1
|
Cervini R, Centa A, Locatelli C, Dal Pont GC, Assolini JP. Unraveling the Nano World in Paracoccidioidomycosis: Promising Applications of Nanotechnology in Diagnosis, Treatment, and Vaccines: A Mini Review. Curr Microbiol 2025; 82:264. [PMID: 40295332 DOI: 10.1007/s00284-025-04251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi of the genus Paracoccidioides. This disease is prevalent in Latin America, with Brazil being an endemic region. This mycosis can be classified as PCM infection, PCM disease and residual PCM. Although diagnosis and treatment exist, they have some limitations, and there is no vaccine available for this disease. Thus, the application of nanotechnology in the biomedical and health areas has become an innovative alternative. In this review, we highlight the main advances in the use of nanotechnology to improve and/or develop methods of diagnosis, treatment and vaccines for PCM. In order to improve diagnostic methods, nanoparticles can be used as biosensors associated with cell biology and spectroscopy techniques. The use of nanomaterials of different shapes and nature can act directly on the pathogen or as drug carriers, maintaining or improving antifungal activity and reducing toxicity in vitro and in vivo. In addition, nanoparticulate systems could be an important tool for vaccine development, stimulating a Th1 response, which is considered protective in PCM.
Collapse
Affiliation(s)
- Ricardo Cervini
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - Ariana Centa
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Research Group in Bioactive Molecules, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - Claudriana Locatelli
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Research Group in Bioactive Molecules, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - Gustavo Colombo Dal Pont
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Research Group in Bioactive Molecules, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - João Paulo Assolini
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil.
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil.
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil.
| |
Collapse
|
2
|
Yu Y, Tang X, Zhou L, Xu F, Zhang Y, Zeng L, Li J, Liao G, Luo L. Cascade-targeting polymeric particles eliminate intracellular C. neoformans in fungal infection therapy. J Control Release 2024; 373:399-409. [PMID: 39033984 DOI: 10.1016/j.jconrel.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
C. neoformans, a life-threatening invasive fungal pathogen, can hijack the pulmonary macrophages as 'Trojan horse', leading to cryptococcal meningitis and recurrence. Combatting these elusive fungi has posed a long-standing challenge. Here, we report an inhaled cascade-targeting drug delivery platform that can sequentially target host cells and intracellular fungi. The delivery system involves encapsulating amphotericin B (AMB) into polymeric particles decorated with AMB, creating a unique surface pattern, denoted as APP@AMB. The surface topology of APP@AMB guides the efficient macrophages internalization and intracellular drugs accumulation. Following endocytosis, the surface-functionalized AMB specifically targets intracellular fungi by binding to ergosterol in the fungal membrane, as demonstrated through co-localization studies using confocal microscopy. Through on-site AMB delivery, APP@AMB displays superior efficacy in eliminating C. neoformans in the lungs and brain compared to free AMB following inhalation in infected mice. Additionally, APP@AMB significantly alleviates the nephrotoxicity associated with free AMB inhalation therapy. Thus, this biocompatible delivery system enabling host cells and intracellular fungi targeting in a cascade manner, provides a new avenue for the therapy of fungal infection.
Collapse
Affiliation(s)
- Yinglan Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuefeng Tang
- Department of Pathology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401120, China
| | - Liya Zhou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Fanshu Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ying Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Linggao Zeng
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Lei Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Chakraborty A, Diwan A, Tatake J. Prospect of nanomaterials as antimicrobial and antiviral regimen. AIMS Microbiol 2023; 9:444-466. [PMID: 37649798 PMCID: PMC10462459 DOI: 10.3934/microbiol.2023024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 09/01/2023] Open
Abstract
In recent years studies of nanomaterials have been explored in the field of microbiology due to the increasing evidence of antibiotic resistance. Nanomaterials could be inorganic or organic, and they may be synthesized from natural products from plant or animal origin. The therapeutic applications of nano-materials are wide, from diagnosis of disease to targeted delivery of drugs. Broad-spectrum antiviral and antimicrobial activities of nanoparticles are also well evident. The ratio of nanoparticles surface area to their volume is high and that allows them to be an advantageous vehicle of drugs in many respects. Effective uses of various materials for the synthesis of nanoparticles impart much specificity in them to meet the requirements of specific therapeutic strategies. The potential therapeutic use of nanoparticles and their mechanisms of action against infections from bacteria, fungi and viruses were the focus of this review. Further, their potential advantages, drawbacks, limitations and side effects are also included here. Researchers are characterizing the exposure pathways of nano-medicines that may cause serious toxicity to the subjects or the environment. Indeed, societal ethical issues in using nano-medicines pose a serious question to scientists beyond anything.
Collapse
|
4
|
Tasleem, Shanthi N, Mahato AK, Bahuguna R. Oral delivery of butoconazole nitrate nanoparticles for systemic treatment of chronic paracoccidioidomycosis: A future aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Haro-Reyes T, Díaz-Peralta L, Galván-Hernández A, Rodríguez-López A, Rodríguez-Fragoso L, Ortega-Blake I. Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications. MEMBRANES 2022; 12:681. [PMID: 35877884 PMCID: PMC9316096 DOI: 10.3390/membranes12070681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
This review examined a collection of studies regarding the molecular properties of some polyene antibiotic molecules as well as their properties in solution and in particular environmental conditions. We also looked into the proposed mechanism of action of polyenes, where membrane properties play a crucial role. Given the interest in polyene antibiotics as therapeutic agents, we looked into alternative ways of reducing their collateral toxicity, including semi-synthesis of derivatives and new formulations. We follow with studies on the role of membrane structure and, finally, recent developments regarding the most important clinical applications of these compounds.
Collapse
Affiliation(s)
- Tammy Haro-Reyes
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Lucero Díaz-Peralta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Arturo Galván-Hernández
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Anahi Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| |
Collapse
|
6
|
Medina-Alarcón KP, Tobias da Silva IP, Ferin GG, Pereira-da-Silva MA, Marcos CM, Dos Santos MB, Regasini LO, Chorilli M, Mendes-Giannini MJS, Pavan FR, Fusco-Almeida AM. Mycobacterium tuberculosis and Paracoccidioides brasiliensis Formation and Treatment of Mixed Biofilm In Vitro. Front Cell Infect Microbiol 2021; 11:681131. [PMID: 34790584 PMCID: PMC8591247 DOI: 10.3389/fcimb.2021.681131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
Abstract
Co-infection of Mycobacterium tuberculosis and Paracoccidioides brasiliensis, present in 20% in Latin America, is a public health problem due to a lack of adequate diagnosis. These microorganisms are capable of forming biofilms, mainly in immunocompromised patients, which can lead to death due to the lack of effective treatment for both diseases. The present research aims to show for the first time the formation of mixed biofilms of M. tuberculosis and P. brasiliensis (Pb18) in vitro, as well as to evaluate the action of 3’hydroxychalcone (3’chalc) -loaded nanoemulsion (NE) (NE3’chalc) against monospecies and mixed biofilms, the formation of mixed biofilms of M. tuberculosis H37Rv (ATCC 27294), 40Rv (clinical strains) and P. brasiliensis (Pb18) (ATCC 32069), and the first condition of formation (H37Rv +Pb18) and (40Rv + Pb18) and second condition of formation (Pb18 + H37Rv) with 45 days of total formation time under both conditions. The results of mixed biofilms (H37Rv + Pb18) and (40Rv + Pb18), showed an organized network of M. tuberculosis bacilli in which P. brasiliensis yeasts are connected with a highly extracellular polysaccharide matrix. The (Pb18 + H37Rv) showed a dense biofilm with an apparent predominance of P. brasiliensis and fragments of M. tuberculosis. PCR assays confirmed the presence of the microorganisms involved in this formation. The characterization of NE and NE3’chalc displayed sizes from 145.00 ± 1.05 and 151.25 ± 0.60, a polydispersity index (PDI) from 0.20± 0.01 to 0.16± 0.01, and zeta potential -58.20 ± 0.92 mV and -56.10 ± 0.71 mV, respectively. The atomic force microscopy (AFM) results showed lamellar structures characteristic of NE. The minimum inhibitory concentration (MIC) values of 3’hidroxychalcone (3’chalc) range from 0.97- 7.8 µg/mL and NE3’chalc from 0.24 - 3.9 µg/mL improved the antibacterial activity when compared with 3’chalc-free, no cytotoxicity. Antibiofilm assays proved the efficacy of 3’chalc-free incorporation in NE. These findings contribute to a greater understanding of the formation of M. tuberculosis and P. brasiliensis in the mixed biofilm. In addition, the findings present a new possible NE3’chalc treatment alternative for the mixed biofilms of these microorganisms, with a high degree of relevance due to the lack of other treatments for these comorbidities.
Collapse
Affiliation(s)
- Kaila Petronila Medina-Alarcón
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Iara Pengo Tobias da Silva
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Giovana Garcia Ferin
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Marcelo A Pereira-da-Silva
- Institute of Physics of Sao Carlos (IFSC)-University of Sao Paulo (USP) IFSC/USP, Sao Carlos, Brazil.,Exact Sciences and Engineering, Paulista Central University Center (UNICEP), Säo Carlos, Brazil
| | - Caroline Maria Marcos
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Mariana Bastos Dos Santos
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Luis Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Maria José S Mendes-Giannini
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Fernando Rogerio Pavan
- Department of Biological, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
7
|
Wang X, Mohammad IS, Fan L, Zhao Z, Nurunnabi M, Sallam MA, Wu J, Chen Z, Yin L, He W. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B 2021; 11:2585-2604. [PMID: 34522599 PMCID: PMC8424280 DOI: 10.1016/j.apsb.2021.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Invasive fungal infections (IFIs) represent a growing public concern for clinicians to manage in many medical settings, with substantial associated morbidities and mortalities. Among many current therapeutic options for the treatment of IFIs, amphotericin B (AmB) is the most frequently used drug. AmB is considered as a first-line drug in the clinic that has strong antifungal activity and less resistance. In this review, we summarized the most promising research efforts on nanocarriers for AmB delivery and highlighted their efficacy and safety for treating IFIs. We have also discussed the mechanism of actions of AmB, rationale for treating IFIs, and recent advances in formulating AmB for clinical use. Finally, this review discusses some practical considerations and provides recommendations for future studies in applying AmB for combating IFIs.
Collapse
Key Words
- ABCD, AmB colloidal dispersion
- AIDS, acquired immunodeficiency syndrome
- AP, antisolvent precipitation
- ARDS, acute respiratory distress syndrome
- AmB, amphotericin B
- AmB-GCPQ, AmB-encapsulated N-palmitoyl-N-methyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycol-chitosan nanoparticles
- AmB-IONP, AmB-loaded iron oxide nanoparticles
- AmB-PM, AmB-polymeric micelles
- AmB-SD, AmB sodium deoxycholate
- AmBd, AmB deoxycholate
- Amphotericin B
- Aspergillus fumigatus, A. fumigatus
- BBB, blood‒brain barrier
- BCS, biopharmaceutics classification system
- BDDE, butanediol diglycidyl ether
- BSA, bovine serum albumin
- BUN, blood urea nitrogen
- C. Albicans, Candida Albicans
- CFU, colony-forming unit
- CLSM, confocal laser scanning microscope
- CMC, carboxymethylated l-carrageenan
- CP, chitosan-polyethylenimine
- CS, chitosan
- Conjugates
- DDS, drug delivery systems
- DMPC, dimyristoyl phosphatidyl choline
- DMPG, dimyristoyl phosphatidylglycerole
- DMSA, dimercaptosuccinic acid
- Drug delivery
- GNPs, gelatin nanoparticles
- HPH, high-pressure homogenization
- HPMC, hydroxypropyl methylcellulose
- ICV, intensive care unit
- IFIs, invasive fungal infections
- Invasive fungal infections
- L-AmB, liposomal AmB
- LNA, linolenic acid
- MAA, methacrylic acid
- MFC, minimum fungicidal concentrations
- MIC, minimum inhibitory concentration
- MN, microneedles
- MOP, microneedle ocular patch
- MPEG-PCL, monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone)
- NEs, nanoemulsions
- NLC, nanostructured lipid carriers
- NPs, nanoparticles
- Nanoparticles
- P-407, poloxamer-407
- PAM, polyacrylamide
- PCL, polycaprolactone
- PDA, poly(glycolic acid)
- PDLLA, poly(d,l-lactic acid)
- PDLLGA, poly(d,l-lactic-co-glycolic acid)
- PEG, poly(ethylene glycol)
- PEG-DSPE, PEG-lipid poly(ethylene glycol)-distearoylphosphatidylethanolamine
- PEG-PBC, phenylboronic acid-functionalized polycarbonate/PEG
- PEG-PUC, urea-functionalized polycarbonate/PEG
- PGA-PPA, poly(l-lysine-b-l-phenylalanine) and poly(l-glutamic acid-b-l-phenylalanine)
- PLA, poly(lactic acid)
- PLGA, polyvinyl alcohol poly(lactic-co-glycolic acid)
- PLGA-PLH-PEG, PLGA-b-poly(l-histidine)-b-poly(ethylene glycol)
- PMMA, poly(methyl methacrylate)
- POR, porphyran
- PVA, poly(vinyl alcohol)
- PVP, polyvinylpyrrolidone
- Poor water-solubility
- RBCs, red blood cells
- RES, reticuloendothelial system
- ROS, reactive oxygen species
- SEM, scanning electron microscope
- SL-AmB, sophorolipid-AmB
- SLNs, solid lipid nanoparticles
- Topical administration
- Toxicity
- γ-CD, γ-cyclodextrin
- γ-PGA, γ-poly(gamma-glutamic acid
Collapse
Affiliation(s)
- Xiaochun Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Imran Shair Mohammad
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, China
| | - Lifang Fan
- Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing 211112, China
| | - Zongmin Zhao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Pereira MB, Sydor BG, Memare KG, Verzignassi Silveira TG, Alessi Aristides SM, Dalmarco EM, Vieira Teixeira JJ, Campana Lonardoni MV, Demarchi IG. In vivo efficacy of meglumine antimoniate-loaded nanoparticles for cutaneous leishmaniasis: a systematic review. Nanomedicine (Lond) 2021; 16:1505-1518. [PMID: 34189952 DOI: 10.2217/nnm-2021-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background: Nanotechnology is a promising strategy to improve existing antileishmanial agents. Objective: To explore the evidence of encapsulated meglumine antimoniate for cutaneous leishmaniasis treatment in animal models. Materials & methods: The studies were recovered from PubMed, Scopus, EMBASE, LILACS, WoS and Google according to eligibility criteria following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population, Intervention, Comparison, Outcomes and Study design (PICOS) strategy. Study appraisal was assessed using the Animal Research Reporting of In Vivo Experiments, SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) and Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations. Results: Five studies were included. Liposomes, metallic and polymeric nanoparticles were tested in BALB/c mice against Leishmania major, L. tropica or L. amazonensis. Limitations: Few studies were found to meet the eligibility criteria. Conclusion: All formulations had a significant efficacy, similar to the meglumine antimoniate reference treatment concerning the lesion size and parasite burden. The studies had a high and moderate risk of bias, and the confidence in cumulative evidence was considered low. Therefore, we encourage the development of high-quality preclinical studies. Registration: PROSPERO register CRD42020170191.
Collapse
Affiliation(s)
- Meliana Borilli Pereira
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Bruna Gomes Sydor
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Karla Gabriela Memare
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Thaís Gomes Verzignassi Silveira
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Sandra Mara Alessi Aristides
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Eduardo Monguilhott Dalmarco
- Health Sciences Center - Department of Clinical Analysis, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, s/n°, Bairro Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Jorge Juarez Vieira Teixeira
- Department of Clinical Analysis & Biomedicine, State University Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil.,Post Graduation Program in Bioscience & Physiopathology, State University Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Maria Valdrinez Campana Lonardoni
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Izabel Galhardo Demarchi
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil.,Health Sciences Center - Department of Clinical Analysis, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, s/n°, Bairro Trindade, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
9
|
Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI JOURNAL 2021; 20:562-584. [PMID: 33883983 PMCID: PMC8056051 DOI: 10.17179/excli2020-3068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Currently, the significance of fungi as human pathogens is not medically concealed in the world. Consequently, suitable recognition and treatment of such infections are of great importance and necessitate the need for comprehensive information in this regard. The introduction of new antifungals and their use today, especially in the last two decades, have revolutionized the treatment of fungal infections. On the other hand, increasing drug resistance in the world has overshadowed such developments. The use of NPs results in the treatment of fungal infections and owing to their specific properties, these particles, unlike the pure antibiotics, can exert a greater inhibitory power although with less concentration compared with conventional drugs. Important reasons that have led to the use of antifungal drugs in delivery systems include reduced drug efficacy, limited penetration through tissue, poor aqueous solubility, decreased bioavailability, and poor drug pharmacokinetics. It is therefore hoped that unfavorable properties of antifungal drugs be mitigated via their incorporation into different types of NPs. This review summarizes the different types of NPs as delivery systems of antifungal as well as their advantages over pure drugs.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Seki Kioshima E, de Souza Bonfim de Mendonça P, de Melo Teixeira M, Grenier Capoci IR, Amaral A, Vilugron Rodrigues-Vendramini FA, Lauton Simões B, Rodrigues Abadio AK, Fernandes Matos L, Soares Felipe MS. One Century of Study: What We Learned about Paracoccidioides and How This Pathogen Contributed to Advances in Antifungal Therapy. J Fungi (Basel) 2021; 7:106. [PMID: 33540749 PMCID: PMC7913102 DOI: 10.3390/jof7020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America. Since the first description of the disease by Lutz up to the present day, Brazilian researchers have contributed to the understanding of the life cycle of this pathogen and provided the possibility of new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides. In this context, in silico approaches have selected molecules that act on specific targets, such as the thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are already in advanced development stages. In addition, the application of nanostructured systems has addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution of molecular biology and biotechnology to the advances achieved is unquestionable. However, it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília (UnB), Brasilia, Distrito Federal 70910-900, Brazil;
| | - Isis Regina Grenier Capoci
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - André Amaral
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Bruna Lauton Simões
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Ana Karina Rodrigues Abadio
- Faculty of Agricultural Social Sciences, Mato Grosso State University, Nova Mutum, Mato Grosso 78450-000, Brazil;
| | - Larissa Fernandes Matos
- Faculty of Ceilandia, University of Brasília (UnB), Brasília, Distrito Federal 72220-275, Brazil;
- Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| |
Collapse
|
11
|
Sixty years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections. Infect Dis Ther 2021; 10:115-147. [PMID: 33523419 PMCID: PMC7954977 DOI: 10.1007/s40121-020-00382-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Introduced in the late 1950s, polyenes represent the oldest family of antifungal drugs. The discovery of amphotericin B and its therapeutic uses is considered one of the most important scientific milestones of the twentieth century . Despite its toxic potential, it remains useful in the treatment of invasive fungal diseases owing to its broad spectrum of activity, low resistance rate, and excellent clinical and pharmacological action. The well-reported and defined toxicity of the conventional drug has meant that much attention has been paid to the development of new products that could minimize this effect. As a result, lipid-based formulations of amphotericin B have emerged and, even keeping the active principle in common, present distinct characteristics that may influence therapeutic results. This study presents an overview of the pharmacological properties of the different formulations for systemic use of amphotericin B available for the treatment of invasive fungal infections, highlighting the characteristics related to their chemical, pharmacokinetic structures, drug–target interactions, stability, and others, and points out the most relevant aspects for clinical practice.
Collapse
|
12
|
Cheng SN, Tan ZG, Pandey M, Srichana T, Pichika MR, Gorain B, Choudhury H. A Critical Review on Emerging Trends in Dry Powder Inhaler Formulation for the Treatment of Pulmonary Aspergillosis. Pharmaceutics 2020; 12:pharmaceutics12121161. [PMID: 33260598 PMCID: PMC7761338 DOI: 10.3390/pharmaceutics12121161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary aspergillosis (PA), a pulmonary fungal infection caused by Aspergillus spp., is a concern for immunocompromised populations. Despite substantial research efforts, conventional treatments of PA using antifungal agents are associated with limitations such as excessive systemic exposure, serious side effects and limited availability of the therapeutics in the lungs for an adequate duration. To overcome the limitations associated with the conventional regimens, pulmonary delivery of antifungal agents has become a focal point of research because of the superiority of local and targeted drug delivery. Dry powder inhalers and nebulized formulations of antifungal agents have been developed and evaluated for their capability to effectively deliver antifungal agents to the lungs. Moreover, progress in nanotechnology and the utilization of nanocarriers in the development of pulmonary delivery formulations has allowed further augmentation of treatment capability and efficiency. Thus, the following review provides an insight into the advantages and therapeutic potential of the utilization of nanocarriers in pulmonary delivery of antifungal agents for the treatment of PA. In addition, discussions on formulation aspects and safety concerns together with the clinical and regulatory aspects of the formulations are presented, which suggest the possibility and desirability of utilization of nanocarriers in the treatment of PA.
Collapse
Affiliation(s)
- Shen Nam Cheng
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (S.N.C.); (Z.G.T.)
| | - Zhi Guang Tan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (S.N.C.); (Z.G.T.)
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.)
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla 90110, Thailand;
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia;
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.)
| |
Collapse
|
13
|
do Carmo Silva L, de Oliveira AA, de Souza DR, Barbosa KLB, Freitas e Silva KS, Carvalho Júnior MAB, Rocha OB, Lima RM, Santos TG, Soares CMDA, Pereira M. Overview of Antifungal Drugs against Paracoccidioidomycosis: How Do We Start, Where Are We, and Where Are We Going? J Fungi (Basel) 2020; 6:jof6040300. [PMID: 33228010 PMCID: PMC7712482 DOI: 10.3390/jof6040300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules. Researchers have concentrated efforts on the identification of new compounds using numerous tools and targeting important proteins from Paracoccidioides, with the emphasis on enzymatic pathways absent in humans. This review aims to discuss the aspects related to the identification of compounds, methodologies, and perspectives when proposing new antifungal agents against PCM.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Dienny Rodrigues de Souza
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Katheryne Lohany Barros Barbosa
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Marcos Antonio Batista Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Raisa Melo Lima
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Thaynara Gonzaga Santos
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| |
Collapse
|
14
|
Sousa F, Ferreira D, Reis S, Costa P. Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources. Pharmaceuticals (Basel) 2020; 13:ph13090248. [PMID: 32942693 PMCID: PMC7558771 DOI: 10.3390/ph13090248] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023] Open
Abstract
The high incidence of fungal infections has become a worrisome public health issue, having been aggravated by an increase in host predisposition factors. Despite all the drugs available on the market to treat these diseases, their efficiency is questionable, and their side effects cannot be neglected. Bearing that in mind, it is of upmost importance to synthetize new and innovative carriers for these medicines not only to fight emerging fungal infections but also to avert the increase in drug-resistant strains. Although it has revealed to be a difficult job, new nano-based drug delivery systems and even new cellular targets and compounds with antifungal potential are now being investigated. This article will provide a summary of the state-of-the-art strategies that have been studied in order to improve antifungal therapy and reduce adverse effects of conventional drugs. The bidirectional relationship between Mycology and Nanotechnology will be also explained. Furthermore, the article will focus on new compounds from the marine environment which have a proven antifungal potential and may act as platforms to discover drug-like characteristics, highlighting the challenges of the translation of these natural compounds into the clinical pipeline.
Collapse
Affiliation(s)
- Filipa Sousa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
- Correspondence: (F.S.); (P.C.)
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
| | - Paulo Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
- Correspondence: (F.S.); (P.C.)
| |
Collapse
|
15
|
Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front Cell Infect Microbiol 2020; 10:463. [PMID: 33014889 PMCID: PMC7502903 DOI: 10.3389/fcimb.2020.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Suélen A Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Samuel R Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine [Division of Infectious Diseases], Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Intranasal Vaccine Using P10 Peptide Complexed within Chitosan Polymeric Nanoparticles as Experimental Therapy for Paracoccidioidomycosis in Murine Model. J Fungi (Basel) 2020; 6:jof6030160. [PMID: 32887256 PMCID: PMC7560165 DOI: 10.3390/jof6030160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a granulomatous fungal disease caused by the dimorphic fungal species of Paracoccidioides, which mainly affects the lungs. Modern strategies for the treatment and/or prevention of PCM are based on a Th1-type immune response, which is important for controlling the disease. One of the most studied candidates for a vaccine is the P10 peptide, derived from the 43 kDa glycoprotein of Paracoccidioides brasiliensis. In order to improve its immune modulatory effect, the P10 peptide was associated with a chitosan-conjugated nanoparticle. The nanoparticles presented 220 nm medium size, poly dispersion index (PDI) below 0.5, zeta potential of +20 mV and encapsulation efficiency around 90%. The nanoparticles' non-toxicity was verified by hemolytic test and cell viability using murine macrophages. The nanoparticles were stable and presented physicochemical characteristics desirable for biological applications, reducing the fungal load and the usual standard concentration of the peptide from 4 to 20 times.
Collapse
|
17
|
Jajaei MS, Rafiei S. Preparation of drug delivery system based on poly (lactide-glycolide) and evaluation of parameters affecting its structure for cancer treatment. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1016/j.sajce.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
Zhang Y, García-Gabilondo M, Grayston A, Feiner IVJ, Anton-Sales I, Loiola RA, Llop J, Ramos-Cabrer P, Barba I, Garcia-Dorado D, Gosselet F, Rosell A, Roig A. PLGA protein nanocarriers with tailor-made fluorescence/MRI/PET imaging modalities. NANOSCALE 2020; 12:4988-5002. [PMID: 32057060 DOI: 10.1039/c9nr10620k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing theranostic nanocarriers with high protein payload and multimodality tracking without cross interferences between the different imaging probes and the delicate protein cargo is challenging. Here, chemical modifications of poly(lactic-co-glycolic acid) (PLGA) to produce nanocapsules (NCs) that incorporate several imaging moieties are reported. The biocompatible and biodegradable PLGA-NCs can be endowed with a magnetic resonance imaging (MRI) reporter, two fluorescence imaging probes (blue/NIR) and a positron emission tomography (PET) reporter. The modular integration of these imaging moieties into the shell of the NCs is successfully achieved without affecting the morphochemical properties of the nanocarrier or the protein loading capacity. In vivo biodistribution of the NCs is monitored by MRI, PET and NIRF and the results from different techniques are analyzed comparatively. The viabilities of two different human endothelial cells in vitro show no toxicity for NC concentration up to 100 μg mL-1. The morbidity of mice for 2 weeks after systemic administration and the hepatic/pancreatic enzymes at the plasma level indicate their in vivo biosafety. In summary, the new theranostic PLGA nanoplatform presented here shows versatile in vitro/in vivo multimodal imaging capabilities, excellent biosafety and over 1 wt% protein loading.
Collapse
Affiliation(s)
- Yajie Zhang
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalonia, Spain.
| | - Miguel García-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Catalonia, Spain.
| | - Alba Grayston
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Catalonia, Spain.
| | - Irene V J Feiner
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain
| | - Irene Anton-Sales
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalonia, Spain.
| | - Rodrigo A Loiola
- University of Artois, Blood-Brain Barrier Laboratory (BBB Lab), UR2465, F-62300 Lens, France
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain and CIBERES, Centro de Investigación Biomédica en Red, 28029 Madrid, Spain
| | - Pedro Ramos-Cabrer
- Magnetic Resonance Imaging Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Ignasi Barba
- Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - David Garcia-Dorado
- Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Fabien Gosselet
- University of Artois, Blood-Brain Barrier Laboratory (BBB Lab), UR2465, F-62300 Lens, France
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Catalonia, Spain.
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalonia, Spain.
| |
Collapse
|
19
|
Medina-Alarcón KP, L Singulani JD, Dutra LA, S Pitangui ND, Pereira-da-Silva MA, Dos Santos MB, Ayusso GM, Regasini LO, Soares CP, Chorilli M, Mendes-Giannini MJ, Fusco-Almeida AM. Antifungal activity of 2'-hydroxychalcone loaded in nanoemulsion against Paracoccidioides spp. Future Microbiol 2020; 15:21-33. [PMID: 32043361 DOI: 10.2217/fmb-2019-0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: This study aimed to evaluate the activity of 2'-hydroxychalcone-loaded in nanoemulsion (NLS + 2'chalc), the cytotoxic effect and toxicity against Paracoccidioides brasiliensis and Paracoccidioides lutzii using a zebrafish model. Materials & methods: Preparation and physical-chemical characterization of nanoemulsion (NLS) and NLS + 2'chalc were performed. MIC and minimum fungicide concentration, cytotoxicity and toxicity were also evaluated in the Danio rerio model. Results: NLS + 2'chalc showed fungicidal activity against Paracoccidioides spp. without cytotoxicity in MRC5 and HepG2 lines. It also had high selectivity index values and no toxicity in the zebrafish model based on MIC values. Conclusion: NLS + 2'chalc is a potential new alternative treatment for paracoccidioidomycosis.
Collapse
Affiliation(s)
- Kaila P Medina-Alarcón
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Proteomics Center, Mycology Laboratory, Araraquara, SP, Brazil
| | - Junya de L Singulani
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Proteomics Center, Mycology Laboratory, Araraquara, SP, Brazil
| | - Luiz A Dutra
- Structural Genomics Consortium, Research Institute-UNICAMP, Campinas, SP, Brasil
| | - Nayla de S Pitangui
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Proteomics Center, Mycology Laboratory, Araraquara, SP, Brazil
| | - Marcelo A Pereira-da-Silva
- Institute of Physics of Sao Carlos, IFSC/USP, Sao Carlos, SP, Brazil.,Paulista Central University Center, UNICEP, Sao Carlos, SP, Brazil
| | - Mariana B Dos Santos
- Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP, Brasil
| | - Gabriela M Ayusso
- Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP, Brasil
| | - Luis O Regasini
- Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP, Brasil
| | - Christiane P Soares
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Department of Clinical Analysis, Cytology Laboratory, Araraquara, SP, Brazil
| | - Marlus Chorilli
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Maria Js Mendes-Giannini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Proteomics Center, Mycology Laboratory, Araraquara, SP, Brazil
| | - Ana M Fusco-Almeida
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Proteomics Center, Mycology Laboratory, Araraquara, SP, Brazil
| |
Collapse
|
20
|
Zare EN, Jamaledin R, Naserzadeh P, Afjeh-Dana E, Ashtari B, Hosseinzadeh M, Vecchione R, Wu A, Tay FR, Borzacchiello A, Makvandi P. Metal-Based Nanostructures/PLGA Nanocomposites: Antimicrobial Activity, Cytotoxicity, and Their Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3279-3300. [PMID: 31873003 DOI: 10.1021/acsami.9b19435] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Among the different synthetic polymers developed for biomedical applications, poly(lactic-co-glycolic acid) (PLGA) has attracted considerable attention because of its excellent biocompatibility and biodegradability. Nanocomposites based on PLGA and metal-based nanostructures (MNSs) have been employed extensively as an efficient strategy to improve the structural and functional properties of PLGA polymer. The MNSs have been used to impart new properties to PLGA, such as antimicrobial properties and labeling. In the present review, the different strategies available for the fabrication of MNS/PLGA nanocomposites and their applications in the biomedical field will be discussed, beginning with a description of the preparation routes, antimicrobial activity, and cytotoxicity concerns of MNS/PLGA nanocomposites. The biomedical applications of these nanocomposites, such as carriers and scaffolds in tissue regeneration and other therapies are subsequently reviewed. In addition, the potential advantages of using MNS/PLGA nanocomposites in treatment illnesses are analyzed based on in vitro and in vivo studies, to support the potential of these nanocomposites in future research in the biomedical field.
Collapse
Affiliation(s)
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care , Istituto Italiano di Tecnologia , Naples 80125 , Italy
- Department of Chemical, Materials and Industrial Production Engineering , University of Naples Federico II , Naples 80125 , Italy
| | - Parvaneh Naserzadeh
- Shahdad Ronak Commercialization Company (SPE No 10320821698) , Pasdaran Street , Tehran 1947 , Iran
- Nanomedicine and Tissue Engineering Research Center , Shahid Beheshti University of Medical Sciences , Tehran 1985717443 , Iran
| | - Elham Afjeh-Dana
- Shahdad Ronak Commercialization Company (SPE No 10320821698) , Pasdaran Street , Tehran 1947 , Iran
- Radiation Biology Research Center , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
| | - Behnaz Ashtari
- Radiation Biology Research Center , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
| | - Mehdi Hosseinzadeh
- Health Management and Economics Research Center , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
- Computer Science , University of Human Development , Sulaymaniyah , Iraq
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care , Istituto Italiano di Tecnologia , Naples 80125 , Italy
| | - Aimin Wu
- Department of Orthopedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopedics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325035 , China
| | - Franklin R Tay
- College of Graduate Studies , Augusta University , Augusta , Georgia 30912 , United States
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology , The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Assunta Borzacchiello
- Institute for Polymers, Composites, and Biomaterials (IPCB) , National Research Council (CNR) , Naples 80125 , Italy
| | - Pooyan Makvandi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
- Institute for Polymers, Composites, and Biomaterials (IPCB) , National Research Council (CNR) , Naples 80125 , Italy
| |
Collapse
|
21
|
Resorbable Beads Provide Extended Release of Antifungal Medication: In Vitro and In Vivo Analyses. Pharmaceutics 2019; 11:pharmaceutics11110550. [PMID: 31652891 PMCID: PMC6920839 DOI: 10.3390/pharmaceutics11110550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Fungal osteomyelitis has been difficult to treat, with first-line treatments consisting of implant excision, radical debridement, and local release of high-dose antifungal agents. Locally impregnated antifungal beads are another popular treatment option. This study aimed to develop biodegradable antifungal-agent-loaded Poly(d,l-lactide-co-glycolide) (PLGA) beads and evaluate the in vitro/in vivo release patterns of amphotericin B and fluconazole from the beads. Beads of different sizes were formed using a compression-molding method, and their morphology was evaluated via scanning electron microscopy. Intrabead incorporation of antifungal agents was evaluated via Fourier-transform infrared spectroscopy, and in vitro fluconazole liberation curves of PLGA beads were inspected via high-performance liquid chromatography. When we implanted the drug-incorporated beads into the bone cavity of rabbits, we found that a high level of fluconazole (beyond the minimum therapeutic concentration [MTC]) was released for more than 49 d in vivo. Our results indicate that compression-molded PLGA/fluconazole beads have potential applications in treating bone infections.
Collapse
|
22
|
Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100397] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Wang S, Zhang Y, Kong H, Zhang M, Cheng J, Wang X, Lu F, Qu H, Zhao Y. Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots. Nanomedicine (Lond) 2019; 14:2925-2939. [PMID: 31418646 DOI: 10.2217/nnm-2019-0255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: To explore the antihyperuricemia and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots (AFIC-CDs). Materials & methods: The AFIC-CDs were characterized using transmission electron microscopy; high-resolution transmission electron microscopy; ultraviolet, fluorescence, Fourier-transform infrared and x-ray photoelectron spectroscopy; high-performance liquid chromatography; and x-ray diffraction. Antihyperuricemia and anti-gouty arthritis activities of AFIC-CDs were explored in vivo and in vitro. Results: The AFIC-CDs diameter ranged from 1.1 to 4.4 nm, with a yield of 7.2%. AFIC-CDs reduced serum uric acid by inhibiting xanthine oxidase activity in hyperuricemia rats and inhibited xanthine oxidase activity in vitro. AFIC-CDs improved gouty arthritis induced by monosodium urate crystals in vivo and in vitro. Conclusion: AFIC-CDs may be a potential treatment for gout.
Collapse
Affiliation(s)
- Suna Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yue Zhang
- School of Science Life, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiaoke Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Fang Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| |
Collapse
|
24
|
Wagner V, Minguez-Menendez A, Pena J, Fernández-Prada C. Innovative Solutions for the Control of Leishmaniases: Nanoscale Drug Delivery Systems. Curr Pharm Des 2019; 25:1582-1592. [DOI: 10.2174/1381612825666190621154552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/15/2019] [Indexed: 12/26/2022]
Abstract
Background:
Leishmania are sandfly-transmitted protozoan parasites that harbour within the macrophages
of a mammalian host and cause leishmaniasis, a serious zoonotic disease that threatens the lives of millions
worldwide. Its numerous forms (cutaneous, mucocutaneous, and visceral) are currently treated with a sparse
arsenal of drugs, specifically antimonials, amphotericin B, miltefosine, and paromomycin, for which drug resistance
and clinical failure are rampant. Medicine is presently trending towards nanotechnology to aid in the successful
delivery of drugs. Vehicles such as lipid-based nanocarriers, polymer-based nanoparticles, and metal ions
and oxides have been previously demonstrated to improve bioavailability of drugs and decrease toxicity for the
patient. These cutting-edge solutions can be combined with existing active molecules, as well as novel drugs or
plant extracts with promising antileishmanial activity.
Conclusion:
This review explores the current evidence for the treatment of leishmaniases using nanoscale drug
delivery systems (specifically lipid-, polymer- and metal-based systems) and encourages further development of
the aforementioned nanotechnologies for treatment of Leishmania.
Collapse
Affiliation(s)
- Victoria Wagner
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Aida Minguez-Menendez
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Joan Pena
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Christopher Fernández-Prada
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
25
|
Synergistic Antifungal Effect of Amphotericin B-Loaded Poly(Lactic-Co-Glycolic Acid) Nanoparticles and Ultrasound against Candida albicans Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.02022-18. [PMID: 30670414 DOI: 10.1128/aac.02022-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/13/2019] [Indexed: 12/26/2022] Open
Abstract
Candida albicans is a human opportunistic pathogen that causes superficial and life-threatening infections. An important reason for the failure of current antifungal drugs is related to biofilm formation, mostly associated with implanted medical devices. The present study investigated the synergistic antifungal efficacy of low-frequency and low-intensity ultrasound combined with amphotericin B (AmB)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (AmB-NPs) against C. albicans biofilms. AmB-NPs were prepared by a double-emulsion method and demonstrated lower toxicity than free AmB. We then established biofilms and treated them with ultrasound and AmB-NPs separately or jointly in vitro and in vivo The results demonstrated that the activity, biomass, and proteinase and phospholipase activities of biofilms were decreased significantly after the combination treatment of AmB-NPs with 42 kHz of ultrasound irradiation at an intensity of 0.30 W/cm2 for 15 min compared with the controls, with AmB alone, or with ultrasound treatment alone (P < 0.01). The morphology of the biofilms was altered remarkably after joint treatment based on confocal laser scanning microscopy (CLSM), especially in regard to reduced thickness and loosened structure. Furthermore, the same synergistic effects were found in a subcutaneous catheter biofilm rat model. The number of CFU from the catheter exhibited a significant reduction after joint treatment with AmB-NP and ultrasound for seven continuous days, and CLSM and scanning electron microscopy (SEM) images revealed that the biofilm on the catheter surface was substantially eliminated. This method may provide a new noninvasive, safe, and effective therapy for C. albicans biofilm infection.
Collapse
|
26
|
Ling JTS, Roberts CJ, Billa N. Antifungal and Mucoadhesive Properties of an Orally Administered Chitosan-Coated Amphotericin B Nanostructured Lipid Carrier (NLC). AAPS PharmSciTech 2019; 20:136. [PMID: 30838459 DOI: 10.1208/s12249-019-1346-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 01/11/2023] Open
Abstract
Surface-modified nanostructured lipid carriers (NLC) represent a promising mode of drug delivery used to enhance retention of drugs at absorption site. Formulated chitosan-coated amphotericin-B-loaded NLC (ChiAmp NLC) had a size of 394.4 ± 6.4 nm, encapsulation and loading efficiencies of 86.0 ± 3% and 11.0 ± 0.1% respectively. Amphotericin-B release from NLCs was biphasic with no changes in physical properties upon exposure to simulated gastrointestinal conditions. Antifungal properties of Amphotericin-B and ChiAmpB NLC were comparable but ChiAmpB NLC was twice less toxic to red blood cells and ten times safer on HT-29 cell lines. In vitro mucoadhesion data were observed ex vivo, where ChiAmpB NLC resulted in higher retention within the small intestine compared to the uncoated formulation. The data strongly offers the possibility of orally administering a non-toxic, yet effective Amphotericin-B nanoformulation for the treatment of systemic fungal infections.
Collapse
|
27
|
Polyene Macrolide Antibotic Derivatives: Preparation, Overcoming Drug Resistance, and Prospects for Use in Medical Practice (Review). Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01922-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Efficacy, Biodistribution, and Nephrotoxicity of Experimental Amphotericin B-Deoxycholate Formulations for Pulmonary Aspergillosis. Antimicrob Agents Chemother 2018; 62:AAC.00489-18. [PMID: 29760126 DOI: 10.1128/aac.00489-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/06/2018] [Indexed: 12/16/2022] Open
Abstract
An experimental micellar formulation of 1:1.5 amphotericin B-sodium deoxycholate (AMB:DCH 1:1.5) was obtained and characterized to determine its aggregation state and particle size. The biodistribution, nephrotoxicity, and efficacy against pulmonary aspergillosis in a murine model were studied and compared to the liposomal commercial formulation of amphotericin B after intravenous administration. The administration of 5 mg/kg AMB:DCH 1:1.5 presented 2.8-fold-higher lung concentrations (18.125 ± 3.985 μg/g after 6 daily doses) and lower kidney exposure (0.391 ± 0.167 μg/g) than liposomal commercial amphotericin B (6.567 ± 1.536 and 5.374 ± 1.157 μg/g in lungs and kidneys, respectively). The different biodistribution of AMB:DCH micelle systems compared to liposomal commercial amphotericin B was attributed to their different morphologies and particle sizes. The efficacy study has shown that both drugs administered at 5 mg/kg produced similar survival percentages and reductions of fungal burden. A slightly lower nephrotoxicity, associated with amphotericin B, was observed with AMB:DCH 1:1.5 than the one induced by the liposomal commercial formulation. However, AMB:DCH 1:1.5 reached higher AMB concentrations in lungs, which could represent a therapeutic advantage over liposomal commercial amphotericin B-based treatment of pulmonary aspergillosis. These results are encouraging to explore the usefulness of AMB:DCH 1:1.5 against this disease.
Collapse
|
29
|
Affiliation(s)
- Melanie A. Hutnick
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jonathan K. Pokorski
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
30
|
The synergistic fungicidal effect of low-frequency and low-intensity ultrasound with amphotericin B-loaded nanoparticles on C. albicans in vitro. Int J Pharm 2018; 542:232-241. [PMID: 29559330 DOI: 10.1016/j.ijpharm.2018.03.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
It is difficult to effectively eradicate C. albicans using traditional antifungal agents, mainly because the low permeability of the C. albicans cell wall creates strong drug resistance. The aim of this study was to investigate the synergistic fungicidal effect and the underlying mechanisms of low-frequency and low-intensity ultrasound combined with a treatment of amphotericin B-loaded nanoparticles (AmB-NPs) against C. albicans. AmB-NPs were prepared by a poly(lactic-co-glycolic acid) (PLGA) double emulsion method. C. albicans was treated by AmB-NPs combined with 42 kHz ultrasound irradiation at an intensity of 0.30 W/cm2 for 15 min. The results demonstrate that the application of ultrasound enhanced the antibacterial effectiveness of AmB-NPs (P < 0.01), and the antifungal efficiency increased significantly with increasing AmB concentration of drug-loaded nanoparticles under ultrasonic irradiation. Additionally, the mycelial morphology of C. albicans suffered from the most severe damage and loss of normal microbial morphology after the combined treatment of AmB-NPs and ultrasound, as revealed by electron microscope. Furthermore, we verified the safe use of low-frequency ultrasound on exposed skin and discussed the potential mechanism of ultrasound enhanced fungicidal activity. The results reveal that the mechanism may be associated with the ultrasound cavitation effect and an increase in intracellular reactive oxygen species.
Collapse
|
31
|
Ludwig DB, de Camargo LEA, Khalil NM, Auler ME, Mainardes RM. Antifungal Activity of Chitosan-Coated Poly(lactic-co-glycolic) Acid Nanoparticles Containing Amphotericin B. Mycopathologia 2018; 183:659-668. [PMID: 29497926 DOI: 10.1007/s11046-018-0253-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
Abstract
Amphotericin B (AmB) is one of the most used drugs for the treatment of systemic fungal infections; however, the treatment causes several toxic manifestations, including nephrotoxicity and hemolytic anemia. Chitosan-coated poly(lactide-co-glycolide) (PLGA) nanoparticles containing AmB were developed with the aim to decrease AmB toxicity and propose the oral route for AmB delivery. In this work, the antifungal efficacy of chitosan-coated PLGA nanoparticles containing AmB was evaluated in 20 strains of fungus isolates from patients with vulvovaginal candidiasis (01 Candida glabrata and 03 Candida albicans), bloodstream infections (04 C. albicans and 01 C. tropicalis) and patients with urinary tract infection (04 Candida albicans, 02 Trichosporon asahii, 01 C. guilhermondii, 03 C. glabrata) and 01 Candida albicans ATCC 90028. Moreover, the cytotoxicity over erythrocytes was evaluated. The single-emulsion solvent evaporation method was suitable for obtaining chitosan-coated PGLA nanoparticles containing AmB. Nanoparticles were spherical in shape, presented mean particle size about 460 nm, positive zeta potential and encapsulation efficiency of 42%. Moreover, nanoparticles prolonged the AmB release. All the strains were susceptible to plain AmB and nanostructured AmB, according to EUCAST breakpoint version 8.1 (resistant > 1 μg/mL), using broth microdilution method. In C. albicans (urine, blood, and vulvovaginal secretion isolates, and 1 ATCC), the MIC value of AmB-loaded nanoparticles varied from 0.25 to 0.5 μg/mL and EUCAST varied from 0.03 to 0.5 μg/mL. In urine and vulvovaginal secretion isolates of C. glabrata, the MIC value of AmB-loaded nanoparticles varied from 0.25 to 0.5 μg/mL and EUCAST varied from 0.03 to 0.015 μg/mL. In urine isolates of C. guilhermondii, the MIC value of AmB-loaded nanoparticles was 0.12 μg/mL and EUCAST was 0.06 μg/mL. In blood isolates of C. tropicalis, the MIC value of AmB-loaded nanoparticles was 0.5 μg/mL and EUCAST was 0.25 μg/mL. Finally, in urine isolates of T asahii, the MIC value of AmB-loaded nanoparticles was 1 μg/mL and EUCAST varied from 0.5 to 1 μg/mL. In the cytotoxicity assay, plain AmB was highly hemolytic (100% in 24 h) while AmB-loaded chitosan/PLGA nanoparticles presented negligible hemolysis.
Collapse
Affiliation(s)
- Daniel Brustolin Ludwig
- Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, PR, 85040-080, Brazil.,Faculdade Guairacá, Rua XV de Novembro, 7050, Guarapuava, PR, 85010-000, Brazil
| | - Luciana Erzinger Alves de Camargo
- Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, PR, 85040-080, Brazil.,Faculdade Guairacá, Rua XV de Novembro, 7050, Guarapuava, PR, 85010-000, Brazil
| | - Najeh Maissar Khalil
- Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, PR, 85040-080, Brazil
| | - Marcos Ereno Auler
- Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, PR, 85040-080, Brazil
| | - Rubiana Mara Mainardes
- Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, PR, 85040-080, Brazil.
| |
Collapse
|
32
|
Moraes Moreira Carraro T, Altmeyer C, Maissar Khalil N, Mara Mainardes R. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. J Mycol Med 2017; 27:519-529. [DOI: 10.1016/j.mycmed.2017.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
33
|
Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators Inflamm 2017; 2017:9870679. [PMID: 28694566 PMCID: PMC5485324 DOI: 10.1155/2017/9870679] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/28/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs.
Collapse
|
34
|
Islan GA, Durán M, Cacicedo ML, Nakazato G, Kobayashi RKT, Martinez DST, Castro GR, Durán N. Nanopharmaceuticals as a solution to neglected diseases: Is it possible? Acta Trop 2017; 170:16-42. [PMID: 28232069 DOI: 10.1016/j.actatropica.2017.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/05/2016] [Accepted: 02/10/2017] [Indexed: 12/22/2022]
Abstract
The study of neglected diseases has not received much attention, especially from public and private institutions over the last years, in terms of strong support for developing treatment for these diseases. Support in the form of substantial amounts of private and public investment is greatly needed in this area. Due to the lack of novel drugs for these diseases, nanobiotechnology has appeared as an important new breakthrough for the treatment of neglected diseases. Recently, very few reviews focusing on filiarasis, leishmaniasis, leprosy, malaria, onchocerciasis, schistosomiasis, trypanosomiasis, and tuberculosis, and dengue virus have been published. New developments in nanocarriers have made promising advances in the treatment of several kinds of diseases with less toxicity, high efficacy and improved bioavailability of drugs with extended release and fewer applications. This review deals with the current status of nanobiotechnology in the treatment of neglected diseases and highlights how it provides key tools for exploring new perspectives in the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- German A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Depto. de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET (CCT La Plata), 1900, La Plata, Argentina
| | - Marcela Durán
- Urogenital Carcinogenesis: Urogenitaland Immunotherapy Laboratory, Institute of Biology, University of Campinas, Campinas, SP, Brazil,; NanoBioss, Chemistry Institute, University of Campinas, SP, Brazil
| | - Maximiliano L Cacicedo
- Laboratorio de Nanobiomateriales, CINDEFI, Depto. de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET (CCT La Plata), 1900, La Plata, Argentina
| | - Gerson Nakazato
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - Renata K T Kobayashi
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - Diego S T Martinez
- NanoBioss, Chemistry Institute, University of Campinas, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano-CNPEM), Campinas, SP, Brazil
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Depto. de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET (CCT La Plata), 1900, La Plata, Argentina.
| | - Nelson Durán
- NanoBioss, Chemistry Institute, University of Campinas, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano-CNPEM), Campinas, SP, Brazil; Biological Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, SP. Brazil.
| |
Collapse
|
35
|
Radwan MA, AlQuadeib BT, Šiller L, Wright MC, Horrocks B. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Deliv 2017; 24:40-50. [PMID: 28155565 PMCID: PMC8247729 DOI: 10.1080/10717544.2016.1228715] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Amphotericin B (AMB) is used most commonly in severe systemic life-threatening fungal infections. There is currently an unmet need for an efficacious (AMB) formulation amenable to oral administration with better bioavailability and lower nephrotoxicity. Novel PEGylated polylactic-polyglycolic acid copolymer (PLGA-PEG) nanoparticles (NPs) formulations of AMB were therefore studied for their ability to kill Candida albicans (C. albicans). The antifungal activity of AMB formulations was assessed in C. albicans. Its bioavalability was investigated in nine groups of rats (n = 6). Toxicity was examined by an in vitro blood hemolysis assay, and in vivo nephrotoxicity after single and multiple dosing for a week by blood urea nitrogen (BUN) and plasma creatinine (PCr) measurements. The MIC of AMB loaded to PLGA-PEG NPs against C. albicans was reduced two to threefold compared with free AMB. Novel oral AMB delivery loaded to PLGA-PEG NPs was markedly systemically available compared to Fungizone® in rats. The addition of 2% of GA to the AMB formulation significantly (p < 0.05) improved the bioavailability from 1.5 to 10.5% and the relative bioavailability was > 790% that of Fungizone®. The novel AMB formulations showed minimal toxicity and better efficacy compared to Fungizone®. No nephrotoxicity in rats was detected after a week of multiple dosing of AMB NPs based on BUN and PCr, which remained at normal levels. An oral delivery system of AMB-loaded to PLGA-PEG NPs with better efficacy and minimal toxicity was formulated. The addition of glycyrrhizic acid (GA) to AMB NPs formulation resulted in a significant oral absorption and improved bioavailability in rats.
Collapse
Affiliation(s)
- Mahasen A Radwan
- a Department of Pharmaceutical Practice , College of Pharmacy, Princess Nourah bint Abdelrahman University , Riyadh , Saudi Arabia.,b Department of Pharmaceutics and Pharmaceutical Technology , College of Pharmacy, Egyptian Russian University , Bader City , Egypt
| | - Bushra T AlQuadeib
- c Department of Pharmaceutics , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| | - Lidija Šiller
- d School of Chemical Engineering and Advanced Materials, Herschel Building, Newcastle University , Newcastle upon Tyne , UK , and
| | - Matthew C Wright
- e Institute of Cellular Medicine, Leech Building, Medical School, Newcastle University , Newcastle upon Tyne , UK
| | - Benjamin Horrocks
- d School of Chemical Engineering and Advanced Materials, Herschel Building, Newcastle University , Newcastle upon Tyne , UK , and
| |
Collapse
|
36
|
Souza ACO, Amaral AC. Antifungal Therapy for Systemic Mycosis and the Nanobiotechnology Era: Improving Efficacy, Biodistribution and Toxicity. Front Microbiol 2017; 8:336. [PMID: 28326065 PMCID: PMC5340099 DOI: 10.3389/fmicb.2017.00336] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/17/2017] [Indexed: 01/11/2023] Open
Abstract
Fungal diseases have been emerging as an important public health problem worldwide with the increase in host predisposition factors due to immunological dysregulations, immunosuppressive and/or anticancer therapy. Antifungal therapy for systemic mycosis is limited, most of times expensive and causes important toxic effects. Nanotechnology has become an interesting strategy to improve efficacy of traditional antifungal drugs, which allows lower toxicity, better biodistribution, and drug targeting, with promising results in vitro and in vivo. In this review, we provide a discussion about conventional antifungal and nanoantifungal therapies for systemic mycosis.
Collapse
Affiliation(s)
- Ana C. O. Souza
- Laboratory of Pathogenic Dimorphic Fungi, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Andre C. Amaral
- Laboratory of Nano and Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| |
Collapse
|
37
|
A versatile, stimulus-responsive nanoparticle-based platform for use in both sonodynamic and photodynamic cancer therapy. Acta Biomater 2017; 49:414-421. [PMID: 27856283 DOI: 10.1016/j.actbio.2016.11.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 01/02/2023]
Abstract
A PLGA-based multifunctional biodegradable nanoparticle platform co-harboring hematoporphyrin and indocyanine green has been developed. In vitro studies demonstrate ultrasound and light stimulated generation of cytotoxic reactive oxygen species. In vivo studies show that the ICG component facilitates nIR fluorescence imaging that demonstrates accumulation of IV- administered nanoparticles in tumours. In vivo studies also demonstrate ultrasound- and light-mediated inhibition of tumour growth in animals treated with the platform. Since the platform consists entirely of clinically-approved agents it could find use in sonodynamic- and photodynamic-based therapies for cancer. STATEMENT OF SIGNIFICANCE We describe a biocompatible and biodegradable nanoparticle-based platform for use in sonodynamic and photodynamic therapeutic approaches for the treatment of cancer. The non-toxic nanoparticles produce cytotoxic reactive oxygen species when exposed to ultrasound and/or light at levels that have no impact on tissues. The system is unique in that it is accumulated by tumours within six hours and has the ability to release its sensitising capability while retaining its imaging capability within a therapeutic time frame. The former could enhance dispersion and sensitising capabilities in less permeable tumour tissues and the latter permits the design of therapeutic approaches that minimize collateral damage to normal tissues.
Collapse
|
38
|
Voltan AR, Quindós G, Alarcón KPM, Fusco-Almeida AM, Mendes-Giannini MJS, Chorilli M. Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy? Int J Nanomedicine 2016; 11:3715-30. [PMID: 27540288 PMCID: PMC4982498 DOI: 10.2147/ijn.s93105] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Invasive mycoses are a major problem for immunocompromised individuals and patients in intensive care units. Morbidity and mortality rates of these infections are high because of late diagnosis and delayed treatment. Moreover, the number of available antifungal agents is low, and there are problems with toxicity and resistance. Alternatives for treating invasive fungal infections are necessary. Nanostructured systems could be excellent carriers for antifungal drugs, reducing toxicity and targeting their action. The use of nanostructured systems for antifungal therapy began in the 1990s, with the appearance of lipid formulations of amphotericin B. This review encompasses different antifungal drug delivery systems, such as liposomes, carriers based on solid lipids and nanostructure lipids, polymeric nanoparticles, dendrimers, and others. All these delivery systems have advantages and disadvantages. Main advantages are the improvement in the antifungal properties, such as bioavailability, reduction in toxicity, and target tissue, which facilitates innovative therapeutic techniques. Conversely, a major disadvantage is the high cost of production. In the near future, the use of nanosystems for drug delivery strategies can be used for delivering peptides, including mucoadhesive systems for the treatment of oral and vaginal candidiasis.
Collapse
Affiliation(s)
- Aline Raquel Voltan
- Department of Drugs and Medicines, Faculty of Pharmaceutical Sciences, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| | - Guillermo Quindós
- Immunology, Microbiology, and Parasitology Department, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, Spain
| | - Kaila P Medina Alarcón
- Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| | | | - Marlus Chorilli
- Department of Drugs and Medicines, Faculty of Pharmaceutical Sciences, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
39
|
de Lacorte Singulani J, Scorzoni L, de Paula E Silva ACA, Fusco-Almeida AM, Mendes-Giannini MJS. Evaluation of the efficacy of antifungal drugs against Paracoccidioides brasiliensis and Paracoccidioides lutzii in a Galleria mellonella model. Int J Antimicrob Agents 2016; 48:292-7. [PMID: 27444116 DOI: 10.1016/j.ijantimicag.2016.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/17/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Paracoccidioides brasiliensis and P. lutzii belong to a group of thermodimorphic fungi and cause paracoccidioidomycosis (PCM), which is a human systemic mycosis endemic in South and Central America. Patients with this mycosis are commonly treated with amphotericin B (AmB) and azoles. The study of fungal virulence and the efficacy and toxicity of antifungal drugs has been successfully performed in a Galleria mellonella infection model. In this work, G. mellonella larvae were infected with two Paracoccidioides spp. and the efficacy and toxicity of AmB and itraconazole were evaluated in this model for the first time. AmB and itraconazole treatments were effective in increasing larval survival and reducing the fungal burden. The fungicidal and fungistatic effects of AmB and itraconazole, respectively, were observed in the model. Furthermore, these effects were independent of changes in haemocyte number. G. mellonella can serve as a rapid model for the screening of new antifungal compounds against Paracoccidioides and can contribute to a reduction in experimental animal numbers in the study of PCM.
Collapse
Affiliation(s)
- Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú Km 1, Araraquara, São Paulo CEP: 14801-902, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú Km 1, Araraquara, São Paulo CEP: 14801-902, Brazil
| | - Ana Carolina Alves de Paula E Silva
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú Km 1, Araraquara, São Paulo CEP: 14801-902, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú Km 1, Araraquara, São Paulo CEP: 14801-902, Brazil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú Km 1, Araraquara, São Paulo CEP: 14801-902, Brazil.
| |
Collapse
|
40
|
Chew SA, Arriaga MA, Hinojosa VA. Effects of surface area to volume ratio of PLGA scaffolds with different architectures on scaffold degradation characteristics and drug release kinetics. J Biomed Mater Res A 2016; 104:1202-11. [PMID: 26780154 DOI: 10.1002/jbm.a.35657] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/18/2015] [Accepted: 01/13/2016] [Indexed: 11/08/2022]
Abstract
In this work, PLGA scaffolds with different architectures were fabricated to investigate the effects of surface area to volume ratio (SVR) (which resulted from the different architectures) on scaffold degradation characteristics and drug release kinetics with minocycline as the model drug. It was hypothesized that the thin strand scaffolds, which had the highest SVR, would degrade faster than the thick strand and globular scaffolds as the increase in surface area will allow more contact between water molecules and degradable ester groups in the polymer. However, it was found that globular scaffolds, which had the lowest SVR, resulted in the fastest degradation which demonstrated that the amount of degradation of the scaffolds does not only depend on the SVR but also on other factors such as the retention of acidic degradation byproducts in the scaffold and scaffold porosity. PLGA 50 : 50 globular scaffolds resulted in a biphasic release profile, with a burst release in the beginning and the middle of the release study which may be beneficial for some drug delivery applications. A clear correlation between SVR and release rates was not observed, indicating that besides the availability of more surface area for drug to diffuse out of the polymer matrix, other factors such as amount of scaffold degradation and scaffold porosity may play a role in determining drug release kinetics. Further studies, such as scanning electron microscopy, need to be performed in the future to further evaluate the porosity, morphology and structure of the scaffolds.
Collapse
Affiliation(s)
- Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, Texas, 78520
| | - Marco A Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, Texas, 78520
| | - Victor A Hinojosa
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, Texas, 78520
| |
Collapse
|
41
|
Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M. Organic Nanomaterials and Their Applications in the Treatment of Oral Diseases. Molecules 2016; 21:E207. [PMID: 26867191 PMCID: PMC6273611 DOI: 10.3390/molecules21020207] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
There is a growing interest in the development of organic nanomaterials for biomedical applications. An increasing number of studies focus on the uses of nanomaterials with organic structure for regeneration of bone, cartilage, skin or dental tissues. Solid evidence has been found for several advantages of using natural or synthetic organic nanostructures in a wide variety of dental fields, from implantology, endodontics, and periodontics, to regenerative dentistry and wound healing. Most of the research is concentrated on nanoforms of chitosan, silk fibroin, synthetic polymers or their combinations, but new nanocomposites are constantly being developed. The present work reviews in detail current research on organic nanoparticles and their potential applications in the dental field.
Collapse
Affiliation(s)
- Maria Justina Roxana Virlan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Cristina M Sabliov
- Agricultural and Biological Engineering Department, Louisiana State University and LSU Ag Center, 149 EB Doran Building, Baton Rouge, LA 70803, USA.
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| |
Collapse
|
42
|
Belakhov VV, Garabadzhiu AV. Polyene macrolide antibiotics: Mechanisms of inactivation, ways of stabilization, and methods of disposal of unusable drugs (Review). RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363215130174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Schneider T, Welker P, Licha K, Haag R, Schulze-Tanzil G. Influence of dendritic polyglycerol sulfates on knee osteoarthritis: an experimental study in the rat osteoarthritis model. BMC Musculoskelet Disord 2015; 16:387. [PMID: 26671580 PMCID: PMC4681118 DOI: 10.1186/s12891-015-0844-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background Anti-inflammatory nanoparticular compounds could represent a strategy to diminish osteoarthritis (OA) progression. The present study was undertaken to prove the uptake of nanoparticular dendritic polyglycerol sulfates (dPGS) by rat-derived articular chondrocytes and to answer the question of whether dPGS could modulate knee joint cartilage degradation in a rat OA model and whether complications could arise. Methods dPGS uptake and cytotoxicity was assessed in cultured primary rat-derived articular chondrocytes. Subsequently, OA was induced in the right knee joints of 12 male Wistar rats by medial collateral ligament and meniscus transection. Unoperated left knees remained as controls. Six weeks post surgery six rats were either treated daily (14 days) with 30 mg/kg dPGS (s.c.) or a similar volume of physiological saline. Animals were analyzed clinically for gait alterations. Explanted knee joints were studied histologically using OA scores according to Mankin (1971), Glasson et al., (2010) and the synovitis score according to Krenn et al., (2006). Liver, spleen and kidneys were analyzed for degenerative changes due to dPGS accumulation. Results dPGS was taken up after 2 hours by the chondrocytes. Whereas no significant clinical signs of OA could be detected, at the histological level, all operated rat knee joints revealed features of OA in the medial compartment. The values produced by both OA score systems were lower in rats treated with dPGS compared with saline-treated animals. Synovitis score did not significantly differ between the groups. The analyzed organs revealed no degenerative changes. Conclusions dPGS presented overall cyto- and biocompatibility, no accumulation in metabolizing organs and chondroprotective properties in the osteoarthritic knee joint. Electronic supplementary material The online version of this article (doi:10.1186/s12891-015-0844-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Schneider
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany. .,Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Germany, Prof. Ernst Nathan Str. 1, Nuremberg, 90419, Germany.
| | - Pia Welker
- IC Discovery GmbH, Robert Koch Platz 4, Berlin, 10115, Germany.
| | - Kai Licha
- IC Discovery GmbH, Robert Koch Platz 4, Berlin, 10115, Germany.
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin, 14195, Germany.
| | - Gundula Schulze-Tanzil
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany. .,Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Germany, Prof. Ernst Nathan Str. 1, Nuremberg, 90419, Germany.
| |
Collapse
|