression. Rapid intermittent hypoxia from OSA has been proposed to increase HIF-1 activity and this may occur in tumors. The effect of exposing a developing tumor to OSA-like intermittent hypoxia is largely unknown. We have built a cell-based model of physiological OSA tissue oxygenation in order to study the effects of intermittent hypoxia in HCT116 colorectal cancer cells. We found that HIF-1α increases following intermittent hypoxia and that the expression of HIF-target genes increases, including those involved in glycolysis, the hypoxic pathway and extracellular matrix remodeling. Expression of these genes acts as a 'hypoxic' signature which is associated with a worse prognosis. The total dose of hypoxia determined the magnitude of change in the hypoxic signature rather than the frequency or duration of hypoxia-reoxygenation cycles per se. Finally, transcription of HIF1A mRNA differs in response to chronic and intermittent hypoxia suggesting that HIF-1α may be regulated at the transcriptional level in intermittent hypoxia and not just by the post-translational oxygen-dependent degradation pathway seen in chronic hypoxia.
Collapse
Affiliation(s)
- Chloe-Anne Martinez
- Charles Perkins Centre, Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney NSW 2006, Australia.
| | - Bernadette Kerr
- Charles Perkins Centre, Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney NSW 2006, Australia.
| | - Charley Jin
- Charles Perkins Centre, Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney NSW 2006, Australia.
| | - Peter A Cistulli
- Charles Perkins Centre, Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney NSW 2006, Australia.
- Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney 2065, Australia.
| | - Kristina M Cook
- Charles Perkins Centre, Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|
22
|
Stondus J, Anthal S, Karanth S, Narayana B, Sarojini BK, Kant R. 2,4-Dichloro- N-(2,5-dioxopyrrolidin-1-yl)benzamide. IUCRDATA 2018. [DOI: 10.1107/s2414314618017406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the title compound, C11H8Cl2N2O3, the plane of the pyrrolidine ring (r.m.s. deviation = 0.065 Å) makes a dihedral angle of 52.9 (2)° with the plane of the benzene ring. The least-squares plane of the central amide fragment makes dihedral angles of 49.3 (7) and 77.9 (7)° with those of the benzene and pyrrolidine rings, respectively. In the crystal, molecules are linked via N—H...O hydrogen bonds, forming chains along the b-axis direction. π–π interactions link these chains into a two-dimensional network parallel to (100).
Collapse
|
23
|
Mo C, Xu M, Wen C, Chang R, Huang C, Zou W, Zhu X, Guo Q. Normalizing JMJD6 Expression in Rat Spinal Dorsal Horn Alleviates Hyperalgesia Following Chronic Constriction Injury. Front Neurosci 2018; 12:542. [PMID: 30131674 PMCID: PMC6090481 DOI: 10.3389/fnins.2018.00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Jumonji domain-containing protein 6 (JMJD6) is a homolog of hypoxia-inducible factor (HIF) asparaginyl hydroxylase, an inhibitor of HIF. HIF-1α is known to participate in neuropathic pain (NPP) during chronic constriction injury (CCI); however, the roles of JMJD6 in NPP have not been systematically investigated. In this study, we examined the temporal distribution and cellular location of JMJD6 in the spinal cord during CCI. In addition, we assessed behavioral changes representative of NPP in rats. Following CCI, lentiviral vectors (LV-JMJD6) were intrathecally administered to observe the changes in the expression of JMJD6, HIF-1α, and its downstream factor caspase-3. Co-immunoprecipitation was used to detect potential interactions between JMJD6 and HIF-1α. We found that JMJD6 was decreased in rats following CCI, which was accompanied by significant NPP–associated behavioral changes. JMJD6 was mainly expressed in neurons. Intrathecal injection of LV-JMJD6 following CCI alleviated the thermal and mechanical hyperalgesia, normalized JMJD6 protein expression, and decreased HIF-1α protein expression with a corresponding reduction in caspase-3 protein expression. Furthermore, the co-immunoprecipitation analyses showed that JMJD6 and HIF-1α protein immunoprecipitated with each other, indicating an interaction between these two proteins. Taken together, the results suggest that JMJD6 may serve as a sensor in neurons of the adult rat spinal cord during the CCI state. Furthermore, JMJD6 may exert its function in NPP by regulating HIF-1α in rats exposed to CCI.
Collapse
Affiliation(s)
- Cheng Mo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,Department of Anesthesiology, The People's Hospital of Guangxi Zhuangzu Autonomous Region, Nanning, China
| | - Mengyuan Xu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Cen Wen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyan Zhu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
24
|
Lenstra DC, Al Temimi AHK, Mecinović J. Inhibition of histone lysine methyltransferases G9a and GLP by ejection of structural Zn(II). Bioorg Med Chem Lett 2018. [PMID: 29519735 DOI: 10.1016/j.bmcl.2018.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Histone lysine methyltransferases G9a and GLP are validated targets for the development of new epigenetic drugs. Most, if not all, inhibitors of G9a and GLP target the histone substrate binding site or/and the S-adenosylmethionine cosubstrate binding site. Here, we report an alternative approach for inhibiting the methyltransferase activity of G9a and GLP. For proper folding and enzymatic activity, G9a and GLP contain structural zinc fingers, one of them being adjacent to the S-adenosylmethionine binding site. Our work demonstrates that targeting these labile zinc fingers with electrophilic small molecules results in ejection of structural zinc ions, and consequently inhibition of the methyltransferase activity. Very effective Zn(II) ejection and inhibition of G9a and GLP was observed with clinically used ebselen, disulfiram and cisplatin.
Collapse
Affiliation(s)
- Danny C Lenstra
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Abbas H K Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Burslem GM, Kyle HF, Nelson A, Edwards TA, Wilson AJ. Hypoxia inducible factor (HIF) as a model for studying inhibition of protein-protein interactions. Chem Sci 2017; 8:4188-4202. [PMID: 28878873 PMCID: PMC5576430 DOI: 10.1039/c7sc00388a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022] Open
Abstract
The state of the art in identifying protein–protein interaction inhibitors of hypoxia inducible factor – a promising target for anticancer drug design – is described.
The modulation of protein–protein interactions (PPIs) represents a major challenge in modern chemical biology. Current approaches (e.g. high-throughput screening, computer aided ligand design) are recognised as having limitations in terms of identification of hit matter. Considerable success has been achieved in terms of developing new approaches to PPI modulator discovery using the p53/hDM2 and Bcl-2 family of PPIs. However these important targets in oncology might be considered as “low-hanging-fruit”. Hypoxia inducible factor (HIF) is an emerging, but not yet fully validated target for cancer chemotherapy. Its role is to regulate the hypoxic response and it does so through a plethora of protein–protein interactions of varying topology, topography and complexity: its modulation represents an attractive approach to prevent development of new vasculature by hypoxic tumours.
Collapse
Affiliation(s)
- George M Burslem
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Hannah F Kyle
- Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK.,School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Adam Nelson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK.,School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| |
Collapse
|
26
|
Yang C, Wang W, Li GD, Zhong HJ, Dong ZZ, Wong CY, Kwong DWJ, Ma DL, Leung CH. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction. Sci Rep 2017; 7:42860. [PMID: 28225008 PMCID: PMC5320473 DOI: 10.1038/srep42860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
The hypoxia inducible factor (HIF) pathway has been considered to be an attractive anti-cancer target. One strategy to inhibit HIF activity is through the disruption of the HIF-1α–p300 protein-protein interaction. We report herein the identification of an osmium(II) complex as the first metal-based inhibitor of the HIF-1α–p300 interaction. We evaluated the effect of complex 1 on HIF-1α signaling pathway in vitro and in cellulo by using the dual luciferase reporter assay, co-immunoprecipitation assay, and immunoblot assay. Complex 1 exhibited a dose-dependent inhibition of HRE-driven luciferase activity, with an IC50 value of 1.22 μM. Complex 1 interfered with the HIF-1α–p300 interaction as revealed by a dose-dependent reduction of p300 co-precipitated with HIF-1α as the concentration of complex 1 was increased. Complex 1 repressed the phosphorylation of SRC, AKT and STAT3, and had no discernible effect on the activity of NF-κB. We anticipate that complex 1 could be utilized as a promising scaffold for the further development of more potent HIF-1α inhibitors for anti-cancer treatment.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guo-Dong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chun-Yuen Wong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Daniel W J Kwong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
27
|
Martin AR, Ronco C, Demange L, Benhida R. Hypoxia inducible factor down-regulation, cancer and cancer stem cells (CSCs): ongoing success stories. MEDCHEMCOMM 2017; 8:21-52. [PMID: 30108689 PMCID: PMC6071925 DOI: 10.1039/c6md00432f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
In cancers, hypoxia inducible factor 1 (HIF-1) is an over-expressed transcription factor, which regulates a large set of genes involved in tumour vascularization, metastases, and cancer stem cells (CSCs) formation and self-renewal. This protein has been identified as a relevant target in oncology and several HIF-1 modulators are now marketed or in advanced clinical trials. The purpose of this review is to summarize the advances in the understanding of its regulation and its inhibition, from the medicinal chemist point of view. To this end, we selected in the recent literature relevant examples of "hit" compounds, including small-sized organic molecules, pseudopeptides and nano-drugs, exhibiting in vitro and/or in vivo both anti-HIF-1 and anti-tumour activities. Whenever possible, a particular emphasis has been dedicated to compounds that selectively target CSCs.
Collapse
Affiliation(s)
- Anthony R Martin
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Cyril Ronco
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Luc Demange
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
- UFR des Sciences Pharmaceutiques , Université Paris Descartes , Sorbonne Paris Cité , 4 avenue de l'Observatoire , Paris Fr-75006 , France
- UFR Biomédicale des Saints Pères , 45 rue des Saints Pères , Paris Fr-75006 , France
| | - Rachid Benhida
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| |
Collapse
|
28
|
Wilkins SE, Abboud MI, Hancock RL, Schofield CJ. Targeting Protein-Protein Interactions in the HIF System. ChemMedChem 2016; 11:773-86. [PMID: 26997519 PMCID: PMC4848768 DOI: 10.1002/cmdc.201600012] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/24/2016] [Indexed: 12/18/2022]
Abstract
Animals respond to chronic hypoxia by increasing the levels of a transcription factor known as the hypoxia-inducible factor (HIF). HIF upregulates multiple genes, the products of which work to ameliorate the effects of limited oxygen at cellular and systemic levels. Hypoxia sensing by the HIF system involves hydroxylase-catalysed post-translational modifications of the HIF α-subunits, which 1) signal for degradation of HIF-α and 2) limit binding of HIF to transcriptional coactivator proteins. Because the hypoxic response is relevant to multiple disease states, therapeutic manipulation of the HIF-mediated response has considerable medicinal potential. In addition to modulation of catalysis by the HIF hydroxylases, the HIF system manifests other possibilities for therapeutic intervention involving protein-protein and protein-nucleic acid interactions. Recent advances in our understanding of the structural biology and biochemistry of the HIF system are facilitating medicinal chemistry efforts. Herein we give an overview of the HIF system, focusing on structural knowledge of protein-protein interactions and how this might be used to modulate the hypoxic response for therapeutic benefit.
Collapse
Affiliation(s)
- Sarah E Wilkins
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Rebecca L Hancock
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
29
|
Kaypee S, Sudarshan D, Shanmugam MK, Mukherjee D, Sethi G, Kundu TK. Aberrant lysine acetylation in tumorigenesis: Implications in the development of therapeutics. Pharmacol Ther 2016; 162:98-119. [PMID: 26808162 DOI: 10.1016/j.pharmthera.2016.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 'language' of covalent histone modifications translates environmental and cellular cues into gene expression. This vast array of post-translational modifications on histones are more than just covalent moieties added onto a protein, as they also form a platform on which crucial cellular signals are relayed. The reversible lysine acetylation has emerged as an important post-translational modification of both histone and non-histone proteins, dictating numerous epigenetic programs within a cell. Thus, understanding the complex biology of lysine acetylation and its regulators is essential for the development of epigenetic therapeutics. In this review, we will attempt to address the complexities of lysine acetylation in the context of tumorigenesis, their role in cancer progression and emphasize on the modalities developed to target lysine acetyltransferases towards cancer treatment.
Collapse
Affiliation(s)
- Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Deepthi Sudarshan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Debanjan Mukherjee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India.
| |
Collapse
|
30
|
Abstract
Nonspecific bioactivity and assay artifacts have gained increasing attention in recent years. This focus has arisen primarily from the publication of a set of chemical substructures, termed pan assay interference compounds (PAINS), which are associated with promiscuous bioactivity and assay interference in real and virtual high-throughput screening (HTS) campaigns. Despite an increasing awareness in the HTS and medicinal chemistry communities about the liabilities of these compounds, articles featuring PAINS and PAINS-like compounds are still being published. In this perspective, we describe some of the factors we believe are driving this resource-sapping trend. We also provide what we hope are helpful insights that may lead to the earlier recognition of these generally nontranslatable compounds, thus preventing the propagation of PAINS-full costly research.
Collapse
Affiliation(s)
- Jayme L Dahlin
- 1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Clinic College of Medicine , Rochester, Minnesota.,2 Medical Scientist Training Program, Mayo Clinic College of Medicine, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Michael A Walters
- 3 Institute for Therapeutics Discovery and Development, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
31
|
Chan STS, Patel PR, Ransom TR, Henrich CJ, McKee TC, Goey AKL, Cook KM, Figg WD, McMahon JB, Schnermann MJ, Gustafson KR. Structural Elucidation and Synthesis of Eudistidine A: An Unusual Polycyclic Marine Alkaloid that Blocks Interaction of the Protein Binding Domains of p300 and HIF-1α. J Am Chem Soc 2015; 137:5569-75. [PMID: 25892103 PMCID: PMC6318789 DOI: 10.1021/jacs.5b02156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Low oxygen environments are a hallmark of solid tumors, and transcription of many hypoxia-responsive genes needed for survival under these conditions is regulated by the transcription factor HIF-1 (hypoxia-inducible factor 1). Activation of HIF-1 requires binding of its α-subunit (HIF-1α) to the transcriptional coactivator protein p300. Inhibition of the p300/HIF-1α interaction can suppress HIF-1 activity. A screen for inhibitors of the protein binding domains of p300 (CH1) and HIF-1α (C-TAD) identified an extract of the marine ascidian Eudistoma sp. as active. Novel heterocyclic alkaloids eudistidines A (1) and B (2) were isolated from the extract, and their structures assigned by spectroscopic analyses. They contain an unprecedented tetracyclic core composed of two pyrimidine rings fused with an imidazole ring. Eudistidine A (1) was synthesized in a concise four-step sequence featuring a condensation/cyclization reaction cascade between 4-(2-aminophenyl)pyrimidin-2-amine (3) and 4-methoxy-phenylglyoxal (4), while eudistidine B (2) was synthesized in a similar fashion with glyoxylic acid (5) in place of 4. Naturally occurring eudistidine A (1) effectively inhibited CH1/C-TAD binding with an IC50 of 75 μM, and synthetic 1 had similar activity. The eudistidine A (1) scaffold, which can be synthesized in a concise, scalable manner, may provide potential therapeutic lead compounds or molecular probes to study p300/HIF-1α interactions and the role these proteins play in tumor response to low oxygen conditions. The unique structural scaffolds and functional group arrays often found in natural products make these secondary metabolites a rich source of new compounds that can disrupt critical protein-protein binding events.
Collapse
Affiliation(s)
- Susanna T. S. Chan
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Paresma R. Patel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tanya R. Ransom
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Curtis J. Henrich
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Tawnya C. McKee
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Andrew K. L. Goey
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Kristina M. Cook
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - James B. McMahon
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Kirk R. Gustafson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
32
|
Shenoy N, Shrivastava M, Sukrithan V, Papaspyridi D, Darbinyan K. The Regulation and Interactions of the Hypoxia Inducible Factor Pathway in Carcinogenesis and Potential Cancer Therapeutic Strategies. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.66055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|