1
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
New Achievements for the Treatment of Triple-Negative Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes a heterogeneous group of malignancies that are often aggressive and associated with a poor prognosis. The development of new TNBC treatment strategies has become an urgent clinical need. Diagnosis and subtyping of TNBC are essential to establish alternative treatments and targeted therapies for every TNBC patient. Chemotherapy, particularly with anthracycline and taxanes, remains the backbone for medical management for both early and metastatic TNBC. More recently, immune checkpoint inhibitors and targeted therapy have revolutionized cancer treatment. Included in the different strategies studied for TNBC treatment is drug repurposing. Despite the numerous medications available, numerous studies in medicinal chemistry are still aimed at the synthesis of new compounds in order to find new antiproliferative agents capable of treating TNBC. Additionally, some supplemental micronutrients, nutraceuticals and functional foods can potentially reduce the risk of developing cancer or can retard the rate of growth and metastases of established malignant diseases. Finally, nanotechnology in medicine, termed nanomedicines, introduces nanoparticles of variable chemistry and architecture for cancer treatment. This review highlights the most recent studies in search of new therapies for the treatment of TNBC, along with nutraceuticals and repositioning of drugs.
Collapse
|
3
|
Galassi R, Luciani L, Wang J, Vincenzetti S, Cui L, Amici A, Pucciarelli S, Marchini C. Breast Cancer Treatment: The Case of Gold(I)-Based Compounds as a Promising Class of Bioactive Molecules. Biomolecules 2022; 12:biom12010080. [PMID: 35053228 PMCID: PMC8774004 DOI: 10.3390/biom12010080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Breast cancers (BCs) may present dramatic diagnoses, both for ineffective therapies and for the limited outcomes in terms of lifespan. For these types of tumors, the search for new drugs is a primary necessity. It is widely recognized that gold compounds are highly active and extremely potent as anticancer agents against many cancer cell lines. The presence of the metal plays an essential role in the activation of the cytotoxicity of these coordination compounds, whose activity, if restricted to the ligands alone, would be non-existent. On the other hand, gold exhibits a complex biochemistry, substantially variable depending on the chemical environments around the central metal. In this review, the scientific findings of the last 6–7 years on two classes of gold(I) compounds, containing phosphane or carbene ligands, are reviewed. In addition to this class of Au(I) compounds, the recent developments in the application of Auranofin in regards to BCs are reported. Auranofin is a triethylphosphine-thiosugar compound that, being a drug approved by the FDA—therefore extensively studied—is an interesting lead gold compound and a good comparison to understand the activities of structurally related Au(I) compounds.
Collapse
Affiliation(s)
- Rossana Galassi
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy;
- Correspondence: (R.G.); (C.M.)
| | - Lorenzo Luciani
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy;
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
- Correspondence: (R.G.); (C.M.)
| |
Collapse
|
4
|
Teo RHX, Lee JXT, Tan WR, Shum WQ, Li Y, Pullarkat SA, Tan NS, Leung PH. Catalytic Asymmetric Hydrophosphination as a Valuable Tool to Access Dihydrophosphinated Curcumin and Its Derivatives. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ronald Hong Xiang Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore
| | - Wen Qian Shum
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Sumod A. Pullarkat
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Pak-Hing Leung
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
5
|
Arojojoye AS, Mertens RT, Ofori S, Parkin SR, Awuah SG. Synthesis, Characterization, and Antiproliferative Activity of Novel Chiral [QuinoxP*AuCl 2] + Complexes. Molecules 2020; 25:E5735. [PMID: 33291802 PMCID: PMC7730091 DOI: 10.3390/molecules25235735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Herein is reported the synthesis of two Au(III) complexes bearing the (R,R)-(-)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (R,R-QuinoxP*) or (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (S,S-QuinoxP*) ligands. By reacting two stoichiometric equivalents of HAuCl4.3H2O to one equivalent of the corresponding QuinoxP* ligand, (R,R)-(-)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (1) and (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) were formed, respectively, in moderate yields. The structure of (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) was further confirmed by X-ray crystallography. The antiproliferative activities of the two compounds were evaluated in a panel of cell lines and exhibited promising results comparable to auranofin and cisplatin with IC50 values between 1.08 and 4.83 µM. It is noteworthy that in comparison to other platinum and ruthenium enantiomeric complexes, the two enantiomers (1 and 2) do not exhibit different cytotoxic effects. The compounds exhibited stability in biologically relevant media over 48 h as well as inert reactivity to excess glutathione at 37 °C. These results demonstrate that the Au(III) atom, stabilized by the QuinoxP* ligand, can provide exciting compounds for novel anticancer drugs. These complexes provide a new scaffold to further develop a robust and diverse library of chiral phosphorus Au(III) complexes.
Collapse
Affiliation(s)
- Adedamola S. Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - R. Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - Sean R. Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
6
|
Maurya N, Imtiyaz K, Alam Rizvi MM, Khedher KM, Singh P, Patel R. Comparative in vitro cytotoxicity and binding investigation of artemisinin and its biogenetic precursors with ctDNA. RSC Adv 2020; 10:24203-24214. [PMID: 35516214 PMCID: PMC9055135 DOI: 10.1039/d0ra02042g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Artemisinin (ART) and its biogenetic precursors artemisinic acid (AA) and dihydroartemisinic acid (DHAA) are important traditional medicinal herb compounds with tumor growth inhibition properties. Herein, we have studied the cytotoxicity of ART, AA, and DHAA on different cancer cell lines (H1299, A431, and HCT 116) and investigated in detail their binding mechanisms with ctDNA by using spectroscopy, cyclic voltammetry, and computational methods. The UV absorbance, cyclic voltammetry, DNA helix melting, competition binding, and circular dichroism studies suggested that the complex formation of ART-ctDNA and AA-ctDNA occurs through groove binding. However, in the case of DHAA-ctDNA interaction, electrostatic interaction plays a major role. The thermodynamic parameters, viz., ΔG 0, ΔH 0, and ΔS 0 were calculated, which showed the involvement of hydrogen bonds and van der Waals interactions for drug-ctDNA interaction. FTIR and molecular docking results suggested that ART, AA, and DHAA were bound to the A-T rich region in the minor groove of ctDNA.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi-110025 India +91 11 26983409 +91 8860634100
| | - Khalid Imtiyaz
- Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | | | - Khaled Mohamed Khedher
- Department of Civil Engineering, College of Engineering, King Khalid University Abha 6421 Saudi Arabia
- Department of Civil Engineering, ISET, DGET Nabeul Tunisia
| | - Prashant Singh
- Department of Chemistry, ARSD College, University of Delhi New Delhi-110021 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi-110025 India +91 11 26983409 +91 8860634100
| |
Collapse
|
7
|
A. C. A. Bayrakdar T, Scattolin T, Ma X, Nolan SP. Dinuclear gold(i) complexes: from bonding to applications. Chem Soc Rev 2020; 49:7044-7100. [DOI: 10.1039/d0cs00438c] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The last two decades have seen a veritable explosion in the use of gold(i) complexes bearing N-heterocyclic carbene (NHC) and phosphine (PR3) ligands.
Collapse
Affiliation(s)
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Xinyuan Ma
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| |
Collapse
|
8
|
|
9
|
Tandon R, Singh I, Luxami V, Tandon N, Paul K. Recent Advances and Developments ofin vitroEvaluation of Heterocyclic Moieties on Cancer Cell Lines. CHEM REC 2018; 19:362-393. [DOI: 10.1002/tcr.201800024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Runjhun Tandon
- Department of Chemistry, School of Physical SciencesLovely Professional University Phagwara- 144411 India
| | - Iqubal Singh
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| | - Vijay Luxami
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| | - Nitin Tandon
- Department of Chemistry, School of Physical SciencesLovely Professional University Phagwara- 144411 India
| | - Kamaldeep Paul
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| |
Collapse
|
10
|
Wang Y, Huang H, Zhang Q, Zhang P. Chirality in metal-based anticancer agents. Dalton Trans 2018; 47:4017-4026. [DOI: 10.1039/c8dt00089a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chiral metal-based drugs are currently an interesting and rapidly growing field in anticancer research. Here the different chiral metal-based anticancer agents and the extent to which the chiral resolution affects their biological properties are discussed. This review will aid the design of new potent and efficient chiral metal-based anticancer drugs that exploit the unique properties combined with their potential selectivity toward targeted chiral biomolecules.
Collapse
Affiliation(s)
- Yi Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- 518060
- P. R. China
| | - Huaiyi Huang
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- 518060
- P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- 518060
- P. R. China
| |
Collapse
|
11
|
Batchelor LK, Păunescu E, Soudani M, Scopelliti R, Dyson PJ. Influence of the Linker Length on the Cytotoxicity of Homobinuclear Ruthenium(II) and Gold(I) Complexes. Inorg Chem 2017; 56:9617-9633. [DOI: 10.1021/acs.inorgchem.7b01082] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lucinda K. Batchelor
- Institut des Sciences et Ingénierie
Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Emilia Păunescu
- Institut des Sciences et Ingénierie
Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mylène Soudani
- Institut des Sciences et Ingénierie
Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie
Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie
Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Espinal-Viguri M, Mahon MF, Tyler SN, Webster RL. Iron catalysis for the synthesis of ligands: Exploring the products of hydrophosphination as ligands in cross-coupling. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Dil'mukhametova LК, D'yakonov VА, Tyumkina ТV, Dzhemilev UМ. Zirconium-catalyzed alkene cycloalumination for the synthesis of substituted phosphines and their transition metal (Mo, Pd) complexes. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Chew RJ, Leung PH. Our Odyssey with Functionalized Chiral Phosphines: From Optical Resolution to Asymmetric Synthesis to Catalysis. CHEM REC 2015; 16:141-58. [DOI: 10.1002/tcr.201500220] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Renta Jonathan Chew
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Pak-Hing Leung
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
15
|
Chew RJ, Sepp K, Li BB, Li Y, Zhu PC, Tan NS, Leung PH. An Approach to the Efficient Syntheses of Chiral Phosphino- Carboxylic Acid Esters. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|