1
|
Waghmare PS, Chabukswar AR, Raut KG, Giri PT. A Review on Carbazole and Its Derivatives as Anticancer Agents From 2013 to 2024. Chirality 2025; 37:e70021. [PMID: 39887861 DOI: 10.1002/chir.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Carbazole, a natural alkaloid, has been recognized as an effective anticancer agent for over 40 years. However, only a limited number of carbazole-based compounds have received FDA approval for cancer treatment. Current cancer therapies are often associated with significant side effects, causing physical, emotional, and financial burdens for patients. Additionally, despite advancements, cancer prevention and treatment remain challenging due to suboptimal clinical outcomes. The development of new drugs is crucial for achieving safer and more effective cancer therapies. This review focuses on various carbazole derivatives and hybrid composites, highlighting their interactions with distinct receptors and their mechanisms of anticancer action, along with a general structure-activity relationship (SAR). It also emphasizes carbazole-based compounds employed in chemoprevention, which aim to delay or prevent malignant progression. By covering carbazole derivatives and their anticancer potential from 2013 to the present, along with their current clinical status, this study offers valuable insights and updates for researchers in the field.
Collapse
Affiliation(s)
- Priyanka Sanjay Waghmare
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Anuruddha Rajaram Chabukswar
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Kunal Ganesh Raut
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Pooja Tanaji Giri
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| |
Collapse
|
2
|
Marinescu M. Bisindole Compounds-Synthesis and Medicinal Properties. Antibiotics (Basel) 2024; 13:1212. [PMID: 39766602 PMCID: PMC11727274 DOI: 10.3390/antibiotics13121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
The indole nucleus stands out as a pharmacophore, among other aromatic heterocyclic compounds with remarkable therapeutic properties, such as benzimidazole, pyridine, quinoline, benzothiazole, and others. Moreover, a series of recent studies refer to strategies for the synthesis of bisindole derivatives, with various medicinal properties, such as antimicrobial, antiviral, anticancer, anti-Alzheimer, anti-inflammatory, antioxidant, antidiabetic, etc. Also, a series of natural bisindole compounds are mentioned in the literature for their various biological properties and as a starting point in the synthesis of other related bisindoles. Drawing from these data, we have proposed in this review to provide an overview of the synthesis techniques and medicinal qualities of the bisindolic compounds that have been mentioned in recent literature from 2010 to 2024 as well as their numerous uses in the chemistry of materials, nanomaterials, dyes, polymers, and corrosion inhibitors.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Soseaua Panduri, 030018 Bucharest, Romania
| |
Collapse
|
3
|
Singh G, Sharma S, Pandey R, Rekha, Vijaya Anand R. Construction of heterocycle-fused tetrahydrocarbazoles through a formal [3 + 3]-annulation of 2-indolylmethanols with para-quinone methides. Org Biomol Chem 2023; 21:2493-2498. [PMID: 36880335 DOI: 10.1039/d3ob00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
A metal-free approach for the synthesis of tetrahydroindolo[2,3-b]carbazoles has been developed through an acid-mediated one-pot [3 + 3]-annulation of 2-indolylmethanols and 3-indolyl-substituted para-quinone methides. This operationally simple protocol allowed us to prepare many unsymmetrical tetrahydroindolo[2,3-b]carbazoles in good to excellent yields with a broad substrate scope. This concept was also elaborated to the synthesis of tetrahydrothieno[2,3-b]carbazoles and tetrahydrothieno[3,2-b]carbazoles.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India.
| | - Sonam Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India.
| | - Rajat Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India.
| | - Rekha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India.
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India.
| |
Collapse
|
4
|
Farag PS, AboulMagd AM, Hemdan MM, Hassaballah AI. Annulated pyrazole derivatives as a novel class of urokinase (uPA) inhibitors: Green synthesis, anticancer activity, DNA-damage evaluation, and molecular modelling study. Bioorg Chem 2022; 130:106231. [DOI: 10.1016/j.bioorg.2022.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022]
|
5
|
Al‐Ahmed ZA, Habib IHI, Khattab RR, Abdelhameed RM, El‐Naggar M, Abu Bieh MH, Pisarevd SA, Voronkov A, El Sayed MT. Synthesis, spectrophotometric, voltammetric, and density functional theory studies of tetrahydro[3,2‐
b
]indolocarbazoles for sensing small molecules. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zehbah Ali Al‐Ahmed
- College of Art and Sciences ‐ Dhahran Aljounb King Khalid University Abha Saudi Arabia
| | - Ibrahim H. I. Habib
- Applied Organic Chemistry Department, Chemical Industries Research Division National Research Centre Giza Egypt
| | - Reham R. Khattab
- Photochemistry Department, Chemical Industries Research Division National Research Centre Giza Egypt
| | - Reda M. Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division National Research Centre Giza Egypt
| | - Mohamed El‐Naggar
- Chemistry Department, Faculty of Sciences University of Sharjah Sharjah United Arab Emirates
| | - Moursi H. Abu Bieh
- Photochemistry Department, Chemical Industries Research Division National Research Centre Giza Egypt
| | - Sergey A. Pisarevd
- Institute of Physiologically Active Compounds Russian Academy of Sciences Chernogolovka Russia
| | - Andrey Voronkov
- Digital Bio Pharm Ltd. 145‐157 St. John Street London U.K. EC1V 4PW UK
| | - Mardia T. El Sayed
- Applied Organic Chemistry Department, Chemical Industries Research Division National Research Centre Giza Egypt
| |
Collapse
|
6
|
Synthesis and antibacterial activity of novel arylbis(indol-3-yl)methane derivatives. J Antibiot (Tokyo) 2020; 74:219-224. [PMID: 33318623 DOI: 10.1038/s41429-020-00389-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/09/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022]
Abstract
A series of new compounds-arylbis(indol-3-yl)methylium derivatives-were synthesized and their antimicrobial activity was evaluated. All the compounds turned out to be highly active, with MIC depending on their structure and the length of N-alkyl residues. The parent triarylmethane compounds possess weaker activity.
Collapse
|
7
|
Chatterjee R, Santra S, Zyryanov GV, Majee A. Brønsted acidic ionic liquid–catalyzed tandem trimerization of indoles: An efficient approach towards the synthesis of indole 3,3′‐trimers under solvent‐free conditions. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rana Chatterjee
- Department of ChemistryVisva‐Bharati (A Central University) Santiniketan India
| | - Sougata Santra
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University Yekaterinburg Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University Yekaterinburg Russian Federation
- I. Ya. Postovsky Institute of Organic SynthesisUral Division of the Russian Academy of Sciences Yekaterinburg Russian Federation
| | - Adinath Majee
- Department of ChemistryVisva‐Bharati (A Central University) Santiniketan India
| |
Collapse
|
8
|
Ahmed EM, Sarhan AE, El-Naggar DH, Khattab RR, El-Naggar M, El-Messery SM, Hassan GS, Mounier MM, Mahmoud K, Ali NI, Mahrous KF, Ali MM, El Sayed MT. Towards breast cancer targeting: Synthesis of tetrahydroindolocarbazoles, antibreast cancer evaluation, uPA inhibition, molecular genetic and molecular modelling studies. Bioorg Chem 2019; 93:103332. [PMID: 31593885 DOI: 10.1016/j.bioorg.2019.103332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/07/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
Abstract
A series of some new tetrahydroindolocarbazole derivatives has been synthesized. The structure of the synthesized compounds has been confirmed by different spectroscopic techniques such as IR, NMR, elemental analysis and mass spectrometry. The target compounds were evaluated for their antitumor activity against breast cancer cell line MCF-7, their GI% and their LC50 have been determined. Six of the synthesized compounds exhibited GI% values against MCF-7 cell lines exceeding 70% ranging from 71.9 to 85.0% in addition that compound 11 expressed GI% values of 99.9% and considered the most active derivatives among the synthesized ones. Compound 11 showed a remarkable decrease of u PA level to 3.5 ng/ml compared to DOX. Compound 5, 11 and 15 showed significant decrease in expression of MTAP and CDKN2A, in addition to a remarkable decrease in DNA damage comet assay method. Molecular modeling studies were performed to interpretate the behavior of active ligands as uPA inhibitors.
Collapse
Affiliation(s)
- Entesar M Ahmed
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| | - Alaadin E Sarhan
- Therapeutical Chemistry Department, Pharmaceutical Division, National Research Centre, Dokki- 12311, Egypt
| | - Dina H El-Naggar
- Department of Applied Organic Chemistry, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Reham R Khattab
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Dokki 12311, Egypt
| | - Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Marwa M Mounier
- Pharmacognosy Department, National Research Centre, 12622-Dokki, Egypt
| | - Khaled Mahmoud
- Pharmacognosy Department, National Research Centre, 12622-Dokki, Egypt
| | - Neama I Ali
- Cell Biology Department, National Research Centre, 12622-Dokki, Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre, 12622-Dokki, Egypt
| | - Mamdouh M Ali
- Biochemistry Department, National Research Centre, 12622-Dokki, Egypt
| | - Mardia T El Sayed
- Department of Applied Organic Chemistry, National Research Centre, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
9
|
Issa S, Prandina A, Bedel N, Rongved P, Yous S, Le Borgne M, Bouaziz Z. Carbazole scaffolds in cancer therapy: a review from 2012 to 2018. J Enzyme Inhib Med Chem 2019; 34:1321-1346. [PMID: 31328585 PMCID: PMC6691762 DOI: 10.1080/14756366.2019.1640692] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
For over half a century, the carbazole skeleton has been the key structural motif of many biologically active compounds including natural and synthetic products. Carbazoles have taken an important part in all the existing anti-cancer drugs because of their discovery from a large variety of organisms, including bacteria, fungi, plants, and animals. In this article, we specifically explored the literature from 2012 to 2018 on the anti-tumour activities reported to carbazole derivatives and we have critically collected the most significant data. The most described carbazole anti-tumour agents were classified according to their structure, starting from the tricyclic–carbazole motif to fused tetra-, penta-, hexa- and heptacyclic carbazoles. To date, three derivatives are available on the market and approved in cancer therapy.
Collapse
Affiliation(s)
- Samar Issa
- a Ecole de Biologie Industrielle, EBInnov , Cergy-Pontoise , France
| | - Anthony Prandina
- b Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France.,c Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo , Oslo , Norway
| | - Nicolas Bedel
- b Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Pål Rongved
- c Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo , Oslo , Norway
| | - Saïd Yous
- d Université Lille, Inserm, CHU Lille, UMR-S 1172 JPArc Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer , Lille , France
| | - Marc Le Borgne
- b Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Zouhair Bouaziz
- b Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| |
Collapse
|
10
|
Jeon J, Ryu H, Lee C, Cho D, Baik MH, Hong S. Site-Selective 1,1-Difunctionalization of Unactivated Alkenes Enabled by Cationic Palladium Catalysis. J Am Chem Soc 2019; 141:10048-10059. [DOI: 10.1021/jacs.9b04142] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinwon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Ho Ryu
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Changseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Dasol Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| |
Collapse
|
11
|
Nguyen TTH, Nguyen XTT, Nguyen CQ, Tran PH. Porous metal oxides derived from Cu-Al layered double hydroxide as an efficient heterogeneous catalyst for the Friedel-Crafts alkylation of indoles with benzaldehydes under microwave irradiation. Heliyon 2018; 4:e00966. [PMID: 30533545 PMCID: PMC6260462 DOI: 10.1016/j.heliyon.2018.e00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 11/20/2018] [Indexed: 11/07/2022] Open
Abstract
Four Cu-Mg-Al mixed metal oxides (MMO) were synthesized through the calcination of layered double hydroxides (LDHs). These catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller surface area (BET), and inductively coupled plasma optical emission spectrometer (ICP-OES). The catalytic efficiency of porous metal oxides derived from LDHs has been tested successfully for the synthesis of bis(indolyl)methanes via the Friedel–Crafts alkylation of indoles with aromatic aldehydes under solvent-free microwave irradiation. The Cu-Al MMO showed the best catalytic activity to produce the expected products up to 98% yield and 100% selectivity for only 20 min under solvent-free microwave irradiation. Moreover, the catalyst can be recovered quickly from the reaction mixture by filtration and reused several times without significant loss of the reactivity.
Collapse
Affiliation(s)
- Thanh-Truc Hoang Nguyen
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Science, Viet Nam National University, Ho Chi Minh City, 721337, Viet Nam
| | - Xuan-Trang Thi Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Viet Nam National University, Ho Chi Minh City, 721337, Viet Nam
| | - Chinh Quoc Nguyen
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Science, Viet Nam National University, Ho Chi Minh City, 721337, Viet Nam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Viet Nam National University, Ho Chi Minh City, 721337, Viet Nam
| |
Collapse
|
12
|
One-pot solvent-free synthesis of triaryl- and triheteroarylmethanes by Bi(OTf)3-catalyzed Friedel-Crafts reaction of arenes/heteroarenes with trialkyl orthoformates. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
El-Sharief MAMS, El-Naggar MH, Ahmed EM, El-Messery SM, Mahmoud AE, Ali MM, Salem LM, Mahrous KF, El Sayed MT. Tetrahydroindolocarbazoles (THICZs) as new class of urokinase (uPA) inhibitors: Synthesis, anticancer evaluation, DNA-damage determination, and molecular modelling study. Bioorg Chem 2018; 80:545-554. [PMID: 30014922 DOI: 10.1016/j.bioorg.2018.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 06/29/2018] [Indexed: 11/15/2022]
Abstract
Tetrahydroindolocarbazoles (THICZs) with versatile substituents, have been designed, synthesized, structure characterized, then investigated for their in-vitro anticancer screening, urokinase inhibition (uPA) evaluated, DNA-damage determination was further explored. Compounds 5, 8, 10 and 17 displayed the most promising antitumor activities against the breast cancer cell line as compared to the standard drug, doxorubicin with IC50 = 5.24 ± 0.37, 4.00 ± 0.52, 7.20 ± 0.90 and 9.60 ± 1.10 µg/ml (versus 3.30 ± 0.48 µg/ml for doxorubicin). Compounds 5, 8, 10 and 17 represents the most significant uPA inhibitors of our study with IC50 of 3.80, 2.70. 4.75, 10.80 (ng/ml) respectively. The expression levels of CDKN2A gene were decreased in 8, 10 and 17 cell lines as compared to those in positive control samples. Cell lines treated with 5, 8, 10 and 17 clearly observed a high score of damaged DNA cells. A deeper examination revealed that our hetroaromatics showed an extensive hydrogen bonding interactions that is required in the S pocket which is important for activity Arg 217, Gly 219, Gly 216, Lys 143 and Ser 190. So we present THICZs as promising uPA inhibitors expected as significant promise for further development as anti-invasiveness drugs.
Collapse
Affiliation(s)
- Marwa A M Sh El-Sharief
- Department of Applied Organic Chemistry, National Research Centre, 12622 Dokki, Giza, Egypt; Chemistry Department, Faculty of Sciences, King Khaled University, Saudi Arabia
| | - Mohamed H El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Entesar M Ahmed
- Chemistry Department, Faculty of Science, Al Azhar University, Cairo, Egypt
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Abeer E Mahmoud
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki 12622, Giza, Egypt
| | - Mamdouh M Ali
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki 12622, Giza, Egypt
| | - Lamiaa M Salem
- Cell Biology Department, National Research Centre, 12622-Dokki, Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre, 12622-Dokki, Egypt
| | - Mardia T El Sayed
- Department of Applied Organic Chemistry, National Research Centre, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
14
|
Noland WE, Brown CD, DeKruif RD, Lanzatella NP, Gao SM, Zabronsky AE, Tritch KJ. Condensation reactions of indole with acetophenones affording mixtures of 3,3-(1-phenylethane-1,1-diyl)bis(1H-indoles) and 1,2,3,4-tetrahydro-3-(1H-indol-3-yl)-1-methyl-1,3-diphenylcyclopent[b]indoles. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1460760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Wayland E. Noland
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Rodney D. DeKruif
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Siming M. Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Kenneth J. Tritch
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Zhang L, Li C, Lu X, Yang Y. A Facile Synthesis of Indolo[2,3-b]carbazoles from the Reaction of Di(2-indolyl)methane and Aromatic Aldehydes Catalyzed by Oxalic Acid. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Challa C, Ravindran J, Konai MM, Varughese S, Jacob J, Kumar BSD, Haldar J, Lankalapalli RS. Expedient Synthesis of Indolo[2,3- b]quinolines, Chromeno[2,3- b]indoles, and 3-Alkenyl-oxindoles from 3,3'-Diindolylmethanes and Evaluation of Their Antibiotic Activity against Methicillin-Resistant Staphylococcus aureus. ACS OMEGA 2017; 2:5187-5195. [PMID: 30023741 PMCID: PMC6044809 DOI: 10.1021/acsomega.7b00840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/16/2017] [Indexed: 05/09/2023]
Abstract
Easily accessible 3,3'-diindolylmethanes (DIMs) were utilized to generate a focused library of indolo[2,3-b]quinolines (2), chromeno[2,3-b]indoles (3), and 3-alkenyl-oxindoles (4) under 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated oxidative conditions. DIMs with ortho-NHTosyl (NHTs) phenyl group afforded indolo[2,3-b]quinolines (2), whereas DIMs with ortho-hydroxy phenyl groups yielded chromeno[2,3-b]indoles (3) and 3-alkenyl-oxindoles (4). The mild conditions and excellent yields of the products make this method a good choice to access a diverse library of bioactive molecules from a common starting material. Two optimized compounds 2a and 2n displayed excellent activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Compound 2a showed the minimum inhibitory concentration values in the concentration between 1 and 4 μg/mL, whereas compound 2n revealed the values of 1-2 μg/mL. Furthermore, both the compounds were highly bactericidal and capable to kill the MRSA completely within 360 min. Collectively, the results suggested that both compounds 2a and 2n possess enormous potential to be developed as anti-MRSA agents.
Collapse
Affiliation(s)
- Chandrasekhar Challa
- Chemical
Sciences and Technology Division and Academy of Scientific
and Innovative Research (AcSIR) and Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - Jaice Ravindran
- Chemical
Sciences and Technology Division and Academy of Scientific
and Innovative Research (AcSIR) and Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - Mohini Mohan Konai
- Antimicrobial
Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sunil Varughese
- Chemical
Sciences and Technology Division and Academy of Scientific
and Innovative Research (AcSIR) and Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - Jubi Jacob
- Chemical
Sciences and Technology Division and Academy of Scientific
and Innovative Research (AcSIR) and Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - B. S. Dileep Kumar
- Chemical
Sciences and Technology Division and Academy of Scientific
and Innovative Research (AcSIR) and Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - Jayanta Haldar
- Antimicrobial
Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Ravi S. Lankalapalli
- Chemical
Sciences and Technology Division and Academy of Scientific
and Innovative Research (AcSIR) and Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- E-mail:
| |
Collapse
|
17
|
Hetero-Diels-Alder approach to Bis(indolyl)methanes. Bioorg Med Chem 2017; 25:1122-1131. [DOI: 10.1016/j.bmc.2016.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022]
|
18
|
Chen C, Hong B, Li W, Chang T, Lee G. Synthesis Of Biologically Active Bis(Indolyl)Methane Derivatives by Bisindole Alkylation of Tetrahydroisoquinolines with Visible‐Light Induced Ring‐Opening Fragmentation. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600415] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chia‐Chueng Chen
- Department of Chemistry and BiochemistryNational Chung Cheng University 168 University Rd. Chia-Yi 621, Taiwan R.O.C
| | - Bor‐Cherng Hong
- Department of Chemistry and BiochemistryNational Chung Cheng University 168 University Rd. Chia-Yi 621, Taiwan R.O.C
| | - Wen‐Shan Li
- Institute of ChemistryAcademia Sinica No. 128, Sec. 2, Academia Rd., Nankang Taipei 115, Taiwan R.O.C
| | - Tzu‐Ting Chang
- Institute of ChemistryAcademia Sinica No. 128, Sec. 2, Academia Rd., Nankang Taipei 115, Taiwan R.O.C
| | - Gene‐Hsiang Lee
- Instrumentation CenterNational Taiwan University No 1, Sec 4, Roosevelt Rd. Taipei 106, Taiwan R.O.C
| |
Collapse
|
19
|
Synthesis and electrochemical detection of a thiazolyl-indole natural product isolated from the nosocomial pathogen Pseudomonas aeruginosa. Anal Bioanal Chem 2016; 408:6361-7. [DOI: 10.1007/s00216-016-9749-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 01/05/2023]
|