1
|
Sharma S, Babu MA, Kumar R, Singh TG, Dwivedi AR, Ahmad G, Goel KK, Kumar B. A review on pyrimidine-based pharmacophore as a template for the development of hybrid drugs with anticancer potential. Mol Divers 2025:10.1007/s11030-025-11112-x. [PMID: 39937329 DOI: 10.1007/s11030-025-11112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
The low efficacy and toxicity of traditional chemotherapy, led by drug resistance of targeted anticancer therapies, have mandated the exploration and development of anticancer molecules. In this league, hybrid drugs, owing to their peculiar multitargeted functionality and structural diversity, could serve as vital leads in this quest for drug discovery. They are plausibly found to offer added advantages considering the improved efficacy, low toxicity, and improved patient compliance. Among numerous heterocycles explored, pyrimidine derivatives epitomize as a valuable resource for the hybrid drug development due to their validated efficacy and versatility. The present review discusses the role of pyrimidine, a diversified pharmacophore in drug development and concepts of hybrid drugs. The study covers the recent advancements in pyrimidine-based hybrid pharmacophores. It delves further into the challenges in hybrid drug development and ongoing research in hybrid drug discovery. Furthermore, the challenges faced in developing hybrid molecules, such as their design and optimization complexities, bioavailability and pharmacokinetics issues, target identification and validation, and off-target effects, are discussed.
Collapse
Affiliation(s)
- Shivam Sharma
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, VPO-Ghudda, Punjab, 151401, India
- Graphic Era (Deemed to Be University, Clement Town, Dehradun, 248002, India
| | - Thakur Gurjeet Singh
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, GITAM School of Pharmacy Hyderabad Campus GITAM University, Hyderabad, 502329, India
| | - Gazanfar Ahmad
- Prabha Harjilal College of Pharmacy and Paraclinical Sciences, Jammu, Jammu and Kashmir, India
| | - Kapil Kumar Goel
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University, Dist. Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
2
|
Zheng S, Chen R, Zhang L, Tan L, Li L, Long F, Wang T. Unraveling the future: Innovative design strategies and emerging challenges in HER2-targeted tyrosine kinase inhibitors for cancer therapy. Eur J Med Chem 2024; 276:116702. [PMID: 39059182 DOI: 10.1016/j.ejmech.2024.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a transmembrane receptor-like protein with tyrosine kinase activity that plays a vital role in processes such as cell proliferation, differentiation, and angiogenesis. The degree of malignancy of different cancers, notably breast cancer, is strongly associated with HER2 amplification, overexpression, and mutation. Currently, widely used clinical HER2 tyrosine kinase inhibitors (TKIs), such as lapatinib and neratinib, have several drawbacks, including susceptibility to drug resistance caused by HER2 mutations and adverse effects from insufficient HER2 selectivity. To address these issues, it is essential to create innovative HER2 TKIs with enhanced safety, effectiveness against mutations, and high selectivity. Typically, SPH5030 has advanced to phase I clinical trials for its strong suppression of four HER2 mutations. This review discusses the latest research progress in HER2 TKIs, with a focus on the structural optimization process and structure-activity relationship analysis. In particular, this study highlights promising design strategies to address these challenges, providing insightful information and inspiration for future development in this field.
Collapse
Affiliation(s)
- Sixiang Zheng
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ruixian Chen
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lele Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lun Tan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lintao Li
- Department of Radiotherapy, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
3
|
Son S, Elkamhawy A, Gul AR, Al-Karmalawy AA, Alnajjar R, Abdeen A, Ibrahim SF, Alshammari SO, Alshammari QA, Choi WJ, Park TJ, Lee K. Development of new TAK-285 derivatives as potent EGFR/HER2 inhibitors possessing antiproliferative effects against 22RV1 and PC3 prostate carcinoma cell lines. J Enzyme Inhib Med Chem 2023; 38:2202358. [PMID: 37096560 PMCID: PMC10132233 DOI: 10.1080/14756366.2023.2202358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) protein tyrosine kinases co-expressed in various cancers such as ovarian, breast, colon, and prostate subtypes. Herein, new TAK-285 derivatives (9a-h) were synthesised, characterised, and biologically evaluated as dual EGFR/HER2 inhibitors. Compound 9f exhibited IC50 values of 2.3 nM over EGFR and 234 nM over HER2, which is 38-fold of staurosporine and 10-fold of TAK-285 over EGFR. Compound 9f also showed high selectivity profile when tested over a small kinase panel. Compounds 9a-h showed IC50 values in the range of 1.0-7.3 nM and 0.8-2.8 nM against PC3 and 22RV1 prostate carcinoma cell lines, respectively. Cell cycle analysis, apoptotic induction, molecular docking, dynamics, and MM-GBSA studies confirmed the plausible mechanism(s) of compound 9f as a potent EGFR/HER2 dual inhibitor with an effective antiproliferative action against prostate carcinoma.
Collapse
Affiliation(s)
- Seohyun Son
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Ahmed Elkamhawy
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Anam Rana Gul
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
- Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Samah F Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saud O Alshammari
- Department of Plant Chemistry and Natural Products, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia
| | - Qamar A Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia
| | - Won Jun Choi
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
4
|
Design, Synthesis, Biological Evaluation, and Molecular Dynamics Studies of Novel Lapatinib Derivatives. Pharmaceuticals (Basel) 2022; 16:ph16010043. [PMID: 36678540 PMCID: PMC9862743 DOI: 10.3390/ph16010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Co-expression of the epidermal growth factor receptor (EGFR, also known as ErbB1) and human epidermal growth factor receptor 2 (HER2) has been identified as a diagnostic or prognostic sign in various tumors. Despite the fact that lapatinib (EGFR/HER2 dual inhibitor) has shown to be successful, many patients do not respond to it or develop resistance for a variety of reasons that are still unclear. As a result, new approaches and inhibitory small molecules are still needed for EGFR/HER2 inhibition. Herein, novel lapatinib derivatives possessing 4-anilinoquinazoline and imidazole scaffolds (6a-l) were developed and screened as EGFR/HER2 dual inhibitors. In vitro and in silico investigations revealed that compound 6j has a high affinity for the ATP-binding regions of EGFR and HER2. All of the designed candidates were predicted to not penetrate the BBB, raising the expectation for the absence of CNS side effects. At 10 µM, derivatives possessing 3-chloro-4-(pyridin-2-ylmethoxy)aniline moiety (6i-l) demonstrated outstanding ranges of percentage inhibition against EGFR (97.65-99.03%) and HER2 (87.16-96.73%). Compound 6j showed nanomolar IC50 values over both kinases (1.8 nM over EGFR and 87.8 nM over HER2). Over EGFR, compound 6j was found to be 50-fold more potent than staurosporine and 6-fold more potent than lapatinib. A kinase selectivity panel of compound 6j showed poor to weak inhibitory activity over CDK2/cyclin A, c-MET, FGFR1, KDR/VEGFR2, and P38a/MAPK14, respectively. Structure-activity relationship (SAR) that were obtained with different substitutions were justified. Additionally, molecular docking and molecular dynamics studies revealed insights into the binding mode of the target compounds. Thus, compound 6j was identified as a highly effective and dual EGFR/HER2 inhibitor worthy of further investigation.
Collapse
|
5
|
Jia T, Miao R, Lin J, Zhang C, Zeng L, Zhang J, Shao J, Pan Z, Wang H, Zhu H, Cheng W. Design, synthesis and biological evaluation of novel tumor hypoxia-activated EGFR tyrosine kinase inhibitors. Bioorg Chem 2022; 129:106138. [PMID: 36115310 DOI: 10.1016/j.bioorg.2022.106138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Hypoxia is widespread in solid tumors, such as NSCLC, and has become a very attractive target. On the basis of AZD9291 scaffold, novel hypoxia-targeted EGFR inhibitors without the acrylamide warhead but containing hypoxic reductive activation groups were described. Among them, compound JT21 exhibited impressive inhibitory activity (IC50 = 23 nM) against EGFRL858R/T790M and displayed about 21-fold inhibitory activity decrease against EGFRwt. Under hypoxia, JT21 exhibited more significant proliferation inhibitory activities against H1975 cells (IC50 = 7.39 ± 2.20 nM) and HCC827 cells (IC50 = 5.88 ± 0.85 nM) than that of AZD9291, which was about 5 times more effective than normoxia activities. Meanwhile, the weak inhibition effects on A549 and BEAS-2B cells suggested JT21 might be a selective inhibitor for EGFR mutations with low toxicity. Furthermore, JT21 could induce apoptosis of H1975 cells under hypoxia and showed good bio-reductive property.
Collapse
Affiliation(s)
- Tingting Jia
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Ruoyang Miao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiaohua Lin
- Zhejiang Yongtai Technology Co. Ltd, Taizhou 317016, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Haiping Wang
- Hangzhou Children's Hospital, Hangzhou, 310014, China.
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Almatary AM, Husseiny WME, Selim KB, Eisa HM. Nitroimidazole-sulfonamides as carbonic anhydrase IX and XII inhibitors targeting tumor hypoxia: Design, synthesis, molecular docking and molecular dynamics simulation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids. Pharmaceuticals (Basel) 2022; 15:ph15091071. [PMID: 36145292 PMCID: PMC9500727 DOI: 10.3390/ph15091071] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex disease, and its treatment is a big challenge, with variable efficacy of conventional anticancer drugs. A two-drug cocktail hybrid approach is a potential strategy in recent drug discovery that involves the combination of two drug pharmacophores into a single molecule. The hybrid molecule acts through distinct modes of action on several targets at a given time with more efficacy and less susceptibility to resistance. Thus, there is a huge scope for using hybrid compounds to tackle the present difficulties in cancer medicine. Recent work has applied this technique to uncover some interesting molecules with substantial anticancer properties. In this study, we report data on numerous promising hybrid anti-proliferative/anti-tumor agents developed over the previous 10 years (2011–2021). It includes quinazoline, indole, carbazole, pyrimidine, quinoline, quinone, imidazole, selenium, platinum, hydroxamic acid, ferrocene, curcumin, triazole, benzimidazole, isatin, pyrrolo benzodiazepine (PBD), chalcone, coumarin, nitrogen mustard, pyrazole, and pyridine-based anticancer hybrids produced via molecular hybridization techniques. Overall, this review offers a clear indication of the potential benefits of merging pharmacophoric subunits from multiple different known chemical prototypes to produce more potent and precise hybrid compounds. This provides valuable knowledge for researchers working on complex diseases such as cancer.
Collapse
|
8
|
Haider K, Das S, Joseph A, Yar MS. An appraisal of anticancer activity with structure-activity relationship of quinazoline and quinazolinone analogues through EGFR and VEGFR inhibition: A review. Drug Dev Res 2022; 83:859-890. [PMID: 35297084 DOI: 10.1002/ddr.21925] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 12/28/2022]
Abstract
Cancer is one of the leading causes of death. Globally a huge number of deaths and new incidences are reported annually. Heterocyclic compounds have been proved to be very effective in the treatment of different types of cancer. Among different heterocyclic scaffolds, quinazoline and quinazolinone core were found versatile and interesting with many biological activities. In the discovery of novel anticancer agents, the Quinazoline core is very effective. The FDA has approved more than 20 drugs as an anticancer bearing quinazoline or quinazolinone core in the last two decades. One prime example is Dacomitinib, which was newly approved for non-small-cell lung carcinoma treatment in 2018. These drugs work by different pathways to prevent the spread of cancer cell progression, including inhibition of different kinases, tubulin, kinesin spindle protein, and so forth. This review presented recent developments of quinazoline/quinazolinone scaffold bearing derivatives as anticancer agents acting as epidermal growth factor receptor (EGFR) vascular endothelial growth factor receptor (VEGFR), and dual EGFR/VEGFR inhibitors.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Centre for Excellence for Biomaterials Engineering, Faculty of Applied Sciences, AIMST University, Malaysia
| |
Collapse
|
9
|
Cheng W, Li S, Wen X, Han S, Wang S, Wei H, Song Z, Wang Y, Tian X, Zhang X. Development of hypoxia-activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. Chem Commun (Camb) 2021; 57:12852-12855. [PMID: 34788776 DOI: 10.1039/d1cc05715d] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a hallmark of many solid tumors, and it causes the overexpression of a variety of proteins including the epidermal growth factor receptor (EGFR). Many antitumor prodrugs have been designed to target hypoxia. Here we report the identification of a kind of hypoxia-activated proteolysis targeting chimera (ha-PROTAC) by introducing the hypoxia-activated leaving group (1-methyl-2-nitro-1H-imidazol-5-yl)methyl or 4-nitrobenzyl into the structure of an EGFRDel19-based PROTAC. Among the obtained molecules, ha-PROTAC 13 exhibits a more potent degradation activity for EGFRDel19 in hypoxia than in normoxia in HCC4006 cells. This is the first example of identifying a PROTAC to selectively act on tumors utilizing the characteristic of tumor hypoxia and provides a new approach for PROTAC development.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xueqian Wen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Siyuan Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhizhen Song
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
10
|
Das R, Mehta DK, Dhanawat M. Bestowal of Quinazoline Scaffold in Anticancer Drug Discovery. Anticancer Agents Med Chem 2021; 21:1350-1368. [PMID: 32593282 DOI: 10.2174/1871520620666200627205321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the major causes of human mortality worldwide. A number of existing antineoplastic medications and treatment regimens are already working in the field, and several new compounds are in different phases of clinical trials. An extensive series of anticancer drugs exist in the market, and studies suggest that these molecules are associated with different types of adverse side effects. The reduction of the cytotoxicity of drugs to normal cells is a major problem in anticancer therapy. Therefore, researchers around the globe are involved in the development of more efficient and safer anticancer drugs. The output of extensive research is that the quinazoline scaffold and its various derivatives can be explored further as a novel class of cancer chemotherapeutic agents that has already shown promising activities against different tumours. Quinazoline derivatives have already occupied a crucial place in modern medicinal chemistry. Various research has been performed on quinazoline and their derivatives for anticancer activity and pharmacological importance of this scaffold has been well established. OBJECTIVE The aim of this review is to compile and highlight the developments concerning the anticancer activity of quinazoline derivatives as well as to suggest some new aspects of the expansion of anticancer activity of novel quinazoline derivatives as anticancer agents in the near future. METHODS Recent literature related to quinazoline derivatives endowed with encouraging anticancer potential is reviewed. With a special focus on quinazoline moiety, this review offers a detailed account of multiple mechanisms of action of various quinazoline derivatives: inhibition of the DNA repair enzyme system, inhibition of EGFR, thymidylate enzyme inhibition and inhibitory effects for tubulin polymerization by which these derivatives have shown promising anticancer potential. RESULTS Exhaustive literature survey indicated that quinazoline derivatives are associated with properties of inhibiting EGFR and thymidylate enzymes. It was also found to be involved in disturbing tubulin assembly. Furthermore, quinazoline derivatives have been found to inhibit critical targets such as DNA repair enzymes. These derivatives have shown significant activity against cancer. CONCLUSION In cancer therapy, Quinazoline derivatives seems to be quite promising and act through various mechanisms that are well established. This review has shown that quinazoline derivatives can further be explored for the betterment of chemotherapy. A lot of potentials are still hidden, which demands to be discovered for upgrading quinazoline derivatives efficacy.
Collapse
Affiliation(s)
- Rina Das
- MM College of Pharmacy, MM (Deemed to be University), Mullana, Ambala, HR, 133207, India
| | - Dinesh K Mehta
- MM College of Pharmacy, MM (Deemed to be University), Mullana, Ambala, HR, 133207, India
| | - Meenakshi Dhanawat
- MM College of Pharmacy, MM (Deemed to be University), Mullana, Ambala, HR, 133207, India
| |
Collapse
|
11
|
Teli G, Chawla PA. Hybridization of Imidazole with Various Heterocycles in Targeting Cancer: A Decade's Work. ChemistrySelect 2021; 6:4803-4836. [DOI: 10.1002/slct.202101038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2025]
Abstract
AbstractCancer is the world‘s biggest global health concern. The prevalence and mortality rates of cancer remain high despite significant progress in cancer therapy. The search for more effective, as well as less toxic treatment methods for cancer, is at the focus of current studies. Approximately 24.6 million people are suffering from cancer across the world as per the world health organization (WHO). In the year 2020, approximately 10 million deaths were reported due to cancer which has emerged as the second leading cause of mortality across the globe. Anticancer medicines have played a pivotal role in the medication of different types of cancers; however, they are associated with several side effects and relevance of drug resistance which evoke an immediate need for designing of new anticancer agents with multitargeted effect. Imidazole is a heterocyclic compound privileged with considerable anticancer activities and some imidazole derivatives have already got approval to treat cancer. Many hybrid molecules are available that play an important role in the treatment of cancer like chalcone, pyrazole, purine, triazine etc., and their pharmacophore provide the anticancer drug with low drug resistance and high efficacy, with low chances of toxicity and side effects. This review provides various approaches for the drug development of new safe and efficient antitumor agents imidazole hybrids with other heterocyclic moieties. An attempt has been made to advancement of the anticancer potential of the derivatives and hybrids of imidazole having intact or condensed imidazole moiety in the last decade along with the structure‐activity relationship studies, and mechanism of action.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan G.T Road Punjab 142001 India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan G.T Road Punjab 142001 India
| |
Collapse
|
12
|
Grover P, Bhardwaj M, Kapoor G, Mehta L, Ghai R, Nagarajan K. Advances on Quinazoline Based Congeners for Anticancer Potential. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210212121056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heterocyclic compounds have a great significance in medicinal chemistry because
they have extensive biological activities. Cancer is globally the leading cause of death
and it is a challenge to develop appropriate treatment for the management of cancer. Continuous
efforts are being made to find a suitable medicinal agent for cancer therapy. Nitrogencontaining
heterocycles have received noteworthy attention due to their wide and distinctive
pharmacological activities. One of the most important nitrogen-containing heterocycles in
medicinal chemistry is ‘quinazoline’ that possesses a wide spectrum of biological properties.
This scaffold is an important pharmacophore and is considered a privileged structure. Various
substituted quinazolines displayed anticancer activity against different types of cancer. This
review highlights the recent advances in quinazoline based molecules as anticancer agents.
Several in-vitro and in-vivo models used along with the results are also included. A subpart briefing natural quinazoline
containing anticancer compounds is also incorporated in the review.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Monika Bhardwaj
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Garima Kapoor
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Roma Ghai
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - K. Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| |
Collapse
|
13
|
Shalini, Kumar V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert Opin Drug Discov 2020; 16:335-363. [PMID: 33305635 DOI: 10.1080/17460441.2021.1850686] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Cancer continues to be a big threat and its treatment is a huge challenge among the medical fraternity. Conventional anti-cancer agents are losing their efficiency which highlights the need to introduce new anti-cancer entities for treating this complex disease. A hybrid molecule has a tendency to act through varied modes of action on multiple targets at a given time. Thus, there is the significant scope with hybrid compounds to tackle the existing limitations of cancer chemotherapy. AREA COVERED This perspective describes the most significant hybrids that spring hope in the field of cancer chemotherapy. Several hybrids with anti-proliferative/anti-tumor properties currently approved or in clinical development are outlined, along with a description of their mechanism of action and identified drug targets. EXPERT OPINION The success of molecular hybridization in cancer chemotherapy is quite evident by the number of molecules entering into clinical trials and/or have entered the drug market over the past decade. Indeed, the recent advancements and co-ordinations in the interface between chemistry, biology, and pharmacology will help further the advancement of hybrid chemotherapeutics in the future.List of abbreviations: Deoxyribonucleic acid, DNA; national cancer institute, NCI; peripheral blood mononuclear cells, PBMC; food and drug administration, FDA; histone deacetylase, HDAC; epidermal growth factor receptor, EGFR; vascular endothelial growth factor receptor, VEGFR; suberoylanilide hydroxamic acid, SAHA; farnesyltransferase inhibitor, FTI; adenosine triphosphate, ATP; Tamoxifen, TAM; selective estrogen receptor modulator, SERM; structure activity relationship, SAR; estrogen receptor, ER; lethal dose, LD; half maximal growth inhibitory concentration, GI50; half maximal inhibitory concentration, IC50.
Collapse
Affiliation(s)
- Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar-India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar-India
| |
Collapse
|
14
|
Metronidazole-conjugates: A comprehensive review of recent developments towards synthesis and medicinal perspective. Eur J Med Chem 2020; 210:112994. [PMID: 33234343 DOI: 10.1016/j.ejmech.2020.112994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nitroimidazoles based compounds remain a hot topic of research in medicinal chemistry due to their numerous biological activities. Moreover, many clinical candidates based on this chemical core have been reported to be valuable in the treatment of human diseases. Metronidazole (MTZ) derived conjugates demonstrated a potential application in medicinal chemistry research over the last decade. In this review, we summarize the synthesis, key structure-activity-relationship (SAR) and associated biological activities such as antimicrobial, anticancer, antidiabetic, anti-inflammatory, anti-HIV and anti-parasitic (Anti-trichomonas, antileishmanial, antiamoebic and anti-giardial) of explored MTZ-conjugates. The molecular docking analysis is also presented simultaneously, which will assist in developing an understanding towards designing of new MTZ-conjugates for target-based drug discovery against multiple disease areas.
Collapse
|
15
|
Bhatia P, Sharma V, Alam O, Manaithiya A, Alam P, Kahksha, Alam MT, Imran M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur J Med Chem 2020; 204:112640. [PMID: 32739648 DOI: 10.1016/j.ejmech.2020.112640] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
The over expression of EGFR has been recognized as the driver mechanism in the occurrence and progression of carcinomas such as lung cancer, breast cancer, pancreatic cancer, etcetera. EGFR receptor was thus established as an important target for the management of solid tumors. The occurrence of resistance caused as a result of mutations in EGFR has presented a formidable challenge in the discovery of novel inhibitors of EGFR. This has resulted in the development of three generations of EGFR TKIs. Newer mutations like C797S cause failure of Osimertinib and other EGFR TKIs belonging to the third-generation caused by the development of resistance. In this review, we have summarized the work done in the last five years to overcome the limitations of currently marketed drugs, giving structural activity relationships of quinazoline-based lead compounds synthesized and tested recently. We have also highlighted the shortcomings of the currently used approaches and have provided guidance for circumventing these limitations. Our review would help medicinal chemists streamline and guide their efforts towards developing novel quinazoline-based EGFR inhibitors.
Collapse
Affiliation(s)
- Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kahksha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Tauquir Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| |
Collapse
|
16
|
Nepali K, Chang TY, Lai MJ, Hsu KC, Yen Y, Lin TE, Lee SB, Liou JP. Purine/purine isoster based scaffolds as new derivatives of benzamide class of HDAC inhibitors. Eur J Med Chem 2020; 196:112291. [PMID: 32325365 DOI: 10.1016/j.ejmech.2020.112291] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
This study reports the design, synthesis and evaluation of a series of histone deacetylase (HDAC) inhibitors containing purine/purine isoster as a capping group and an N-(2-aminophenyl)-benzamide unit. In vitro cytotoxicity studies reveal that benzamide 14 suppressed the growth of triple-negative breast cancer cells MDA-MB-231 (IC50 = 1.48 μM), MDA-MB-468 (IC50 = 0.65 μM), and liver cancer cells HepG2 (IC50 = 2.44 μM), better than MS-275 (5) and Chidamide (6). Compared to the well-known HDAC inhibitor SAHA, 14 showed a higher toxicity (IC50 = 0.33 μM) in three leukemic cell lines, K-562, KG-1 and THP-1. Moreover, 14 was found to be equally virulent in the HDAC-sensitive and -resistant gastric cell lines, YCC11 and YCC3/7, respectively, indicating the potential of 14 to overcome HDACi resistance. Furthermore, substantial inhibitory effects more pronounced than MS-275 (5) and Chidamide (6) were displayed by 14 towards HDAC1, 2 and 3 isoforms with IC50 values of 0.108, 0.585 and 0.563 μM respectively. Compound 14 also exhibited a potent antitumor efficacy in human MDA-MB-231 breast cancer xenograft mouse model, providing a potential lead for the development of anticancer agents.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Ting-Yu Chang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Mei-Jung Lai
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan; TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Yun Yen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Sung-Bau Lee
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan; Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan; TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
17
|
Cheng W, Wang S, Yang Z, Tian X, Hu Y. Design, synthesis, and biological study of 4-[(2-nitroimidazole-1 H-alkyloxyl)aniline]-quinazolines as EGFR inhibitors exerting cytotoxicities both under normoxia and hypoxia. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3079-3089. [PMID: 31695326 PMCID: PMC6717862 DOI: 10.2147/dddt.s209481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022]
Abstract
Purpose In order to get novel EGFR inhibitors exerting more potency in tumor hypoxia than in normoxia. Methods A series of 4-[(2-nitroimidazole-1H-alkyloxyl)aniline]-quinazolines were designed and synthesized, and their in vitro cytotoxicity and EGFR inhibitory activity were evaluated. Molecule docking study was performed for the representative compound. Results The structure-activity relationship (SAR) studies revealed that compounds bearing both meta-chloride and para-(2-nitroimidazole-1H-alkyloxy) groups on the aniline displayed potent inhibitory activities both in enzymatic and cellular levels. The most promising compound 16i potently inhibited EGFR with an IC50 value of 0.12 μM. Meanwhile, it manifested more potent cytotoxicity than the positive control lapatinib under tumor normoxia and hypoxia conditions (IC50 values of 1.59 and 1.09 μM against A549 cells, 2.46 and 1.35 μM against HT-29 cells, respectively). The proposed binding model of 16i in complex with EGFR was displayed by the docking results. Conclusion This study provides insights for developing hypoxia-activated kinase inhibitors.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yongzhou Hu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
18
|
Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem 2019; 170:55-72. [DOI: 10.1016/j.ejmech.2019.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
|
19
|
Abstract
The nitro group is considered to be a versatile and unique functional group in medicinal chemistry. Despite a long history of use in therapeutics, the nitro group has toxicity issues and is often categorized as a structural alert or a toxicophore, and evidence related to drugs containing nitro groups is rather contradictory. In general, drugs containing nitro groups have been extensively associated with mutagenicity and genotoxicity. In this context, efforts toward the structure-mutagenicity or structure-genotoxicity relationships have been undertaken. The current Perspective covers various aspects of agents that contain nitro groups, their bioreductive activation mechanisms, their toxicities, and approaches to combat their toxicity issues. In addition, recent advances in the field of anticancer, antitubercular and antiparasitic agents containing nitro groups, along with a patent survey on hypoxia-activated prodrugs containing nitro groups, are also covered.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| |
Collapse
|
20
|
Ma X, Lv X, Zhang J. Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): An update of recent medicinal chemistry efforts. Eur J Med Chem 2017; 143:449-463. [PMID: 29202407 DOI: 10.1016/j.ejmech.2017.11.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/12/2017] [Accepted: 11/18/2017] [Indexed: 12/23/2022]
Abstract
Polypharmacology has been increasingly advocated for the therapeutic intervention in complex pathological conditions, exemplified by cancer. Although kinase inhibitors (KIs) have revolutionized the treatment for certain types of malignancies, some major medical needs remain unmet due to the relentless advance of drug resistance and insufficient efficacy of mono-target KIs. Hence, "multiple targets, multi-dimensional activities" represents an emerging paradigm for innovative anti-cancer drug discovery. Over recent years, considerable leaps have been made in pursuit of kinase-centric polypharmacological anti-cancer therapeutics, providing avenues to tackling the limitation of mono-target KIs. In the review, we summarize the clinically important mechanisms inducing KI resistance and depict a landscape of recent medicinal chemistry efforts on exploring kinase-centric polypharmacological anti-cancer agents that targeting multiple cancer-related processes. In parallel, some inevitable challenges are emphasized for the sake of more accurate and efficient drug discovery in the field.
Collapse
Affiliation(s)
- Xiaodong Ma
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, Jiaxing 314001, China.
| | - Jiankang Zhang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, China.
| |
Collapse
|
21
|
Kang SK, Lee SW, Woo D, Sim J, Suh YG. Practical and efficient synthesis of gefitinib through selective O-alkylation: A novel concept for a transient protection group. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1359627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sung Kwon Kang
- College of Pharmacy, Seoul National University, Seoul, Korea
- Department of Synthetic Chemistry, Chong Kun Dang Research Institute, Yongin-si, Gyeonggi-do, Korea
| | - Seung Wook Lee
- Department of Synthetic Chemistry, Chong Kun Dang Research Institute, Yongin-si, Gyeonggi-do, Korea
| | - Daekoo Woo
- Department of Synthetic Chemistry, Chong Kun Dang Research Institute, Yongin-si, Gyeonggi-do, Korea
| | - Jaehoon Sim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Young-Ger Suh
- College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
22
|
Design and Synthesis of Vandetanib Derivatives Containing Nitroimidazole Groups as Tyrosine Kinase Inhibitors in Normoxia and Hypoxia. Molecules 2016; 21:molecules21121693. [PMID: 27983649 PMCID: PMC6273768 DOI: 10.3390/molecules21121693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 01/27/2023] Open
Abstract
Sixteen novel epidermal growth factor receptor (EGFR)/vascular endothelial growth factor (VEGF)-2 inhibitors (nitroimidazole-substituted 4-anilinoquinazoline derivatives (16a–p)) were designed and prepared via the introduction of a nitroimidazole group in the piperidine side chain and modification on the aniline moiety of vandetanib. Preliminary biological tests showed that comparing with vandetanib, some target compounds exhibited excellent EGFR inhibitory activities and anti-proliferative over A549/H446 cells in hypoxia. Meanwhile, several of the above compounds demonstrated better bioactivity than vandetanib in VEGF gene expression inhibition. Owing to the excellent IC50 value (1.64 μmol/L), the inhibition ratios of 16f over A549 and H446 cells were 62.01% and 59.86% at the concentration of 0.5 μM in hypoxia, respectively. All of these results indicated that 16f was a potential cancer therapeutic agent in hypoxia and was worthy of further development.
Collapse
|
23
|
Design, Synthesis and Biological Evaluation of Benzohydrazide Derivatives Containing Dihydropyrazoles as Potential EGFR Kinase Inhibitors. Molecules 2016; 21:molecules21081012. [PMID: 27527130 PMCID: PMC6273578 DOI: 10.3390/molecules21081012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/12/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022] Open
Abstract
A series of novel benzohydrazide derivatives containing dihydropyrazoles have been synthesized as potential epidermal growth factor receptor (EGFR) kinase inhibitors and their biological activities as potential antiproliferative agents have been evaluated. Among these compounds, compound H20 exhibited the most potent antiproliferative activity against four cancer cell line variants (A549, MCF-7, HeLa, HepG2) with IC50 values of 0.46, 0.29, 0.15 and 0.21 μM respectively, which showed the most potent EGFR inhibition activities (IC50 = 0.08 μM for EGFR). Molecular modeling simulation studies were performed in order to predict the biological activity and activity relationship (SAR) of these benzohydrazide derivatives. These results suggested that compound H20 may be a promising anticancer agent.
Collapse
|
24
|
Ismail RS, Ismail NS, Abuserii S, Abou El Ella DA. Recent advances in 4-aminoquinazoline based scaffold derivatives targeting EGFR kinases as anticancer agents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2016. [DOI: 10.1016/j.fjps.2016.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Li S, Peng P, Wei J, Hu Y, Hu J, Sheng R. Nucleophilic Difluoroalkylation of Isocyanates with Difluoromethyl 2-Pyridyl Sulfone. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|