1
|
Yang J, Liu K, Chen Y, Ye H, Hao G, Du F, Wang P. A supramolecular bactericidal material for preventing and treating plant-associated biofilms. Nat Commun 2025; 16:2627. [PMID: 40097425 PMCID: PMC11914267 DOI: 10.1038/s41467-025-57839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Treating bacterial biofilms on plants poses challenges due to biofilm induced resistance and poor agent adhesion on plant leaves. Here, we report on a host-guest self-assembled material which is biocompatible, has a lamellar supramolecular structure for leaf retention and prevents and treats bacterial biofilms. Phosphate/isopropanolamine-modified ferrocene forms a host-guest complex with β-CD which assembles into a lamella structure. The agent shows control efficacy against bacterial blight, bacterial leaf streak, and citrus canker in testing.
Collapse
Affiliation(s)
- Jinghan Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Kongjun Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yazhen Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Haojie Ye
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
| | - Peiyi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Zhou DN, Han L, Zhang Z, Wang YL, Zhang XP, Wu YJ, Xi GL. Synthesis and Antioxidant Properties of Psoralen Derivatives. Chem Biodivers 2023; 20:e202300620. [PMID: 37690995 DOI: 10.1002/cbdv.202300620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Five psoralen derivatives were synthesized and the structures of them were characterized by 1 H-NMR, 13 C-NMR, and IR. The antioxidant properties of the compounds were tested by inhibiting the free radical-initiated DNA oxidation and scavenging the radical reaction. The results showed that the effective stoichiometric factors (n) of the compounds V and IV could reach 2.00 and 2.11 in the system of inhibiting the DNA oxidation reaction initiated by 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). In the inhibition of ⋅OH-oxidation of the DNA system, compounds I~V showed antioxidant properties. The thiobarbituric acid absorbance (TBARS) percentages of compounds IV and V were 76.19 % and 78.84 %. Compounds I~V could also inhibit Cu2+ /GSH-oxidation of DNA, and all compounds exhibited good antioxidant properties except compound II (94.00 %). All the five compounds were able to trap diammonium 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) salt radical (ABTS+ ⋅), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH⋅) and 2,6-di-tert-butyl-alpha-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-p-tolylox radical (galvinoxyl⋅). The ability of compounds I~V to scavenge those free radicals can be measured by the k values. The k values ranged from 0.07 to 0.82 in scavenging ABTS+ ⋅, galvinoxyl, and DPPH radicals, respectively.
Collapse
Affiliation(s)
- Dang-Nan Zhou
- Tobacco Science, Henan Agricultural University /Flavors and Fragrance Engineering & Technology Research Center of Henan Province No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, China, 450046
| | - Lu Han
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China, 450016
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China, 450016
| | - Yun-Long Wang
- Tobacco Science, Henan Agricultural University /Flavors and Fragrance Engineering & Technology Research Center of Henan Province No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, China, 450046
| | - Xiao-Ping Zhang
- Tobacco Science, Henan Agricultural University /Flavors and Fragrance Engineering & Technology Research Center of Henan Province No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, China, 450046
| | - Yun-Jie Wu
- Tobacco Science, Henan Agricultural University /Flavors and Fragrance Engineering & Technology Research Center of Henan Province No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, China, 450046
| | - Gao-Lei Xi
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China, 450016
| |
Collapse
|
3
|
de Fátima Â, Fernandes SA, Ferreira de Paiva W, de Freitas Rego Y. The Povarov Reaction: A Versatile Method to Synthesize Tetrahydroquinolines, Quinolines and Julolidines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1794-8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe multicomponent Povarov reaction represents a powerful approach for the construction of substances containing N-heterocyclic frameworks. By using the Povarov reaction, in addition to accessing tetrahydroquinolines, quinolines and julolidines in a single step, it is possible to form the following new bonds: two Csp
3–Csp
3 and one Csp
3–Nsp
3, two Csp
2–Csp
2 and one Csp
2–Nsp
2, and four Csp
3–Csp
3 and two Csp
3–Nsp
1, respectively. This short review discusses the main features of the Povarov reaction, including its mechanism, the reaction scope by employing different catalysts and substrates, as well as stereoselective versions.1 Introduction2 Mechanism of the Povarov Reaction3 Tetrahydroquinolines4 Quinolines5 Julolidines6 Concluding Remarks
Collapse
Affiliation(s)
- Ângelo de Fátima
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais
| | | | | | | |
Collapse
|
4
|
Vil' V, Grishin S, Baberkina E, Alekseenko A, Glinushkin A, Kovalenko A, Terent'ev A. Electrochemical Synthesis of Tetrahydroquinolines from Imines and Cyclic Ethers via Oxidation/Aza‐Diels‐Alder Cycloaddition. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vera Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences RUSSIAN FEDERATION
| | - Sergei Grishin
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | - Elena Baberkina
- Dmitry Mendeleev University of Chemical Technology of Russia RUSSIAN FEDERATION
| | - Anna Alekseenko
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | | | - Alexey Kovalenko
- Dmitry Mendeleev University of Chemical Technology of Russia RUSSIAN FEDERATION
| | - Alexander Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences RUSSIAN FEDERATION
| |
Collapse
|
5
|
Chen Z, Liu Q, Zhao Z, Bai B, Sun Z, Cai L, Fu Y, Ma Y, Wang Q, Xi G. Effect of hydroxyl on antioxidant properties of 2,3-dihydro-3,5-dihydroxy-6-methyl-4 H-pyran-4-one to scavenge free radicals. RSC Adv 2021; 11:34456-34461. [PMID: 35494787 PMCID: PMC9042674 DOI: 10.1039/d1ra06317k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
It is well known that 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) is usually formed in the Maillard reaction and it contributes to the antioxidant properties of Maillard reaction intermediates. A series of hydroxyl group protected DDMP derivatives were synthesized to further understand the source of antioxidant activity. Antioxidant abilities of the DDMP derivatives were evaluated by scavenging the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS˙+), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical, respectively. It was found that the introduction of protecting groups to the free hydroxyl groups of DDMP decreases their reducing abilities. In particular, the hydroxyl group at the olefin position exhibited a remarkable impact on the antioxidant activity of DDMP, indicating that the unstable enol structure in the DDMP moiety is the key factor for its antioxidant activity.
Collapse
Affiliation(s)
- Zhifei Chen
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450016 China
| | - Qiang Liu
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450016 China
| | - Zhiwei Zhao
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450016 China
| | - Bing Bai
- School of Food & Biological Engineering, Zhengzhou University of Light Industry Zhengzhou Henan 450002 China
| | - Zhitao Sun
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450016 China
| | - Lili Cai
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450016 China
| | - Yufeng Fu
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450016 China
| | - Yuping Ma
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450016 China
| | - Qingfu Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450016 China
| | - Gaolei Xi
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450016 China
| |
Collapse
|
6
|
Liu ZQ. Multicomponent Reactions for Integrating Multiple Functional Groups into an Antioxidant. CHEM REC 2020; 20:1516-1529. [PMID: 33063420 DOI: 10.1002/tcr.202000080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/07/2022]
Abstract
A large number of convincing evidences has revealed the correlation of the pathogeny of diseases with the oxidative damages of DNA, protein, biomembrane, and other biological species, while supplementation of antioxidants is demonstrated to be a promising way to avoid, at least, rectify the unbalance redox status in vivo. Although many endeavors have focused on synthesis of antioxidants, a main hurdle still hinders the wide usages of synthetic antioxidants because of low bioavailability and potential cytotoxicity. The search for antioxidants with multiple functional groups being recognized by different receptors becomes a much sought by researchers, and multicomponent reactions (MCRs) provide with powerful tools for the construction of multifunctional antioxidants. Presented herein is a personal account on the application of MCRs for the synthesis of multifunctional antioxidants, while radical-induced oxidation of DNA acts as the experimental system for evaluating antioxidative effect. Concretely, the Biginelli three-component reaction (3CR) affords such a dihydropyrimidine scaffold that the tautomerization between C=S and C-SH leads to antioxidative effect. The Povarov 3CR is able to integrate multiple antioxidative groups, i. e., ferrocenyl and -N(CH3 )2 , into a quinoline scaffold, while the Groebke 3CR provides with imidazo[1,2-a]pyridine skeleton for inhibiting DNA oxidation. Additionally, the Knoevenagel-related MCRs also become efficient strategies for achieving radical-scavengers. On the other hand, the Ugi 4CR and Passerini 3CR result in the dipeptide and α-acyloxycarboxamide, respectively, with the benefit for the integration of antioxidative features by aliphatic chains. Therefore, MCRs have emerged as efficient tools for integrating multiple antioxidative features into one molecule in order to meet with complicated requirements from various biological surroundings.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
7
|
Liu ZQ. Anti-Oxidant in China: A Thirty-Year Journey. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1005-1024. [DOI: 10.1142/s0192415x19500514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anti-oxidant refers to such a kind of endogenous or exogenous compound that is able to retard or even prohibit in vivo or in vitro oxidation with only small amount being used. The study of anti-oxidants starts nearly 30 years ago, and the research on this topic in China almost begins simultaneously with that in the world. Gratifyingly, contributions on anti-oxidants from China researchers have rapidly increased in the recent decade as anti-oxidants have become a hot topic in biochemistry, pharmacology, food science, chemistry as well as other related disciplines. Anti-oxidants provide a specific viewpoint for clarifying pharmacological effects of Chinese medicinal herbs. For example, as a traditional Chinese medicinal herb, Panax ginseng C. A. Meyer is found to be a natural anti-oxidant resource. Meanwhile, some signaling pathways such as nuclear factor-[Formula: see text]B (NF-[Formula: see text]B), nuclear factor erythroid 2 related factor 2 (Nrf2), and Kelch-like ECH associated protein 1 (Keap1) are regarded to play an important role in anti-oxidant responses. These findings provide a substantial basis for understanding the pharmacological behaviors of Chinese medicinal herbs in view of regulating the aforementioned signaling pathways. Moreover, inhibition of reactive oxygen species (ROS) by supplementation of anti-oxidant becomes a popularly accepted idea in keeping health and treating diseases. Isolations of antio-xidative ingredients from medicinal herbs and foods lead to set up a large range of anti-oxidative compound libraries, and intake of anti-oxidants from foods may be the most efficient way for supplementing exogenous anti-oxidants. On the other hand, designing anti-oxidants with novel structures motivates organic and medicinal chemists to explore the structure–activity relationship, and then, to find novel structural features with anti-oxidative properties. Therefore, it is reasonable to believe that China researchers will donate more endeavors to obtain more achievements on anti-oxidants in the future.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
8
|
Mao T, Yang L, Liu G, Wei Y, Gou Y, Wang J, Tao L. Ferrocene-Containing Polymer via the Biginelli Reaction for In Vivo Treatment of Oxidative Stress Damage. ACS Macro Lett 2019; 8:639-645. [PMID: 35619538 DOI: 10.1021/acsmacrolett.9b00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small molecule antioxidants have little impact on oxidative stress in vivo because of their poor bioavailability. To explore an antioxidant for in vivo applications, a polymeric antioxidant containing a ferrocene moiety was developed. The ferrocene-containing monomer was synthesized through the robust tricomponent Biginelli reaction with a high yield. The corresponding water-soluble copolymer was conveniently prepared via radical polymerization. Both the ferrocene moiety and the Biginelli structure (dihydropyrimidin-2(H)-one) contributed to the remarkable radical scavenging ability of this highly biocompatible copolymer. It was more efficient than traditional small molecule antioxidants at protecting cells against fatal oxidative stress. This copolymer also showed clear therapeutic activity in counteracting oxidation-induced acute liver damage in a live mouse model. Our study into functional organometallic polymers resulted in a promising polymeric biomaterial that may find therapeutic applications and have important implications in the fields of organic chemistry and polymer chemistry.
Collapse
Affiliation(s)
- Tengfei Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, People’s Republic of China
| | - Lei Yang
- Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100021, People’s Republic of China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, People’s Republic of China
| | - Jun Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, People’s Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
9
|
Liu ZQ. Enhancing Antioxidant Effect against Peroxyl Radical-Induced Oxidation of DNA: Linking with Ferrocene Moiety! CHEM REC 2019; 19:2385-2397. [PMID: 30946536 DOI: 10.1002/tcr.201800201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
As a major member in the family of reactive oxygen species, peroxyl radical is able to abstract hydrogen atom from 4-position of ribose, leading to the collapse of DNA strand. Thus, inhibiting oxidative stress with exogenous antioxidants acts as a promising strategy to protect the integrity of DNA structure and is thereby suggested to be a pathway against developments of related diseases. Ferrocene as an organometallic scaffold is widely applied in the design of organometallic drugs, and redox of Fe(II)/Fe(III) in ferrocene offers advantage for providing electron to radicals. Presented herein are our ongoing studies on ferrocene-appended antioxidants, including McMurry reaction applied to construct ferrocifen; Aldol condensation used to prepare ferrocenyl curcumin; Povarov reaction employed to prepare ferrocenyl quinoline; Biginelli reaction used to construct ferrocenyl dihydropyrimidine; Groebke reaction used to synthesize ferrocenyl imidazo[1,2-a]pyridine; and Passerini three-component reaction as well as Ugi four-component reaction applied to synthesize α-acyloxycarboxamide and bisamide, respectively. It is found that ferrocene moiety is able to enhance antioxidative effect of the aforementioned scaffolds even without the aid of phenolic hydroxyl group. The role of ferrocene in enhancing antioxidative effect can be attributable to trapping radicals, decreasing oxidative potential, and increasing the affinity toward DNA strand. Therefore, ferrocene is worthy to be taken into consideration in the design of drugs in relation to DNA oxidation.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, China
| |
Collapse
|
10
|
Makhanya TR, Gengan RM, Ata A. Synthesis and biological evaluation of novel fused indolo [3, 2-c] [1,8] naphthyridine derivatives as potential antibacterial agents. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1573373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Talent Raymond Makhanya
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | - Robert Moonsamy Gengan
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Synthesis and biological evaluation of ferrocene-based cannabinoid receptor 2 ligands. Future Med Chem 2018; 10:631-638. [DOI: 10.4155/fmc-2017-0200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ferrocene analogs of known fatty acid amide hydrolase inhibitors and CB2 ligands have been synthesized and characterized spectroscopically and crystallographically. The resulting bio-organometallic isoxazoles were assayed for their effects on CB1 and CB2 receptors as well as on fatty acid amide hydrolase. None had any fatty acid amide hydrolase activity but compound 3, 5-(2-(pentyloxy)phenyl)-N-ferrocenylisoxazole-3-carboxamide, was found to be a potent CB2 ligand (Ki = 32.5 nM).
Collapse
|
12
|
Mou RQ, Zhao M, Lv XX, Zhang SY, Guo DS. An efficient and green synthesis of ferrocenyl-quinoline conjugates via a TsOH-catalyzed three-component reaction in water. RSC Adv 2018; 8:9555-9563. [PMID: 35541872 PMCID: PMC9078733 DOI: 10.1039/c8ra01004h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/28/2018] [Indexed: 12/03/2022] Open
Abstract
An efficient and green synthesis of 4-ferrocenylquinoline derivatives through a TsOH-catalyzed three-component reaction of aromatic aldehydes, amines and ferrocenylacetylene in water has been successfully developed. This strategy is a powerful method for the construction of diverse ferrocenyl-quinoline conjugates from simple available starting materials as it minimized the use of metal catalyst and organic solvent in the reaction process. The conjugates feature unique structures and excellent electronic properties. Moreover, a plausible mechanism for this TsOH-catalyzed three-component reaction was proposed and assessed.
Collapse
Affiliation(s)
- Rui-Qi Mou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University Jinan 250014 P. R. China +86 531 86180743 +86 531 86928773
| | - Mei Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University Jinan 250014 P. R. China +86 531 86180743 +86 531 86928773
| | - Xue-Xin Lv
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University Jinan 250014 P. R. China +86 531 86180743 +86 531 86928773
| | - Sheng-Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University Jinan 250014 P. R. China +86 531 86180743 +86 531 86928773
| | - Dian-Shun Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University Jinan 250014 P. R. China +86 531 86180743 +86 531 86928773
| |
Collapse
|
13
|
Jiang KM, Kang JA, Jin Y, Lin J. Synthesis of substituted 4-hydroxyalkyl-quinoline derivatives by a three-component reaction using CuCl/AuCl as sequential catalysts. Org Chem Front 2018. [DOI: 10.1039/c7qo00637c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new method to construct 4-hydroxyalkyl-quinoline derivatives is described via Cu(i) and Au(i) sequential catalyzed cyclization of anilines with aldehyde derivatives and aliphatic alkynes, respectively.
Collapse
Affiliation(s)
- Kun-Ming Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Jing-An Kang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
14
|
Synthesis of novel 4-ferrocenyl-1,2,3,4-tetrahydroquinolines and 4-ferrocenylquinolines via α-ferrocenyl carbenium ions as key intermediates. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Pejović A, Damljanović I, Stevanović D, Minić A, Jovanović J, Mihailović V, Katanić J, Bogdanović GA. Synthesis, characterization and antimicrobial activity of novel ferrocene containing quinolines: 2-ferrocenyl-4-methoxyquinolines, 1-benzyl-2-ferrocenyl-2,3-dihydroquinolin-4(1 H )-ones and 1-benzyl-2-ferrocenylquinolin-4(1 H )-ones. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.05.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Liberto NA, Simões JB, de Paiva Silva S, da Silva CJ, Modolo LV, de Fátima Â, Silva LM, Derita M, Zacchino S, Zuñiga OMP, Romanelli GP, Fernandes SA. Quinolines: Microwave-assisted synthesis and their antifungal, anticancer and radical scavenger properties. Bioorg Med Chem 2017; 25:1153-1162. [DOI: 10.1016/j.bmc.2016.12.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/09/2023]
|
17
|
Xi GL, Liu ZQ. Coumarin sharing the benzene ring with quinoline for quenching radicals and inhibiting DNA oxidation. Eur J Med Chem 2015; 95:416-23. [DOI: 10.1016/j.ejmech.2015.03.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 02/06/2023]
|
18
|
Xi GL, Liu ZQ. Coumarin-fused coumarin: antioxidant story from N,N-dimethylamino and hydroxyl groups. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3516-23. [PMID: 25826201 DOI: 10.1021/acs.jafc.5b00399] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two coumarin skeletons can form chromeno[3,4-c]chromene-6,7-dione by sharing with the C ═ C in lactone. The aim of the present work was to explore the antioxidant effectiveness of the coumarin-fused coumarin via six synthetic compounds containing hydroxyl and N,N-dimethylamino as the functional groups. The abilities to quench 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS(+•)), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical revealed that the rate constant for scavenging radicals was related to the amount of hydroxyl group in the scaffold of coumarin-fused coumarin. But coumarin-fused coumarin was able to inhibit DNA oxidations caused by (•)OH, Cu(2+)/glutathione (GSH), and 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) even in the absence of hydroxyl group. In particular, a hydroxyl and an N,N-dimethylamino group locating at different benzene rings increased the inhibitory effect of coumarin-fused coumarin on AAPH-induced oxidation of DNA about 3 times higher than a single hydroxyl group, whereas N,N-dimethylamino-substituted coumarin-fused coumarin possessed high activity toward (•)OH-induced oxidation of DNA without the hydroxyl group contained. Therefore, the hydroxyl group together with N,N-dimethylamino group may be a novel combination for the design of coumarin-fused heterocyclic antioxidants.
Collapse
Affiliation(s)
- Gao-Lei Xi
- Department of Organic Chemistry, College of Chemistry, Jilin University, No. 2519 Jiefang Road , Changchun 130021, China
| | - Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No. 2519 Jiefang Road , Changchun 130021, China
| |
Collapse
|
19
|
Imrich HG, Conrad J, Bubrin D, Beifuss U. From Nitrobenzenes to Substituted Tetrahydroquinolines in a Single Step by a Domino Reduction/Imine Formation/Aza-Diels–Alder Reaction. J Org Chem 2015; 80:2319-32. [DOI: 10.1021/jo502882y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hans-Georg Imrich
- Bioorganische
Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße
30, D-70599 Stuttgart, Germany
| | - Jürgen Conrad
- Bioorganische
Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße
30, D-70599 Stuttgart, Germany
| | - Denis Bubrin
- Institut
für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, D-70569 Stuttgart, Germany
| | - Uwe Beifuss
- Bioorganische
Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße
30, D-70599 Stuttgart, Germany
| |
Collapse
|