1
|
Ravisankar N, Sarathi N, Maruthavanan T, Ramasundaram S, Ramesh M, Sankar C, Umamatheswari S, Kanthimathi G, Oh TH. Synthesis, antimycobacterial screening, molecular docking, ADMET prediction and pharmacological evaluation on novel pyran-4-one bearing hydrazone, triazole and isoxazole moieties: Potential inhibitors of SARS CoV-2. J Mol Struct 2023; 1285:135461. [PMID: 37041803 PMCID: PMC10062711 DOI: 10.1016/j.molstruc.2023.135461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
The respiratory infection tuberculosis is caused by the bacteria Mycobacterium tuberculosis and its unrelenting spread caused millions of deaths around the world. Hence, it is needed to explore potential and less toxic anti-tubercular drugs. In the present work, we report the synthesis and antitubercular activity of four different (hydrazones 7-12, O-ethynyl oximes 19-24, triazoles 25-30, and isoxazoles 31-36) hybrids. Among these hybrids 9, 10, 33, and 34, displayed high antitubercular activity at 3.12 g/mL with >90% of inhibitions. The hybrids also showed good docking energies between -6.8 and -7.8 kcal/mol. Further, most active molecules were assayed for their DNA gyrase reduction ability towards M. tuberculosis and E.coli DNA gyrase by the DNA supercoiling and ATPase gyrase assay methods. All four hybrids showed good IC50 values comparable to that of the reference drug. In addition, the targets were also predicted as a potential binder for papain-like protease (SARS CoV-2 PLpro) by molecular docking and a good interaction result was observed. Besides, all targets were predicted for their absorption, distribution, metabolism, and excretion - toxicity (ADMET) profile and found a significant amount of ADMET and bioavailability.
Collapse
Affiliation(s)
- N Ravisankar
- Department of Chemistry, Veltech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai 600 062, India
| | - N Sarathi
- Department of Chemistry, GRT Institute of Engineering and Technology (Affiliated to Anna University), Tiruttani 631 209, Tamil Nadu, India
| | - T Maruthavanan
- Department of Chemistry, SONASTARCH, Sona College of Technology, Salem 636005, Tamil Nadu, India
| | | | - M Ramesh
- Department of Chemistry, Govt. Arts College, Tiruchirappalli, Tamil Nadu 620 022, India
| | - C Sankar
- Department of Chemistry, SRM TRP Engineering College, Tiruchirappalli, Tamil Nadu 621 105, India
| | - S Umamatheswari
- Department of Chemistry, Govt. Arts College, Tiruchirappalli, Tamil Nadu 620 022, India
| | - G Kanthimathi
- Department of Chemistry, Ramco Institue of Technology, Rajapalayam, Tamil Nadu 626 117, India
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38436, Republic of Korea
| |
Collapse
|
2
|
Shcherbakov KV, Panova MA, Burgart YV, Sinegubova EO, Orshanskaya IR, Zarubaev VV, Gerasimova NA, Evstigneeva NP, Saloutin VI. Alternative Functionalization of 2‐(3,4‐Dihalophenyl)‐4
H
‐chromen‐4‐ones via Metal‐Free Nucleophilic Aromatic Fluorine Substitution and Palladium‐Catalyzed Cross‐Coupling Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202201775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Konstantin V. Shcherbakov
- Laboratory of fluoroorganic compounds Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences 22/20 S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| | - Mariya A. Panova
- Laboratory of fluoroorganic compounds Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences 22/20 S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| | - Yanina V. Burgart
- Laboratory of fluoroorganic compounds Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences 22/20 S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| | - Ekaterina O. Sinegubova
- Department of virology Institute Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing 14 Mira St. Saint-Petersburg 197101 Russian Federation
| | - Iana R. Orshanskaya
- Department of virology Institute Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing 14 Mira St. Saint-Petersburg 197101 Russian Federation
| | - Vladimir V. Zarubaev
- Department of virology Institute Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing 14 Mira St. Saint-Petersburg 197101 Russian Federation
| | - Natalia A. Gerasimova
- Experimental laboratory Ural Research Institute for Dermatology, Venereology and Immunopathology 8 Shcherbakova St. Ekaterinburg 620076 Russian Federation
| | - Natalia P. Evstigneeva
- Experimental laboratory Ural Research Institute for Dermatology, Venereology and Immunopathology 8 Shcherbakova St. Ekaterinburg 620076 Russian Federation
| | - Victor I. Saloutin
- Laboratory of fluoroorganic compounds Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences 22/20 S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| |
Collapse
|
3
|
Znati M, Horchani M, Latapie L, Ben Jannet H, Bouajila J. New 1,2,3-triazole linked flavonoid conjugates: Microwave-assisted synthesis, cytotoxic activity and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Wang C, Li Q, Wang S, Zhu G, Zhu A, Li L. Copper-catalyzed in situ oxidative-coupling for one-pot synthesis of 5-aryl-1,4-disubstituted 1,2,3-triazoles under mild conditions. RSC Adv 2021; 11:38108-38114. [PMID: 35498067 PMCID: PMC9043963 DOI: 10.1039/d1ra06827j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022] Open
Abstract
A new reaction system with CuCl as catalyst, TEA as base and O2/chloramine-T as oxidant was developed for one-pot in situ oxidative-coupling to synthesize 5-aryl-1,4-disubstituted 1,2,3-triazoles in this paper. A variety of 5-arylated-1,2,3-triazole compounds could be efficiently prepared directly from the readily accessible organic azides, terminal alkynes and arylboronic acids. Advantages of the method include use of low-cost catalyst, clean oxidant, less-toxic additive, and low reaction temperature. Importantly, due to avoiding harsh strong basic reagents and high temperatures, the presented method can offer mild conditions for multi-component synthesis of 5-aryl-1,2,3-triazoles from the designed structurally complicated alkynyl or azide donors bearing natural product motifs and sensitive functional groups.
Collapse
Affiliation(s)
- Chao Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Qianqian Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Shilei Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Gongming Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Anlian Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
5
|
Ramos ITL, Silva RJM, Silva TMS, Camara CA. Palladium-catalyzed coupling reactions in flavonoids: A retrospective of recent synthetic approaches. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1988643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ingrid T. L. Ramos
- Chemistry Department, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Rerison J. M. Silva
- Chemistry Department, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Tania M. S. Silva
- Chemistry Department, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Celso A. Camara
- Chemistry Department, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
6
|
Yuan D, Wang S, Zhu G, Zhu A, Li L. Efficient copper-catalyzed tandem oxidative iodination and alkyne-azide cycloaddition in the presence of glycine-type ligands. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Design and synthesis of novel Flavone-based histone deacetylase inhibitors antagonizing activation of STAT3 in breast cancer. Eur J Med Chem 2020; 206:112677. [PMID: 32823005 DOI: 10.1016/j.ejmech.2020.112677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022]
Abstract
Histone deacetylases (HDACs) inhibitors have demonstrated a great clinical achievement in hematological malignancies. However, the efficacy of HDACs inhibitors in treating solid tumors remains limited due to the complicated tumor microenvironment. In this study, we designed and synthesized a class of novel HDACs inhibitors based on the structure of flavones and isoflavones, followed by biological evaluation. To be specific, a lead compound 15a was discovered with strong anti-proliferative effects on a variety of solid tumor cells, especially for breast cancer cells with resistance to SAHA. Studies demonstrated that 15a could significantly inhibit the activity of HDAC 1, 2, 3 (class I) and 6 (class IIB), leading to a dose-dependent accumulation of acetylated histones and α-Tubulin, cell cycle arrest (G1/S phase) and apoptosis in breast cancer cells. Furthermore, the lead compound 15a could also antagonize the activation of STAT3 induced by HDACs inhibition in some breast cancer cells, which further reduced the level of pro-survive proteins in tumor cells and enhanced anti-tumor activity regulated by STAT3 signaling in vivo. Overall, our findings demonstrated that the novel compound 15a might be a HDACs inhibitor candidate, which could be used as promising chemotherapeutic agent for breast cancer.
Collapse
|
8
|
Tatevosyan SS, Kotovshchikov YN, Latyshev GV, Erzunov DA, Sokolova DV, Beletskaya IP, Lukashev NV. A Route to Triazole-Fused Sultams via Metal-Free Base-Mediated Cyclization of Sulfonamide-Tethered 5-Iodotriazoles. J Org Chem 2020; 85:7863-7876. [PMID: 32438811 DOI: 10.1021/acs.joc.0c00520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient direct approach to triazole-fused sultams has been developed. The key step of the proposed strategy is base-mediated cyclization of sulfonamide-tethered 5-iodo-1,2,3-triazoles which are readily available via an improved protocol for Cu-catalyzed 1,3-dipolar cycloaddition. The annulation of the sultam fragment to the triazole ring proceeds smoothly under transition-metal-free conditions in the presence of Cs2CO3 in dioxane at 100 °C and affords fused heterocycles in high yields up to 99%. The favorability of an SNAr-like mechanism for the cyclization was supported by DFT calculations. The applicability of the developed procedure to modification of natural compounds was demonstrated by preparation of a deoxycholic acid derivative.
Collapse
Affiliation(s)
- Stepan S Tatevosyan
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitry A Erzunov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Darina V Sokolova
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya str., Moscow 117198, Russia.,N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| |
Collapse
|
9
|
Venkatesh R, Kasaboina S, Jain N, Janardhan S, Holagunda UD, Nagarapu L. Design and synthesis of novel sulphamide tethered quinazolinone hybrids as potential antitumor agents. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Gao F, Zhang X, Wang T, Xiao J. Quinolone hybrids and their anti-cancer activities: An overview. Eur J Med Chem 2019; 165:59-79. [DOI: 10.1016/j.ejmech.2019.01.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/23/2023]
|
11
|
Gribanov PS, Chesnokov GA, Dzhevakov PB, Kirilenko NY, Rzhevskiy SA, Ageshina AA, Topchiy MA, Bermeshev MV, Asachenko AF, Nechaev MS. Solvent-free Suzuki and Stille cross-coupling reactions of 4- and 5-halo-1,2,3-triazoles. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Govdi AI, Danilkina NA, Ponomarev AV, Balova IA. 1-Iodobuta-1,3-diynes in Copper-Catalyzed Azide-Alkyne Cycloaddition: A One-Step Route to 4-Ethynyl-5-iodo-1,2,3-triazoles. J Org Chem 2019; 84:1925-1940. [PMID: 30632741 DOI: 10.1021/acs.joc.8b02916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cu-catalyzed 1,3-dipolar cycloaddition of iododiacetylenes with organic azides using iodotris(triphenylphosphine)copper(I) as a catalyst was found to be an efficient one-step synthetic route to 5-iodo-4-ethynyltriazoles. The reaction is tolerant to various functional groups in both butadiyne and azide moieties. The synthetic application of 5-iodo-4-ethynyl triazoles obtained was also evaluated: the Sonogashira coupling with alkynes resulted in unsymmetrically substituted triazole-fused enediyne systems, while the Suzuki reaction yielded the corresponding 5-aryl-4-ethynyl triazoles.
Collapse
Affiliation(s)
- Anastasia I Govdi
- Institute of Chemistry , Saint Petersburg State University (SPbU) , Universitetskaya nab. 7/9 , Saint Petersburg 199034 , Russia
| | - Natalia A Danilkina
- Institute of Chemistry , Saint Petersburg State University (SPbU) , Universitetskaya nab. 7/9 , Saint Petersburg 199034 , Russia
| | - Alexander V Ponomarev
- Institute of Chemistry , Saint Petersburg State University (SPbU) , Universitetskaya nab. 7/9 , Saint Petersburg 199034 , Russia
| | - Irina A Balova
- Institute of Chemistry , Saint Petersburg State University (SPbU) , Universitetskaya nab. 7/9 , Saint Petersburg 199034 , Russia
| |
Collapse
|
13
|
Dhall E, Jain S, Mishra A, Dwivedi J, Sharma S. Synthesis and Evaluation of Some Phenyl Substituted Azetidine Containing 1, 2, 4‐triazole Derivatives as Antibacterial Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Esha Dhall
- Department of ChemistryBanasthali Vidyapith Banasthali 304022 India
| | - Sonika Jain
- Department of ChemistryBanasthali Vidyapith Banasthali 304022 India
| | - Achal Mishra
- Department of PharmacyBanasthali Vidyapith Banasthali 304022 India
| | - Jaya Dwivedi
- Department of ChemistryBanasthali Vidyapith Banasthali 304022 India
| | - Swapnil Sharma
- Department of PharmacyBanasthali Vidyapith Banasthali 304022 India
| |
Collapse
|
14
|
Synthesis, molecular docking and inhibition studies of novel 3-N-aryl substituted-2-heteroarylchromones targeting microtubule affinity regulating kinase 4 inhibitors. Eur J Med Chem 2018; 159:166-177. [PMID: 30290280 DOI: 10.1016/j.ejmech.2018.09.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/11/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
Abstract
A series of 3-N-aryl substituted-2-heteroarylchromones was efficiently synthesized via Pd-mediated oxidative coupling under the influence of hetero-atoms neighboring group participation. Synthesized molecules were evaluated against human microtubule affinity regulating kinase 4 (MARK4) enzyme inhibitors, a recently identified anti-cancer drug target. Among 21 synthesized molecules, compounds 2, 3, and 14 exhibited excellent in vitro inhibitory effect against MARK4 with IC50 value (50% of ATPase activity) at 2.12 ± 0.22 μM, 1.98 ± 0.34 μM and 5.56 ± 0.42 μM respectively. The fluorescence binding and dot blot assay of these compounds were found in μM range, indicating a better binding affinity. In vitro study of these compounds against cancerous cells (MCF-7 and HepG2) inhibited the cell viability, induced apoptosis and lowered the tau-phosphorylation. Cell viability studies of compounds 2, 3, and 14 showed inhibition of cancerous cells growth with IC50 values of 3.22 ± 0.42, 4.32 ± 0.23 μM and 16.22 ± 1.33 μM for human breast cancer cells (MCF-7) and 6.45 ± 1.12, 5.22 ± 0.72 μM and 19.12 ± 1.43 μM for human liver carcinoma cells (HepG2) respectively. ROS quantification of these compounds showed oxidative stress to cancerous cells and molecular docking study showed hydrogen bonding, charge or polar and van der Waals interactions with the active site residues of MARK4. Owning to high binding fit nicely in the active site, offering the possibilities to be used as novel therapeutic molecules in the drug discovery against MARK4-related diseases.
Collapse
|
15
|
Li L, Xing X, Zhang C, Zhu A, Fan X, Chen C, Zhang G. Novel synthesis of 5-iodo-1,2,3-triazoles using an aqueous iodination system under air. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Xu JH, Fan YL, Zhou J. Quinolone-Triazole Hybrids and their Biological Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3234] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun-Hao Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| | - Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| | - Jin Zhou
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| |
Collapse
|
17
|
Rao YJ, Sowjanya T, Thirupathi G, Murthy NYS, Kotapalli SS. Synthesis and biological evaluation of novel flavone/triazole/benzimidazole hybrids and flavone/isoxazole-annulated heterocycles as antiproliferative and antimycobacterial agents. Mol Divers 2018; 22:803-814. [DOI: 10.1007/s11030-018-9833-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
|
18
|
Gribanov PS, Chesnokov GA, Topchiy MA, Asachenko AF, Nechaev MS. A general method of Suzuki–Miyaura cross-coupling of 4- and 5-halo-1,2,3-triazoles in water. Org Biomol Chem 2017; 15:9575-9578. [DOI: 10.1039/c7ob02091k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general method of the synthesis of 1,4,5-trisubstituted-1,2,3-triazoles by Suzuki–Miyaura cross-coupling from 4- and 5-halo-1,2,3-triazoles.
Collapse
Affiliation(s)
- Pavel S. Gribanov
- A. V. Topchiev Institute of Petrochemical Synthesis
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
- M. V. Lomonosov Moscow State University
| | - Gleb A. Chesnokov
- M. V. Lomonosov Moscow State University
- 119991 Moscow
- Russian Federation
| | - Maxim A. Topchiy
- A. V. Topchiev Institute of Petrochemical Synthesis
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
- M. V. Lomonosov Moscow State University
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical Synthesis
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
- M. V. Lomonosov Moscow State University
| | - Mikhail S. Nechaev
- A. V. Topchiev Institute of Petrochemical Synthesis
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
- M. V. Lomonosov Moscow State University
| |
Collapse
|
19
|
Li L, Ding S, Yang Y, Zhu A, Fan X, Cui M, Chen C, Zhang G. Multicomponent Aqueous Synthesis of Iodo-1,2,3-triazoles: Single-Step Models for Dual Modification of Free Peptide and Radioactive Iodo Labeling. Chemistry 2016; 23:1166-1172. [DOI: 10.1002/chem.201605034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Lingjun Li
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| | - Shengqiang Ding
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| | - Yanping Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| | - Xincui Fan
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Changpo Chen
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| |
Collapse
|
20
|
Steiner I, Stojanovic N, Bolje A, Brozovic A, Polancec D, Ambriovic-Ristov A, Stojkovic MR, Piantanida I, Eljuga D, Kosmrlj J, Osmak M. Discovery of 'click' 1,2,3-triazolium salts as potential anticancer drugs. Radiol Oncol 2016; 50:280-8. [PMID: 27679544 PMCID: PMC5024658 DOI: 10.1515/raon-2016-0027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/17/2016] [Indexed: 12/16/2022] Open
Abstract
Background In order to increase the effectiveness of cancer treatment, new compounds with potential anticancer activities are synthesized and screened. Here we present the screening of a new class of compounds, 1-(2-picolyl)-, 4-(2-picolyl)-, 1-(2-pyridyl)-, and 4-(2-pyridyl)-3-methyl-1,2,3-triazolium salts and ‘parent’ 1,2,3-triazole precursors. Methods Cytotoxic activity of new compounds was determined by spectrophotometric MTT assay on several tumour and one normal cell line. Effect of the selected compound to bind double stranded DNA (ds DNA) was examined by testing its influence on thermal stability of calf thymus DNA while its influence on cell cycle was determined by flow cytometric analysis. Generation of reactive oxygen species (ROS) was determined by addition of specific substrate 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA). Results Parent triazoles were largely inactive, while some of the triazolium salts were highly cytotoxic for HeLa cells. Triazolium salts exhibited high cell-type dependent cytotoxicity against different tumour cells. Selected compound (4-(4-methoxyphenyl)-3-methyl-1-(2-picolyl)-1H-1,2,3-triazolium hexafluorophosphate(V) (2b) was significantly more cytotoxic against tumour cells than to normal cells, with very high therapeutic index 7.69 for large cell lung carcinoma H460 cells. Additionally, this compound was similarly cytotoxic against parent laryngeal carcinoma HEp-2 cells and their drug resistant 7T subline, suggesting the potential of this compound in treatment of drug resistant cancers. Compound 2b arrested cells in the G1 phase of the cell cycle. It did not bind ds DNA, but induced ROS in treated cells, which further triggered cell death. Conclusions Our results suggest that the ‘click’ triazolium salts are worthy of further investigation as anti-cancer agents.
Collapse
Affiliation(s)
- Ivana Steiner
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Aljosa Bolje
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Denis Polancec
- Department for Translational Medicine, Children's Hospital Srebrnjak, Zagreb, Croatia
| | | | | | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Domagoj Eljuga
- Department for Oncoplastic and Reconstructive Surgery, University Hospital for Tumors, University Clinical Hospital Centre Sisters of Mercy, Zagreb, Croatia
| | - Janez Kosmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Maja Osmak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
21
|
Narva S, Chitti S, Bala BR, Alvala M, Jain N, Kondapalli VGCS. Synthesis and biological evaluation of pyrrolo[2,3- b ]pyridine analogues as antiproliferative agents and their interaction with calf thymus DNA. Eur J Med Chem 2016; 114:220-31. [DOI: 10.1016/j.ejmech.2016.02.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
|
22
|
Kumar S, Verma N, Kumar N, Patel A, Roy P, Pruthi V, Ahmed N. Design, synthesis, molecular docking, and biological studies of novel phytoestrogen-tanaproget hybrids. SYNTHETIC COMMUN 2016; 46:460-474. [DOI: 10.1080/00397911.2016.1144768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Nishant Verma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Nikhil Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Alok Patel
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Naseem Ahmed
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
23
|
Kant R, Kumar D, Agarwal D, Gupta RD, Tilak R, Awasthi SK, Agarwal A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur J Med Chem 2016; 113:34-49. [PMID: 26922227 DOI: 10.1016/j.ejmech.2016.02.041] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 11/25/2022]
Abstract
The present study was carried out in an attempt to synthesize a new class of antimicrobial and antiplasmodial agents by copper catalyzed click chemistry to afford 25 compounds 10-14(a-e) of 1,4-disubstituted-1,2,3-triazole derivatives of chalcones and flavones. The structures of the newly synthesized compounds were established by elemental analysis, IR, (1)H NMR, (13)C NMR and Mass spectral data. The newly synthesized compounds were evaluated for their antibacterial activity against Gram positive bacteria (Staphylococcus aureus, Enterococcus faecalis), Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella boydii, Klebsiella pneumoniae) and antifungal activity against (Candida albicans, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Dermatophyte) as well as molds (Aspergillus niger, Aspergillus fumigatus). The antiplasmodial and cytotoxic activities of these compounds were also evaluated against human malaria parasite Plasmodium falciparum strain 3D7 and human hepato-cellular carcinoma cells (Huh-7), respectively. Compounds 10a, 10c, 10d, 12c and 14e showed promising antibacterial activity while compounds 10e, 11d, 11e, 12c, 13a, 13b, 13e, 14a and 14d showed good antifungal activity as compared to the corresponding standard drugs. Compound 10b was found to be the most active against Plasmodium falciparum while the remaining compounds showed moderate to weak antiplasmodial activity. However, cytotoxic activities of all compounds were found ineffective against Huh-7 cells.
Collapse
Affiliation(s)
- Rama Kant
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, UP, India
| | - Dharmendra Kumar
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, UP, India
| | - Drishti Agarwal
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi 110021, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi 110021, India
| | - Ragini Tilak
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, UP, India
| | - Satish Kumar Awasthi
- Chemical Biology Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
24
|
Mai LH, Chabot GG, Grellier P, Quentin L, Dumontet V, Poulain C, Espindola LS, Michel S, Vo HTB, Deguin B, Grougnet R. Antivascular and anti-parasite activities of natural and hemisynthetic flavonoids from New Caledonian Gardenia species (Rubiaceae). Eur J Med Chem 2015; 93:93-100. [PMID: 25659770 DOI: 10.1016/j.ejmech.2015.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 10/25/2022]
Abstract
A series of 16 flavonoids were isolated and prepared from bud exudate of Gardenia urvillei and Gardenia oudiepe, endemic to New Caledonia. Most of them are rare polymethoxylated flavones. Some of these compounds showed noticeable activity against Leishmania (Leishmania) amazonensis, Plasmodium falciparum and Trypanosoma brucei gambiense, in addition to tubulin polymerization inhibition at low micromolar concentration. We also provide a full set of NMR data as some of the flavones were incompletely described.
Collapse
Affiliation(s)
- Linh H Mai
- Laboratoire de Pharmacognosie, UMR/CNRS 8638, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4, Avenue de l'Observatoire, 75006 Paris, France
| | - Guy G Chabot
- Laboratoire de Pharmacologie Chimique, Génétique et Imagerie U1022 Inserm-UMR8151 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4, Avenue de l'Observatoire, 75006 Paris, France
| | - Philippe Grellier
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS, Molécules de Communication et Adaptation des Micro-organismes, 61 rue Buffon, F-75231 Paris Cedex 05, France
| | - Lionel Quentin
- Laboratoire de Pharmacologie Chimique, Génétique et Imagerie U1022 Inserm-UMR8151 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4, Avenue de l'Observatoire, 75006 Paris, France
| | - Vincent Dumontet
- Centre de recherche de Gif, Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Avenue de la Terrasse, Gif-sur-Yvette Cedex, France
| | - Cyril Poulain
- Centre de recherche de Gif, Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Avenue de la Terrasse, Gif-sur-Yvette Cedex, France
| | - Laila S Espindola
- Laboratorio de Farmacognosia, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, Asa Norte, 70910-900 Brasilia, DF, Brazil
| | - Sylvie Michel
- Laboratoire de Pharmacognosie, UMR/CNRS 8638, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4, Avenue de l'Observatoire, 75006 Paris, France
| | - Hue T B Vo
- Faculty of Pharmacy, Ho Chi Minh University of Medicine and Pharmacy, 41 Dinh Tien Hoang St., District 1, Ho Chi Minh City, Viet Nam
| | - Brigitte Deguin
- Laboratoire de Pharmacognosie, UMR/CNRS 8638, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4, Avenue de l'Observatoire, 75006 Paris, France
| | - Raphaël Grougnet
- Laboratoire de Pharmacognosie, UMR/CNRS 8638, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4, Avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
25
|
Kumar S, Patel A, Ahmed N. Microwave-assisted expeditious and efficient synthesis of novel quinolin-4-ylmethoxychromen-2- and -4-ones catalyzed by YbCl3 under a solvent free one-pot three component domino reaction and their antimicrobial activity. RSC Adv 2015. [DOI: 10.1039/c5ra15748j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MW assisted multicomponent A3 synthesis was developed for the synthesis of quinolin-4-ylmethoxychromen-2- and -4-ones in high yields with YbCl3 and reused efficiently for four times.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247 667
- India
| | - Alok Patel
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee 247 667
- India
| | - Naseem Ahmed
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247 667
- India
| |
Collapse
|
26
|
Pathe GK, Konduru NK, Parveen I, Ahmed N. Anti-proliferative activities of flavone–estradiol Stille-coupling adducts and of indanone-based compounds obtained by SnCl4/Zn-catalysed McMurry cross-coupling reactions. RSC Adv 2015. [DOI: 10.1039/c5ra15685h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Flavone–estradiol adducts and indanophen based tamoxifen analogs are synthesized using SnCl4–Zn reagent via McMurry reaction and evaluated in human cervical (HeLa) and breast cancer cells (MCF-7 and MDA-MB-231) for the anti-proliferative activity.
Collapse
Affiliation(s)
| | - Naveen K. Konduru
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247 667
- India
| | - Iram Parveen
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247 667
- India
| | - Naseem Ahmed
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247 667
- India
| |
Collapse
|
27
|
Abstract
Background. Both 1,2,3- and 1,2,4-triazoles are nowadays incorporated in numerous antibacterial pharmaceutical formulations.Aim. Our study aimed to prepare three substituted 1,2,4-triazoles and to evaluate their antibacterial properties.Materials and Methods. One disubstituted and two trisubstituted 1,2,4-triazoles were prepared and characterised by physical and spectroscopic properties (melting point, FTIR, NMR, and GC-MS). The antibacterial properties were studied against three bacterial strains:Staphylococcus aureus(ATCC 25923),Escherichia coli(ATCC 25922), andPseudomonas aeruginosa(ATCC 27853), by the agar disk diffusion method and the dilution method with MIC (minimal inhibitory concentration) determination.Results. The spectroscopic characterization of compounds and the working protocol for the synthesis of the triazolic derivatives are described. The compounds were obtained with 15–43% yields and with high purities, confirmed by the NMR analysis. The evaluation of biological activities showed that the compounds act as antibacterial agents againstStaphylococcus aureus(ATCC 25923), while being inactive againstEscherichia coli(ATCC 25922) andPseudomonas aeruginosa(ATCC 27853).Conclusions. Our results indicate that compounds containing 1,2,4-triazolic moiety have great potential in developing a wide variety of new antibacterial formulations.
Collapse
|