1
|
Abbasi M, Nowrouzi N, Sajedinia S. I 2-catalyzed one-pot oxidative condensation of thiourea, methyl ketones, and aryl thiols into 5-sulfenylated 2-amino-1,3-thiazoles by DMSO. Mol Divers 2023; 27:2887-2894. [PMID: 36515805 DOI: 10.1007/s11030-022-10585-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
A one-pot, efficient oxidative-condensation process for constructing both 4-alkyl and 4-aryl-5-(arylthio) thiazol-2-amines using DMSO/I2 is introduced. In this procedure, methyl ketones, thiourea, DMSO, and thiols are reacted together in the presence of molecular I2 at 80 °C simply to produce 4-alkyl or aryl-5-(arylthio)thiazol-2-amines due to formation of a C-S bond between thiourea and methyl carbon linked to carbonyl group and the another C-S bond formation between thiol and thiazol ring. Under reaction conditions, both aryl and alkyl methyl ketones including acetophenone and substituted acetophenones also, 2-alkanones such as acetone, 2-butanone, 2-pentanone, and 2-heptanone yield those products successfully.
Collapse
Affiliation(s)
- Mohammad Abbasi
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran.
| | - Najmeh Nowrouzi
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| | - Sara Sajedinia
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| |
Collapse
|
2
|
Peinado FM, Olivas-Martínez A, Lendínez I, Iribarne-Durán LM, León J, Fernández MF, Sotelo R, Vela-Soria F, Olea N, Freire C, Ocón-Hernández O, Artacho-Cordón F. Expression Profiles of Genes Related to Development and Progression of Endometriosis and Their Association with Paraben and Benzophenone Exposure. Int J Mol Sci 2023; 24:16678. [PMID: 38069001 PMCID: PMC10706360 DOI: 10.3390/ijms242316678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Increasing evidence has been published over recent years on the implication of endocrine-disrupting chemicals (EDCs), including parabens and benzophenones in the pathogenesis and pathophysiology of endometriosis. However, to the best of our knowledge, no study has been published on the ways in which exposure to EDCs might affect cell-signaling pathways related to endometriosis. We aimed to describe the endometriotic tissue expression profile of a panel of 23 genes related to crucial cell-signaling pathways for the development and progression of endometriosis (cell adhesion, invasion/migration, inflammation, angiogenesis, and cell proliferation/hormone stimulation) and explore its relationship with the exposure of patients to parabens (PBs) and benzophenones (BPs). This cross-sectional study included a subsample of 33 women with endometriosis from the EndEA study, measuring their endometriotic tissue expressions of 23 genes, while urinary concentrations of methyl-, ethyl-, propyl-, butyl-paraben, benzophenone-1, benzophenone-3, and 4-hydroxybenzophenone were determined in 22 women. Spearman's correlations test and linear and logistic regression analyses were performed. The expression of 52.2% of studied genes was observed in >75% of endometriotic tissue samples and the expression of 17.4% (n = 4) of them in 50-75%. Exposure to certain PB and BP congeners was positively associated with the expression of key genes for the development and proliferation of endometriosis. Genes related to the development and progression of endometriosis were expressed in most endometriotic tissue samples studied, suggesting that exposure of women to PBs and BPs may be associated with the altered expression profile of genes related to cellular pathways involved in the development of endometriosis.
Collapse
Affiliation(s)
- Francisco M. Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alicia Olivas-Martínez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
| | | | - Luz M. Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
| | - Josefa León
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Digestive Medicine Unit, San Cecilio University Hospital, 18012 Granada, Spain
- CIBER Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Mariana F. Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| | - Rafael Sotelo
- Gynecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
- Nuclear Medicine Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Legal Medicine, Toxicology and Physical Anthropology Department, University of Granada, 18071 Granada, Spain
| | - Olga Ocón-Hernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Gynecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| |
Collapse
|
3
|
Barrionuevo E, Cornier PG, Delpiccolo CML, Mata EG, Roguin LP, Blank VC. Antiangiogenic activity of the penicillin derivative TAP7f in melanoma. J Mol Med (Berl) 2023; 101:249-263. [PMID: 36688961 DOI: 10.1007/s00109-023-02287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Previously , we demonstrated that the non-antibiotic penicillin derivative TAP7f inhibited melanoma metastasis in vitro and in vivo through the downregulation of β-catenin and integrin αVβ3. As angiogenesis is required for tumor growth and metastasis, we decided to explore the possible antiangiogenic effect of TAP7f. We found that TAP7f inhibited proliferation, migration, tube formation, and actin cytoskeleton organization of human endothelial cells. In a gel plug assay, an in vivo model for angiogenesis, TAP7f also blocked vascular formation induced by fibroblast growth factor 2. Furthermore, when murine B16-F10 melanoma cells pre-treated with TAP7f were injected intradermally in mice, we observed a decrease in the number and thickness of the capillaries surrounding the tumor. Additionally, TAP7f downregulated vascular endothelial growth factor (VEGF) and platelet-derived growth factor-B (PDGF-B) expression in B16-F10 cells and VEGF receptor expression in HMEC-1 endothelial cells. When the antitumor effect of TAP7f was studied in C57BL/6 J mice challenged with B16-F10 melanoma cells, a significant reduction of tumor growth was observed. Furthermore, a decreased expression of VEGF, PDGF-B, and the endothelial cell marker CD34 was observed in tumors from TAP7f-treated mice. Together, our results suggest that the antiangiogenic activity of TAP7f contributes to its antitumor and antimetastatic action and positions this penicillin derivative as an alternative or complementary agent for the treatment of melanoma. KEY MESSAGES: • TAP7f inhibits proliferation, migration, tube formation, and actin cytoskeleton organization of endothelial cells. • TAP7f downregulates VEGF receptor expression in endothelial cells. • TAP7f downregulates VEGF and PDGF expression in melanoma cells. • TAP7f inhibits angiogenesis in vivo.
Collapse
Affiliation(s)
- Elizabeth Barrionuevo
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Patricia G Cornier
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina M L Delpiccolo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Ernesto G Mata
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Leonor P Roguin
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Viviana C Blank
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
- , Buenos Aires, 956, C1113AAD, Argentina.
| |
Collapse
|
4
|
Li J, Wang K, Wu J, Zhang H, Chen Y, Liu Q, Xu J, Yi W. Elemental Sulfur‐Promoted Synthesis of 4‐Hydroxybenzophenones from
p
‐Quinone Methides under Metal‐Free Condition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingping Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Kunpeng Wang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jiayi Wu
- Shanghai Ganquan Foreign Languages Middle School 200065 Shanghai P. R. China
| | - Haoxiang Zhang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Yan Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Qinglei Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Junju Xu
- College of Tabacco Science Yunnan Agricultural University Key Laboratory of Sustainable Utilization of Plateau Characteristic Spice Plant Resources Education Department of Yunnan Province 650201 Kunming P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
5
|
Martiz RM, Patil SM, Ramu R, M. K. J, P. A, Ranganatha LV, Khanum SA, Silina E, Stupin V, Achar RR. Discovery of novel benzophenone integrated derivatives as anti-Alzheimer's agents targeting presenilin-1 and presenilin-2 inhibition: A computational approach. PLoS One 2022; 17:e0265022. [PMID: 35395008 PMCID: PMC8993008 DOI: 10.1371/journal.pone.0265022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/18/2022] [Indexed: 01/09/2023] Open
Abstract
The most commonly accepted hypothesis of Alzheimer's disease (AD) is the amyloid hypothesis caused due to formation of accumulation of Aβ42 isoform, which leads to neurodegeneration. In this regard, presenilin-1 (PSEN-1) and -2 (PSEN-2) proteins play a crucial role by altering the amyloid precursor protein (APP) metabolism, affecting γ-secretase protease secretion, finally leading to the increased levels of Aβ. In the absence of reported commercial pharmacotherapeutic agents targeting presenilins, we aim to propose benzophenone integrated derivatives (BIDs) as the potential inhibitors of presenilin proteins through in silico approach. The study evaluates the interaction of BIDs through molecular docking simulations, molecular dynamics simulations, and binding free energy calculations. This is the first ever computational approach to discover the potential inhibitors of presenilin proteins. It also comprises druglikeliness and pharmacotherapeutic potential analysis of the compounds. Out of all the screened BIDs, BID-16 was found to be the lead compound against both the presenilin proteins. Based on these results, one can evaluate BID-16 as an anti-Alzheimer's potential specifically targeting presenilin proteins in near future using in vitro and in vivo methods.
Collapse
Affiliation(s)
- Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ashwini P.
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Lakshmi V. Ranganatha
- Department of Chemistry, The National Institute of Engineering, Mysuru, Karnataka, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja’s College (Autonomous), University of Mysore, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery №1, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
6
|
Jyothi M, Banumathi, Zabiulla, Sherapura A, Khamees HA, Prabhakar B, Khanum SA. Synthesis, structure analysis, DFT calculations and energy frameworks of new coumarin appended oxadiazoles, to regress ascites malignancy by targeting VEGF mediated angiogenesis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Sallam HH, Mohammed YHI, Al-Ostoot FH, Akhileshwari P, Sridhar M, Khanum SA. Experimental and computational studies on the synthesis and structural characterization of 2-(4-chlorophenoxy)-N-[4-(4-methylphenyl)-1,3-thiazol-2-yl]acetamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Wahan SK, Chawla PA. Recent advances of heterocycle based anticancer hybrids. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cancer is one of the major causes of death across the world. Cancer is a broad word that encompasses a wide range of illnesses that can affect any part of the body. Cancer research has increased understanding of molecular biology and cellular biology, resulting in new cancer therapies. Despite of adverse effects, surgery, radiation, and anticancer medicines are the modern cancer treatments. Keeping in mind the excellent anticancer activity exhibited by various heterocyclics, various medicines with heterocyclic moiety have been developed to identify particular target regions. The chapter aims to discuss new discoveries in the field of anticancer pharmaceuticals comprising the thiazole, pyrazole, oxazole, and triazole rings over the last five years. The proposed anticancer drugs have a lot of future significance due to their high potency.
Collapse
Affiliation(s)
- Simranpreet K. Wahan
- Department of Pharmaceutical Chemistry , ISF College of Pharmacy , Moga , Punjab - 142001 , India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry , ISF College of Pharmacy , Moga , Punjab - 142001 , India
- Department of Pharmaceutical Analysis , ISF College of Pharmacy , Moga - 142001 , India
| |
Collapse
|
9
|
Antiproliferative pharmacophore azo-hydrazone analogue BT-1F exerts death signalling pathway targeting STAT3 in solid tumour. Pharmacol Rep 2022; 74:353-365. [PMID: 35001321 DOI: 10.1007/s43440-021-00345-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Anomalous activation of intra-cellular signalling cascades confers neoplastic properties on malignant cells. The JAK2/STAT3 proteins play a pivotal role in the pathogenesis of most of the solid malignancies. The over expression of STAT3 in these tumours results in an evasion of apoptosis and thereby pathogenesis. Hence, strategy to target STAT3 to regress tumour development is an emerging new concept. As an approach, anti-neoplastic drug, Azo-hydrozone analogue, BT-1F with potential anti-proliferative effect was evaluated to demonstrate its capacity to counteract STAT3 signal with mechanistic approach. METHODS Cell based screening for cytotoxicity was performed through MTT, LDH and Trypan blue. The BT-1F induced anti-clonogenic property by clonogenic assay. The apoptotic capacity was examined by crystal violet staining, flow cytometry, Annexin-FITC, DAPI and TUNEL assay. The altered signalling events were studied using immunoblot. The drug-induced anti-tumour effect was evaluated in an in-vivo solid tumour model and molecular interaction was further validated by in-silico studies. RESULTS The BT-1F exerts chemo-sensitivity specifically against EAC and A549 cells without altering its normal counterpart. The anti-proliferative/anti-clonogenic effect was due to the induction of apoptosis through inhibition of STAT3Tyr705 signal. Eventually downstream signalling proteins p53, Bax, Bad and Bcl-xL were significantly altered. Further in-vivo experimental results validated in-vitro findings. The computational approaches assures the BT-1F efficiency in binding with STAT3. CONCLUSION Systemic validation of STAT3 target drug, BT-1F in in-vitro, in-silico and in-vivo models has promising strategy for solid cancer treatment.
Collapse
|
10
|
Guerrero-Pepinosa NY, Cardona-Trujillo MC, Garzón-Castaño SC, Veloza LA, Sepúlveda-Arias JC. Antiproliferative activity of thiazole and oxazole derivatives: A systematic review of in vitro and in vivo studies. Biomed Pharmacother 2021; 138:111495. [PMID: 33765586 DOI: 10.1016/j.biopha.2021.111495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Thiazole and oxazole are compounds with a heterocyclic nucleus that have attracted the attention of medicinal chemistry due to the great variety of biological activities that they enable. In recent years, their study has increased, finding a wide range of biological activities, including antifungal, antiparasitic, anti-inflammatory, and anticancer activities. This systematic review provides evidence from the literature on the antiproliferative and antitumor activities of thiazole and oxazole and their derivatives from 2014 to April 2020. Three bibliographical databases were consulted (PubMed, Web of Science, and Scopus), and a total of 32 studies were included in this paper based on our eligibility criteria. The analysis of the activity-structure relationship allows us to conclude that most of the promising compounds identified contained thiazole nuclei or derivatives.
Collapse
Affiliation(s)
- Nancy Y Guerrero-Pepinosa
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - María C Cardona-Trujillo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Sandra C Garzón-Castaño
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Biomedicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnología, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
11
|
Sethi NS, Prasad DN, Singh RK. An Insight into the Synthesis and SAR of 2,4-Thiazolidinediones (2,4-TZD) as Multifunctional Scaffold: A Review. Mini Rev Med Chem 2020; 20:308-330. [PMID: 31660809 DOI: 10.2174/1389557519666191029102838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/11/2019] [Accepted: 10/19/2019] [Indexed: 01/18/2023]
Abstract
2,4-Thiazolidinedione (2,4-TZD) is a versatile pharmacophore, a privileged scaffold, and a remarkable sulphur-containing heterocyclic compound with diverse pharmacological activities. The multifarious biological activities, due to different mechanisms of action, low cost, and easy availability of 2,4-TZD impressed medicinal chemists to integrate this moiety to develop various lead compounds with diverse therapeutic actions. This resulted in the swift development in the last decade for generating different new potential molecules bearing 2,4-TZD. In this review, the authors attempt to shape and present the latest investigations (2012 onwards) going on in generating promising 2,4-TZD containing lead compounds. The data has been collected and analyzed to develop the structure-activity relationship (SAR). The SAR and active pharmacophores of various leads accountable for antidiabetic, anticancer, antimicrobial, and antioxidant activities have also been illustrated. This review also highlighted some of the important chemical synthetic routes for the preparation of various 2,4-TZD derivatives. This review will definitely serve as a useful source of structural information to medicinal chemists and may be utilized for the strategic design of potent 2,4-TZD derivatives in the future.
Collapse
Affiliation(s)
- Navjot Singh Sethi
- School of Pharmacy, Maharaja Agrasen University, Baddi, Dist Solan, 160022, Himachal Pradesh, India.,Faculty of Pharmacy, I.K. Gujral Punjab Technical University, Jalandhar, India
| | - Deo Nandan Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh Kumar Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| |
Collapse
|
12
|
Zabiulla, Nagesh Khadri M, Bushra Begum A, Sunil M, Khanum SA. Synthesis, docking and biological evaluation of thiadiazole and oxadiazole derivatives as antimicrobial and antioxidant agents. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Prashanth T, Avin BV, Thirusangu P, Ranganatha VL, Prabhakar B, Sharath Chandra JN, Khanum SA. Synthesis of coumarin analogs appended with quinoline and thiazole moiety and their apoptogenic role against murine ascitic carcinoma. Biomed Pharmacother 2019; 112:108707. [DOI: 10.1016/j.biopha.2019.108707] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
|
14
|
Mohammed YHE, Ara Khanum S. The critical role of novel benzophenone analogs on tumor growth inhibition targeting angiogenesis and apoptosis. MEDCHEMCOMM 2018; 9:639-656. [PMID: 30108955 PMCID: PMC6072443 DOI: 10.1039/c7md00593h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/14/2018] [Indexed: 11/21/2022]
Abstract
In modern biology, one of the major topics of importance is progress in anti-cancer drugs with specific targets. The angiopreventive and in vitro tumor inhibition activities of novel synthetic benzophenone analogs have been investigated intensively and explored in a very systematic way. Novel benzophenone analogs (9a-d and 10a-d) substituted with methyl, chloro and fluoro groups at different positions on an identical chemical backbone and incorporating variations in the number of substituents have been synthesized in a multistep process and characterized. In this study, we further evaluate the newly synthesized compounds for their cytotoxic and anti-proliferative effects against A549, HeLa and MCF-7 cells. The potent lead compound was further assessed for anti-angiogenic effects. Through the structure-activity relationship, we found that an increase in the number of methyl, chloro and fluoro groups in a benzophenone ring on compound 9d resulted in higher potency compared to other compounds. Tumor inhibition was notably promoted, and this was reflected in effects on neovessel formation in in vivo systems, such as the CAM. Compound 9d interacts with rVEGF through hydrogen bonds in silico, thereby down-regulating the expression of VEGF in angiogenesis. From our investigation, it is suggested on the basis of clonogenesis and cell migration assays that compound 9d has the potency to exhibit prolonged activity against cancer progression, through cell cycle arrest at the G2/M phase. In addition, compound 9d inhibits A549 cells through caspase-activated DNase-mediated apoptosis.
Collapse
Affiliation(s)
- Yasser Hussein Eissa Mohammed
- Department of Chemistry , Yuvaraja's College , University of Mysore , Mysore -570005 , Karnataka , India . ; ; Tel: +91 99018 88755
- Department of Biochemistry , Faculty of Applied Science College , University of Hajjah , Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry , Yuvaraja's College , University of Mysore , Mysore -570005 , Karnataka , India . ; ; Tel: +91 99018 88755
| |
Collapse
|
15
|
Zitko J, Jand'ourek O, Paterová P, Navrátilová L, Kuneš J, Vinšová J, Doležal M. Design, synthesis and antimycobacterial activity of hybrid molecules combining pyrazinamide with a 4-phenylthiazol-2-amine scaffold. MEDCHEMCOMM 2018; 9:685-696. [PMID: 30108959 DOI: 10.1039/c8md00056e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022]
Abstract
Hybrid compounds based on a combination of the first-line antitubercular pyrazinamide (PZA) and a formerly identified antimycobacterial scaffold of 4-arylthiazol-2-amine were designed. Eighteen compounds were prepared, characterized and tested for in vitro growth inhibition activity against M. tuberculosis H37Rv, M. kansasii, M. avium and M. smegmatis by Microplate Alamar Blue Assay at neutral pH. Active compounds were tested for in vitro cytotoxicity in the human hepatocellular carcinoma cell line (HepG2). The most active 6-chloro-N-[4-(4-fluorophenyl)thiazol-2-yl]pyrazine-2-carboxamide (9b) also had the broadest spectrum of activity and inhibited M. tuberculosis, M. kansasii, and M. avium with MIC = 0.78 μg mL-1 (2.3 μM) and a selectivity index related to HepG2 cells of SI > 20. Structure-activity relationships within the series are discussed. Based on its structural similarity to known inhibitors and the results of a molecular docking study, we suggest mycobacterial beta-ketoacyl-(acyl-carrier-protein) synthase III (FabH) as a potential target.
Collapse
Affiliation(s)
- Jan Zitko
- Faculty of Pharmacy in Hradec Králové , Charles University , Heyrovského 1203 , Hradec Králové , 500 05 , Czech Republic .
| | - Ondřej Jand'ourek
- Faculty of Pharmacy in Hradec Králové , Charles University , Heyrovského 1203 , Hradec Králové , 500 05 , Czech Republic .
| | - Pavla Paterová
- Department of Clinical Microbiology , University Hospital , Sokolská 581 , Hradec Králové , 500 05 , Czech Republic
| | - Lucie Navrátilová
- Faculty of Pharmacy in Hradec Králové , Charles University , Heyrovského 1203 , Hradec Králové , 500 05 , Czech Republic .
| | - Jiří Kuneš
- Faculty of Pharmacy in Hradec Králové , Charles University , Heyrovského 1203 , Hradec Králové , 500 05 , Czech Republic .
| | - Jarmila Vinšová
- Faculty of Pharmacy in Hradec Králové , Charles University , Heyrovského 1203 , Hradec Králové , 500 05 , Czech Republic .
| | - Martin Doležal
- Faculty of Pharmacy in Hradec Králové , Charles University , Heyrovského 1203 , Hradec Králové , 500 05 , Czech Republic .
| |
Collapse
|
16
|
The Novel 4-Phenyl-2-Phenoxyacetamide Thiazoles modulates the tumor hypoxia leading to the crackdown of neoangiogenesis and evoking the cell death. Eur J Med Chem 2017; 143:1826-1839. [PMID: 29133037 DOI: 10.1016/j.ejmech.2017.10.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 11/21/2022]
Abstract
Tumor microenvironment is a complex multistep event which involves several hallmarks that transform the normal cell into cancerous cell. Designing the novel antagonistic molecule to reverse the tumor microenvironment with specific target is essential in modern biological studies. The novel 4-phenyl-2-phenoxyacetamide thiazole analogues 8a-ab were synthesized in multistep process, then screened and assessed for cytotoxic and anti-proliferative effects in vitro against multiple cancer cells of different origin such as MCF-7, A549, EAC and DLA cells which revealed that compound 8f with fluoro and methyl substitute has potential cytotoxic efficacy with an average IC50 value of ˜ 13 μM. The mechanism of cytotoxicity assessed for anti-tumor studies both in ascites and solid tumor models in-vivo inferred the regressed tumor activity. This is due to changes in the cause of tumor microenvironment with crackdown of neovascularization and evoking apoptosis process as assessed by CAM, corneal vascularization and apoptotic hallmarks in 8f treated cells. The molecular gene studies inferred involvement of HIF-1upregulation and stabilization of p53 which are interlinked in signaling as conferred by immunoblot analysis.
Collapse
|
17
|
Zabiulla, Vigneshwaran V, Bushra AB, Pavankumar G, Prabhakar B, Khanum SA. Design and synthesis of conjugated azo-hydrazone analogues using nano BF3·SiO2 targeting ROS homeostasis in oncogenic and vascular progression. Biomed Pharmacother 2017; 95:419-428. [DOI: 10.1016/j.biopha.2017.08.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/03/2017] [Accepted: 08/19/2017] [Indexed: 12/24/2022] Open
|
18
|
Gabr MT, El-Gohary NS, El-Bendary ER, El-Kerdawy MM, Ni N. Microwave-assisted synthesis and antitumor evaluation of a new series of thiazolylcoumarin derivatives. EXCLI JOURNAL 2017; 16:1114-1131. [PMID: 29285008 PMCID: PMC5735336 DOI: 10.17179/excli2017-208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
Abstract
A new series of thiazolylcoumarin derivatives was synthesized. The designed strategy embraced a molecular hybridization approach which involves the combination of the thiazole and coumarin pharmacophores together. The new hybrid compounds were tested for in vitro antitumor efficacy over cervical (Hela) and kidney fibroblast (COS-7) cancer cells. Compounds 5f, 5h, 5m and 5r displayed promising efficacy toward Hela cell line. In addition, 5h and 5r were found to be the most active candidates toward COS-7 cell line. The four active analogs, 5f, 5h, 5m and 5r were screened for in vivo antitumor activity over EAC cells in mice, as well as in vitro cytotoxicity toward W138 normal cells. Results illustrated that 5r has the highest in vivo activity, and that the four analogs are less cytotoxic than 5-FU toward W138 normal cells. In this study, 3D pharmacophore analysis was performed to investigate the matching pharmacophoric features of the synthesized compounds with trichostatin A. In silico studies showed that the investigated compounds meet the optimal needs for good oral absorption with no expected toxicity hazards.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | - Nadia S El-Gohary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Eman R El-Bendary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed M El-Kerdawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nanting Ni
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
19
|
Al-Ghorbani M, Thirusangu P, Gurupadaswamy HD, Vigneshwaran V, Mohammed YHE, Prabhakar BT, Khanum SA. Synthesis of novel morpholine conjugated benzophenone analogues and evaluation of antagonistic role against neoplastic development. Bioorg Chem 2017; 71:55-66. [PMID: 28139247 DOI: 10.1016/j.bioorg.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/10/2016] [Accepted: 01/15/2017] [Indexed: 10/20/2022]
Abstract
A series of novel 4-benzyl-morpholine-2-carboxylic acid N'-[2-(4-benzoyl-phenoxy)-acetyl]-hydrazide derivatives 8a-j has been synthesized from (4-hydroxy-aryl)-aryl methanones through a multi-step reaction sequence and then evaluated for anti-proliferative activity in vitro against various types of neoplastic cells of mouse and human such as DLA, EAC, MCF-7 and A549 cells. From the cytotoxic studies and structural activity relationship of compounds 8a-j, it is clear that methyl group on the B ring of benzophenone is essential for antiproliferative activity and bromo at ortho position (compound 8b) and methyl at para position (compound 8f) on A ring of benzophenone are significant for extensive anti-mitogenic activity. Investigation on clonogenesis and Fluorescence-activated cell sorting suggests that compounds 8b and 8f have the potency to exhibit the prolonged activity with cell cycle arrest on G2/M phase against cancer progression. Further, the compounds 8b and 8f inhibit murine ascites lymphoma through caspase activated DNase mediated apoptosis.
Collapse
Affiliation(s)
- Mohammed Al-Ghorbani
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India
| | - Prabhu Thirusangu
- Molecular Onco-medicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (A), Kuvempu University, Shimoga 577203, Karnataka, India
| | - H D Gurupadaswamy
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India
| | - V Vigneshwaran
- Molecular Onco-medicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (A), Kuvempu University, Shimoga 577203, Karnataka, India
| | - Yasser H E Mohammed
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India
| | - B T Prabhakar
- Molecular Onco-medicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (A), Kuvempu University, Shimoga 577203, Karnataka, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India.
| |
Collapse
|
20
|
A tumoural angiogenic gateway blocker, Benzophenone-1B represses the HIF-1α nuclear translocation and its target gene activation against neoplastic progression. Biochem Pharmacol 2016; 125:26-40. [PMID: 27838496 DOI: 10.1016/j.bcp.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 11/21/2022]
Abstract
Hypoxia is an important module in all solid tumours to promote angiogenesis, invasion and metastasis. Stabilization and subsequent nuclear localization of HIF-1α subunits result in the activation of tumour promoting target genes such as VEGF, MMPs, Flt-1, Ang-1 etc. which plays a pivotal role in adaptation of tumour cells to hypoxia. Increased HIF-α and its nuclear translocation have been correlated with pronounced angiogenesis, aggressive tumour growth and poor patient prognosis leading to current interest in HIF-1α as an anticancer drug target. Benzophenone-1B ([4-(1H-benzimidazol-2-ylmethoxy)-3,5-dimethylphenyl]-(4-methoxyphenyl) methanone, or BP-1B) is a new antineoplastic agent with potential angiopreventive effects. Current investigation reports the cellular biochemical modulation underlying BP-1B cytotoxic/antiangiogenic effects. Experimental evidences postulate that BP-1B exhibits the tumour specific cytotoxic actions against various cancer types with prolonged action. Moreover BP-1B efficiently counteracts endothelial cell capillary formation in in-vitro, in-vivo non-tumour and tumour angiogenic systems. Molecular signaling studies reveal that BP-1B arrests nuclear translocation of HIF-1α devoid of p42/44 pathway under CoCl2 induced hypoxic conditions in various cancer cells thereby leading to abrogated HIF-1α dependent activation of VEGF-A, Flt-1, MMP-2, MMP -9 and Ang-1 angiogenic factors resulting in retarded cell migration and invasions. The in-vitro results were reproducible in the reliable in-vivo solid tumour model. Taken together, we conclude that BP-1B impairs angiogenesis by blocking nuclear localization of HIF-1α which can be translated into a potent HIF-1α inhibitor.
Collapse
|
21
|
Thirusangu P, Vigneshwaran V, Prashanth T, Vijay Avin BR, Malojirao VH, Rakesh H, Khanum SA, Mahmood R, Prabhakar BT. BP-1T, an antiangiogenic benzophenone-thiazole pharmacophore, counteracts HIF-1 signalling through p53/MDM2-mediated HIF-1α proteasomal degradation. Angiogenesis 2016; 20:55-71. [PMID: 27743086 DOI: 10.1007/s10456-016-9528-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
Hypoxia is a feature of all solid tumours, contributing to tumour progression. Activation of HIF-1α plays a critical role in promoting tumour angiogenesis and metastasis. Since its expression is positively correlated with poor prognosis for cancer patients, HIF-1α is one of the most convincing anticancer targets. BP-1T is a novel antiproliferative agent with promising antiangiogenic effects. In the present study, the molecular mechanism underlying cytotoxic/antiangiogenic effects of BP-1T on tumour/non-tumour angiogenesis was evaluated. Evidences show that BP-1T exhibits potent cytotoxicity with prolonged activity and effectively regressed neovessel formation both in reliable non-tumour and tumour angiogenic models. The expression of CoCl2-induced HIF-1α was inhibited by BP-1T in various p53 (WT)-expressing cancer cells, including A549, MCF-7 and DLA, but not in mutant p53-expressing SCC-9 cells. Mechanistically, BP-1T mediates the HIF-1α proteasomal degradation by activating p53/MDM2 pathway and thereby downregulated HIF-1α-dependent angiogenic genes such as VEGF-A, Flt-1, MMP-2 and MMP-9 under hypoxic condition of in vitro and in vivo solid tumour, eventually leading to abolition of migration and invasion. Based on these observations, we conclude that BP-1T acts on HIF-1α degradation through p53/MDM2 proteasome pathway.
Collapse
Affiliation(s)
- Prabhu Thirusangu
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - V Vigneshwaran
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - T Prashanth
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, Karnataka, 570 005, India
| | - B R Vijay Avin
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Vikas H Malojirao
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - H Rakesh
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, Karnataka, 570 005, India
| | - Riaz Mahmood
- Postgraduate Department of Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577203, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India.
| |
Collapse
|
22
|
Synthesis and antiproliferative activity of benzophenone tagged pyridine analogues towards activation of caspase activated DNase mediated nuclear fragmentation in Dalton’s lymphoma. Bioorg Chem 2016; 65:73-81. [DOI: 10.1016/j.bioorg.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
|
23
|
Mohammed YHI, Naveen S, Lokanath NK, Manjunath HR, Al-Ghorbani M, Khanum SA. 2-Chloro-6-fluorophenyl 4-chlorobenzoate. IUCRDATA 2016. [DOI: 10.1107/s2414314616004156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the title compound, C13H7Cl2FO2, the dihedral angle between the aromatic rings is 49.96 (12)° and the fluorine atom issynto the C=O group. In the crystal, the molecules are linked into [010] chains by C—H...O hydrogen bonds and weak C—H...Cl interactions link these chains into sheets parallel to the (101) plane.
Collapse
|
24
|
Zabiulla, Shamanth Neralagundi HG, Bushra Begum A, Prabhakar BT, Khanum SA. Design and synthesis of diamide-coupled benzophenones as potential anticancer agents. Eur J Med Chem 2016; 115:342-51. [PMID: 27027818 DOI: 10.1016/j.ejmech.2016.03.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/19/2022]
Abstract
A series of diamide-coupled benzophenone, 2-(4-benzoyl-phenoxy)-N-{2-[2-(4-benzoyl-phenoxy)-acetylamino]-phenyl}-acetamide analogues (9a-l) were synthesized by multistep reactions and all compounds were well characterized. Among the series (9a-l), compound 9k with three methyl groups at ortho position in rings A, B, and D and bromo group at the para position in ring E was selected as a lead compound by screening through multiple cancer cell types by in-vitro cytotoxic and antiproliferative assay systems. Also, the cytotoxic nature of the compound 9k resulted the regression of the tumor growth in-vivo, which could be due to decreased vascularisation in the peritoneum lining of the mice which regress the tumor growth. The results were reconfirmed in-vivo chorioallantoic membrane model which indicates a scope of developing 9k into potent anticancer drug in near future.
Collapse
Affiliation(s)
- Zabiulla
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, Karnataka, India
| | - H G Shamanth Neralagundi
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Karnataka, India
| | - A Bushra Begum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, Karnataka, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Karnataka, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, Karnataka, India.
| |
Collapse
|
25
|
Al-Ghorbani M, Pavankumar GS, Naveen P, Thirusangu P, Prabhakar BT, Khanum SA. Synthesis and an angiolytic role of novel piperazine-benzothiazole analogues on neovascularization, a chief tumoral parameter in neoplastic development. Bioorg Chem 2016; 65:110-7. [PMID: 26918263 DOI: 10.1016/j.bioorg.2016.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
Abstract
A novel series of benzoic acid N'-[2-(4-benzothiazol-2-yl-piperazin-1-yl)-acetyl]-hydrazides 6a-j were synthesized and characterized by IR, (1)H, (13)C NMR, elemental and mass spectral analyses. The in-vitro cytotoxicity and cell viability assay of the synthesized compounds 6a-j were evaluated against Dalton's lymphoma ascites (DLA) cells. Our results showed that compound 6c with a bromo group on phenyl ring has showed promising antiproliferative efficacy. Further investigation of compound 6c on in-vivo treatment model depicts the increased tumor suppression through inhibition of angiogenesis.
Collapse
Affiliation(s)
- Mohammed Al-Ghorbani
- Department of Chemistry, Yuvaraja's College, University of Mysore, Karnataka, India
| | - G S Pavankumar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Karnataka, India
| | - P Naveen
- Department of Chemistry, Yuvaraja's College, University of Mysore, Karnataka, India
| | - Prabhu Thirusangu
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Karnataka, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Karnataka, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Karnataka, India.
| |
Collapse
|
26
|
Hu S, Cui X, He W, Chen X, Gu Z, Zhao J, Zeng G, Shi Z, Zhu L, Nie H. Synthesis, Structural Characterization and Preliminary Biological Studies of Several Heterocyclic Transition Metal Carbonyl Complexes. Z Anorg Allg Chem 2015. [DOI: 10.1002/zaac.201500592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Nastasă C, Tiperciuc B, Duma M, Benedec D, Oniga O. New Hydrazones Bearing Thiazole Scaffold: Synthesis, Characterization, Antimicrobial, and Antioxidant Investigation. Molecules 2015; 20:17325-38. [PMID: 26393564 PMCID: PMC6332171 DOI: 10.3390/molecules200917325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/20/2022] Open
Abstract
New series of hydrazones 5–18 were synthesized, in good yields, by reacting 4-methyl-2-(4-(trifluoromethyl)phenyl)thiazole-5-carbohydrazide with differently substituted benzaldehyde. The resulting compounds were characterized via elemental analysis, physico-chemical and spectral data. An antimicrobial screening was done, using Gram (+), Gram (−) bacteria and one fungal strain. Tested molecules displayed moderate-to-good growth inhibition activity. 2,2-Diphenyl-1-picrylhydrazide assay was used to test the antioxidant properties of the compounds. Monohydroxy (14–16), para-fluorine (13) and 2,4-dichlorine (17) derivatives exhibited better free-radical scavenging ability than the other investigated molecules.
Collapse
Affiliation(s)
- Cristina Nastasă
- Department of Pharmaceutical Chemistry, "Iuliu Hațieganu" University of Medicine and Pharmacy 41 Victor Babeș Street, RO-400012 Cluj-Napoca, Romania.
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, "Iuliu Hațieganu" University of Medicine and Pharmacy 41 Victor Babeș Street, RO-400012 Cluj-Napoca, Romania.
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piața Mărăști Street, 400609 Cluj-Napoca, Romania.
| | - Daniela Benedec
- Department of Pharmacognosy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 12 Ion Creangă Street, RO-400010 Cluj-Napoca, Romania.
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, "Iuliu Hațieganu" University of Medicine and Pharmacy 41 Victor Babeș Street, RO-400012 Cluj-Napoca, Romania.
| |
Collapse
|