1
|
Tsypyshev DO, Klabukov AM, Razgulaeva DN, Galochkina AV, Shtro AA, Borisevich SS, Khomenko TM, Volcho KP, Komarova NI, Salakhutdinov NF. Design, synthesis and antiviral evaluation of triazole-linked 7-hydroxycoumarin-monoterpene conjugates as inhibitors of RSV replication. RSC Med Chem 2024:d4md00728j. [PMID: 39760101 PMCID: PMC11696315 DOI: 10.1039/d4md00728j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infections in babies across the world. Irrespective of progress in the development of RSV vaccines, effective small molecule drugs are still not available on the market. Based on our previous data we designed and synthesized triazole-linked coumarin-monoterpene hybrids and showed that they are indeed effective in inhibiting the RSV replication. The most effective compounds are active against both RSV serotypes, A and B, with IC50 in the low micromolar or submicromolar range of concentrations. These are the most active coumarin derivatives found so far. Compound 45 combining 3,7-dimethyloctane and cyclopentane-annealed coumarin fragments has a selectivity index of 160 for serotype A and 1147 for serotype B. According to the results of the time-of-addition experiments, the conjugates are active at the early stages of the virus cycle. Based on biological evaluation and molecular modeling data, RSV F protein is a possible target.
Collapse
Affiliation(s)
- Dmitry O Tsypyshev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry 9, Akademika Lavrentieva Ave. 630090 Novosibirsk Russia
| | - Artem M Klabukov
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Institute of Influenza Professor Popova Str., 15/17 197376 St. Petersburg Russia
| | - Daria N Razgulaeva
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Institute of Influenza Professor Popova Str., 15/17 197376 St. Petersburg Russia
| | - Anastasia V Galochkina
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Institute of Influenza Professor Popova Str., 15/17 197376 St. Petersburg Russia
| | - Anna A Shtro
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Institute of Influenza Professor Popova Str., 15/17 197376 St. Petersburg Russia
| | - Sophia S Borisevich
- Laboratory of Physical Chemistry, Ufa Chemistry Institute of the Ufa Federal Research Center 71, Octyabrya pr 450054 Ufa Russia
| | - Tatyana M Khomenko
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry 9, Akademika Lavrentieva Ave. 630090 Novosibirsk Russia
| | - Konstantin P Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry 9, Akademika Lavrentieva Ave. 630090 Novosibirsk Russia
| | - Nina I Komarova
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry 9, Akademika Lavrentieva Ave. 630090 Novosibirsk Russia
| | - Nariman F Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry 9, Akademika Lavrentieva Ave. 630090 Novosibirsk Russia
| |
Collapse
|
2
|
Chemam Y, Aouf Z, Amira A, K’tir H, Bentoumi H, Ghodbane R, Zerrouki R, Aouf NE. Recent advances in the chemistry of chlorosulfonyl isocyanate: a review. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2056738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yasmine Chemam
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Zineb Aouf
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Aϊcha Amira
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
- National Higher School of Mining and Metallurgy Amar Laskri Annaba, Annaba, Algeria
| | - Hacene K’tir
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Houria Bentoumi
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Racha Ghodbane
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Rachida Zerrouki
- Laboratory of Natural Substances Chemistry, Faculty of Sciences and Technologies, Limoges Cedex, France
| | - Nour-Eddine Aouf
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
3
|
Wang HM, Xiong CD, Chen XQ, Hu C, Wang DY. Preparation of Sulfamates and Sulfamides Using a Selective Sulfamoylation Agent. Org Lett 2021; 23:2595-2599. [PMID: 33749286 DOI: 10.1021/acs.orglett.1c00504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfamates and sulfamides are prevalent in biological molecules, but their universal synthetic methods are limited. We herein report a sulfamoylation agent with high solubility and shelf stability. Various sulfamates and sulfamides can be synthesized directly from alcohols or amines by employing this agent with high selectivity and high yields. This protocol was also successfully used for late-stage sulfamoylation of pharmaceuticals containing a hydroxyl or amino group.
Collapse
Affiliation(s)
- Hai-Ming Wang
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chao-Dong Xiong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qu Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dong-Yu Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Mandal MK, Ghosh S, Bhat HR, Naesens L, Singh UP. Synthesis and biological evaluation of substituted phenyl azetidine-2-one sulphonyl derivatives as potential antimicrobial and antiviral agents. Bioorg Chem 2020; 104:104320. [PMID: 33142428 DOI: 10.1016/j.bioorg.2020.104320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
In the present study, we intend to synthesize a series of novel substituted phenyl azetidine-2-one sulphonyl derivatives. The entire set of derivatives 5 (a-t) were screened for in-vitro antibacterial, and antifungal activity, and among them eleven compounds were further screened for the antiviral activity to predict their efficacy against pathogenic viruses. Interestingly, compound 5d, 5e, 5f, 5h, 5i, and 5j showed similar or better antibacterial activity as compared to ampicillin (standard). Moreover, compounds 5h, 5i, 5j, and 5q showed good inhibitory activity against fungal strains whereas other derivatives had mild or diminished activity in comparison with standard drug clotrimazole. The antimicrobial study indicated that compounds having electron-withdrawing groups showed the highest activity. Interestingly, these tested compounds showed weak antiviral activity against Vaccinia virus, Human Coronavirus (229E), Reovirus-1, Herpes simplex virus, Sindbis virus, Coxsackievirus B4, Yellow Fever virus, and Influenza B virus in HEL cell, Vero cell, and MDCK cell cultures. The findings of the present study might open new avenues to target human disease-causing deadly microbes and viruses.
Collapse
Affiliation(s)
- Milan Kumar Mandal
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Swagatika Ghosh
- Food Saftey and Drug Administration, Government of Uttar Pradesh, Lucknow, Uttar Pradesh 226018, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Lieve Naesens
- Rega Institute of Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India.
| |
Collapse
|
5
|
Mulet C, Escolano M, Llopis S, Sanz S, Ramírez de Arellano C, Sánchez-Roselló M, Fustero S, del Pozo C. Dual Role of Vinyl Sulfonamides as N
-Nucleophiles and Michael Acceptors in the Enantioselective Synthesis of Bicyclic δ-Sultams. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cristina Mulet
- Departamento de Química Orgánica; Universidad de Valencia, E-; 46100 Burjassot Spain
| | - Marcos Escolano
- Departamento de Química Orgánica; Universidad de Valencia, E-; 46100 Burjassot Spain
| | - Sebastián Llopis
- Departamento de Química Orgánica; Universidad de Valencia, E-; 46100 Burjassot Spain
| | - Sergio Sanz
- Departamento de Química Orgánica; Universidad de Valencia, E-; 46100 Burjassot Spain
| | | | - María Sánchez-Roselló
- Departamento de Química Orgánica; Universidad de Valencia, E-; 46100 Burjassot Spain
| | - Santos Fustero
- Departamento de Química Orgánica; Universidad de Valencia, E-; 46100 Burjassot Spain
- Laboratorio de Moléculas Orgánicas; Centro de Investigación Príncipe Felipe, E-; 46012 Valencia Spain
| | - Carlos del Pozo
- Departamento de Química Orgánica; Universidad de Valencia, E-; 46100 Burjassot Spain
| |
Collapse
|
6
|
Potential enthalpic energy of water in oils exploited to control supramolecular structure. Nature 2018; 558:100-103. [DOI: 10.1038/s41586-018-0169-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 03/16/2018] [Indexed: 11/09/2022]
|
7
|
Suthagar K, Fairbanks AJ. A new way to do an old reaction: highly efficient reduction of organic azides by sodium iodide in the presence of acidic ion exchange resin. Chem Commun (Camb) 2018; 53:713-715. [PMID: 27990533 DOI: 10.1039/c6cc08574a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic azides are readily reduced to the corresponding amines by treatment with sodium iodide in the presence of acidic ion exchange resin. The process, optimal when performed at 40 °C and 200 mbar pressure on a rotatory evaporator, is extremely efficient, clean, and tolerant of a variety of functional groups.
Collapse
Affiliation(s)
- Kajitha Suthagar
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Antony J Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand. and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
8
|
Khanal A, Fang S. Solid Phase Stepwise Synthesis of Polyethylene Glycols. Chemistry 2017; 23:15133-15142. [PMID: 28834652 PMCID: PMC5658237 DOI: 10.1002/chem.201703004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 01/20/2023]
Abstract
Polyethylene glycol (PEG) and derivatives with eight and twelve ethylene glycol units were synthesized by stepwise addition of tetraethylene glycol monomers on a polystyrene solid support. The monomer contains a tosyl group at one end and a dimethoxytrityl group at the other. The Wang resin, which contains the 4-benzyloxy benzyl alcohol function, was used as the support. The synthetic cycle consists of deprotonation, Williamson ether formation (coupling), and detritylation. Cleavage of PEGs from solid support was achieved with trifluoroacetic acid. The synthesis including monomer synthesis was entirely chromatography-free. PEG products including those with different functionalities at the two termini were obtained in high yields. The products were analyzed with ESI and MALDI-TOF MS and were found close to monodispersity.
Collapse
Affiliation(s)
- Ashok Khanal
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
9
|
Morishita K, Shoji Y, Tanaka S, Fukui M, Ito Y, Kitao T, Ozawa SI, Hirono S, Shirahase H. Novel Non-carboxylate Benzoylsulfonamide-Based Protein Tyrosine Phosphatase 1B Inhibitors with Non-competitive Actions. Chem Pharm Bull (Tokyo) 2017; 65:1144-1160. [DOI: 10.1248/cpb.c17-00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ko Morishita
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yoshimichi Shoji
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Shunkichi Tanaka
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Masaki Fukui
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yuma Ito
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Tatsuya Kitao
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | | | | | - Hiroaki Shirahase
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| |
Collapse
|
10
|
Synthesis of novel substituted pyrimidine derivatives bearing a sulfamide group and their in vitro cancer growth inhibition activity. Bioorg Med Chem Lett 2016; 27:299-302. [PMID: 27903409 DOI: 10.1016/j.bmcl.2016.11.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023]
Abstract
The synthesis of two series of novel substituted pyrimidine derivatives bearing a sulfamide group have been described and their in vitro cancer growth inhibition activities have been evaluated against three human tumour cell lines (HT-29, M21, and MCF7). In general, growth inhibition activity has been enhanced by the introduction of a bulky substituent on the aromatic ring with the best compound having GI50<6μM for all the human tumour cell lines. The MCF7 selective compounds were evaluated on four additional human invasive breast ductal carcinoma cell lines (MDA-MB-231, MDA-MB-468, SKBR3, and T47D) and were selective against T47D cell line in all cases except one, suggesting a potential antiestrogen activity.
Collapse
|
11
|
Suthagar K, Fairbanks AJ. Synthesis and anti-mycobacterial activity of glycosyl sulfamides of arabinofuranose. Org Biomol Chem 2016; 14:1748-54. [DOI: 10.1039/c5ob02317c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series ofarabino N-glycosyl sulfamides, forced to adopt the furanose form by removal of the 5-hydroxyl group, were synthesised as putative isosteric mimics of decaprenolphosphoarabinose, the donor processed by arabinosyltransferases during mycobacterial cell wall assembly.
Collapse
Affiliation(s)
- Kajitha Suthagar
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
| | - Antony J. Fairbanks
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
- Biomolecular Interaction Centre
| |
Collapse
|