1
|
Gungor O, Kose M. Design, synthesis, biological evaluation and molecular docking of cyclic biguanidine compounds as cholinesterase inhibitors. J Biomol Struct Dyn 2023; 41:10885-10899. [PMID: 36537267 DOI: 10.1080/07391102.2022.2158945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
A series of cyclic biguanidine derivatives (E01-E16) was designed, synthesized, characterized by FTIR, NMR, elemental analysis and evaluated as cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] inhibitory effects for the treatment of Alzheimer's disease (AD). The cyclic biguanidine derivatives (E01-E16) were obtained as hydrochloride salt from one-pot reaction of 2-cyanoguanidine, p-substitute aniline derivatives and cyclohexanone/4-ethylcyclohexanone in the acidic medium. The crystal structures of compounds E13 and E16 were determined by XRD studies. The in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory assessment of the compounds revealed that compounds showed considerable inhibitory activity. The substitute groups on the phenyl rings have an impact on the inhibitory activity of the compounds. Compound E08, containing an ester group on the phenyl ring, showed the highest inhibitory activity against BuChE (IC50: 97.97 ± 0.13 µM) compared to other compounds. According to the docking result, compound E08 exhibited higher binding affinity (-10.17 kcal/mol) against BuChE than the standard drug tacrine (-7.02 kcal/mol). Compound E08 was orientated towards the active site of the enzyme BuChE.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ozge Gungor
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Muhammet Kose
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
2
|
Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem 2021; 28:910-939. [PMID: 31622199 DOI: 10.2174/0929867326666191016151018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity. METHODS The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. RESULTS This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. CONCLUSION Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| |
Collapse
|
3
|
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry SRMPP Govt First Grade College Huvinahadagali 583219 India
| |
Collapse
|
4
|
Xue YJ, Li MY, Jin XJ, Zheng CJ, Piao HR. Design, synthesis and evaluation of carbazole derivatives as potential antimicrobial agents. J Enzyme Inhib Med Chem 2021; 36:295-306. [PMID: 33404277 PMCID: PMC7801072 DOI: 10.1080/14756366.2020.1850713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Five series of novel carbazole derivatives containing an aminoguanidine, dihydrotriazine, thiosemicarbazide, semicarbazide or isonicotinic moiety were designed, synthesised and evaluated for their antimicrobial activities. Most of the compounds exhibited potent inhibitory activities towards different bacterial strains (including one multidrug-resistant clinical isolate) and one fungal strain with minimum inhibitory concentrations (MICs) between 0.5 and 16 µg/ml. Compounds 8f and 9d showed the most potent inhibitory activities (MICs of 0.5–2 µg/ml). Furthermore, compounds 8b, 8d, 8f, 8k, 9b and 9e with antimicrobial activities were not cytotoxic to human gastric cancer cell lines (SGC-7901 and AGS) or a normal human liver cell line (L-02). Structure–activity relationship analyses and docking studies implicated the dihydrotriazine group in increasing the antimicrobial potency and reducing the toxicity of the carbazole compounds. In vitro enzyme activity assays suggested that compound 8f binding to dihydrofolate reductase might account for the antimicrobial effect.
Collapse
Affiliation(s)
- Yi-Jie Xue
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China.,School of Pharmacy, Fudan University, Shanghai, China
| | - Ming-Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Xue-Jun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Chang-Ji Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Hu-Ri Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| |
Collapse
|
5
|
Feng F, Duan CS, Tang X, Chen X, Lu X, Chai XL, Mahmood Q, Tang CJ, Chai LY. Performance, microbial community and inhibition kinetics of long-term Cu 2+ stress on an air-lift nitritation reactor with self-recirculation. J Environ Sci (China) 2020; 91:117-127. [PMID: 32172960 DOI: 10.1016/j.jes.2020.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 05/12/2023]
Abstract
Biological nitrogen removal process could be affected due to the presence of heavy metals owing to their toxicity and accumulation in the sludge. In this study, the impact of Cu2+ shock on a long-term nitritation operation was investigated in an air-lift reactor with self-recirculation. Both the dynamics of microbial community and inhibition kinetics under Cu2+ stress were ascertained. The results showed that Cu2+ exerted severe inhibition on nitritation performance of an air-lift reactor (ALR) at 25 mg/L. The corresponding NH4+-N removal efficiency decreased to below 50%, which was mainly due to the variation of microbial community structure, especially the inhibition of nitrifiers like Nitrosomonas (the relative abundance decreased from 30% to 1% after Cu2+ inhibition). Kinetic parameters were obtained and compared after fitting the Haldane model. The long-term Cu2+ stress on the ALR aggravated the ammonium affinity and the resistance to substrate self-inhibition of the nitritation sludge, but reduced the resistance to Cu2+ inhibition. Furthermore, Cu2+ acted as uncompetitive inhibitor on nitritation process. Our results provide new insights into the nitritation characteristics under long-term Cu2+ stress.
Collapse
Affiliation(s)
- Fan Feng
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Cheng-Shan Duan
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Xi Tang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Xi Chen
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Xuan Lu
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Xi-Lin Chai
- The Jiangxi Provincial Collaborative Research Institute for Environmental Protection Industry, Wannian, 335500, China; Jiangxi Gaia Environmental Science & Technology Co., Ltd., Shangrao, 334000, China
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University, Abbottabad, Pakistan
| | - Chong-Jian Tang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Li-Yuan Chai
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| |
Collapse
|
6
|
He J, Qiao W, An Q, Yang T, Luo Y. Dihydrofolate reductase inhibitors for use as antimicrobial agents. Eur J Med Chem 2020; 195:112268. [PMID: 32298876 DOI: 10.1016/j.ejmech.2020.112268] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023]
Abstract
Drug-resistant bacteria pose an increasingly serious threat to mankind all over the world. However, the currently available clinical treatments do not meet the urgent demand.Therefore, it is desirable to find new targets and inhibitors to overcome the problems of antibiotic resistance. Dihydrofolate reductase (DHFR) is an important enzyme required to maintain bacterial growth, and hence inhibitors of DHFR have been proven as effective agents for treating bacterial infections. This review provides insights into the recent discovery of antimicrobial agents targeting DHFR. In particular, three pathogens, Escherichia coli (E. coli), Mycobacterium tuberculosis(Mtb) and Staphylococcus aureus(S. aureus), and research strategies are emphasized. DHFR inhibitors are expected to be good alternatives to fight bacterial infections.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University
| | - Qi An
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Rizzuti B, Grande F. Virtual screening in drug discovery: a precious tool for a still-demanding challenge. PROTEIN HOMEOSTASIS DISEASES 2020:309-327. [DOI: 10.1016/b978-0-12-819132-3.00014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Wróbel A, Maliszewski D, Baradyn M, Drozdowska D. Trimethoprim: An Old Antibacterial Drug as a Template to Search for New Targets. Synthesis, Biological Activity and Molecular Modeling Study of Novel Trimethoprim Analogs. Molecules 2019; 25:molecules25010116. [PMID: 31892256 PMCID: PMC6983048 DOI: 10.3390/molecules25010116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 01/15/2023] Open
Abstract
A new series of trimethoprim (TMP) analogs containing amide bonds (1–6) have been synthesized. Molecular docking, as well as dihydrofolate reductase (DHFR) inhibition assay were used to confirm their affinity to bind dihydrofolate reductase enzyme. Data from the ethidium displacement test showed their DNA-binding capacity. Tests confirming the possibility of DNA binding in a minor groove as well as determination of the association constants were performed using calf thymus DNA, T4 coliphage DNA, poly (dA-dT)2 and poly (dG-dC)2. Additionally, the mechanism of action of the new compounds was studied. In conclusion, some of our new analogs inhibited DHFR activity more strongly than TMP did, which confirms, that the addition of amide bonds into the analogs of TMP increases their affinity towards DHFR.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Medical University of Bialystok, 15222 Bialystok, Poland; (D.M.); (D.D.)
- Correspondence: ; Tel.: +50-253-3188
| | - Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Bialystok, 15222 Bialystok, Poland; (D.M.); (D.D.)
| | - Maciej Baradyn
- Department of Physical Chemistry, University of Bialystok, Institute of Chemistry, 15245 Bialystok, Poland;
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, 15222 Bialystok, Poland; (D.M.); (D.D.)
| |
Collapse
|
9
|
Perkins KR, Atilho RM, Moon MH, Breaker RR. Employing a ZTP Riboswitch to Detect Bacterial Folate Biosynthesis Inhibitors in a Small Molecule High-Throughput Screen. ACS Chem Biol 2019; 14:2841-2850. [PMID: 31609568 DOI: 10.1021/acschembio.9b00713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various riboswitch classes are being discovered that precisely monitor the status of important biological processes, including metabolic pathway function, signaling for physiological adaptations, and responses to toxic agents. Biochemical components for some of these processes might make excellent targets for the development of novel antibacterial molecules, which can be broadly sought by using phenotypic drug discovery (PDD) methods. However, PDD data do not normally provide clues regarding the target for each hit compound. We have developed and validated a robust fluorescent reporter system based on a ZTP riboswitch that identifies numerous folate biosynthesis inhibitors with high sensitivity and precision. The utility of the riboswitch-based PDD strategy was evaluated using Escherichia coli bacteria by conducting a 128 310-compound high-throughput screen, which identified 78 sulfanilamide derivatives among the many initial hits. Similarly, representatives of other riboswitch classes could be employed to rapidly match antibacterial hits with the biological processes they target.
Collapse
Affiliation(s)
- Kevin R. Perkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Ruben M. Atilho
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Michelle H. Moon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, United States
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, United States
| |
Collapse
|
10
|
Guo W, Zhao M, Du C, Zheng L, Li L, Chen L, Tao K, Tan W, Xie Z, Cai L, Fan X, Zhang K. Visible-Light-Catalyzed [3 + 1 + 2] Coupling Annulations for the Synthesis of Unsymmetrical Trisubstituted Amino-1,3,5-triazines. J Org Chem 2019; 84:15508-15519. [DOI: 10.1021/acs.joc.9b02514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Mingming Zhao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Chengtang Du
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Luo Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liping Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Kailiang Tao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wen Tan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Kai Zhang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou 438000, China
| |
Collapse
|
11
|
Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J Antibiot (Tokyo) 2019; 73:5-27. [PMID: 31578455 PMCID: PMC7102388 DOI: 10.1038/s41429-019-0240-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
The development of new mechanisms of resistance among pathogens, the occurrence and transmission of genes responsible for antibiotic insensitivity, as well as cancer diseases have been a serious clinical problem around the world for over 50 years. Therefore, intense searching of new leading structures and active substances, which may be used as new drugs, especially against strain resistant to all available therapeutics, is very important. Dihydrofolate reductase (DHFR) has attracted a lot of attention as a molecular target for bacterial resistance over several decades, resulting in a number of useful agents. Trimethoprim (TMP), (2,4-diamino-5-(3′,4′,5′-trimethoxybenzyl)pyrimidine) is the well-known dihydrofolate reductase inhibitor and one of the standard antibiotics used in urinary tract infections (UTIs). This review highlights advances in design, synthesis, and biological evaluations in structural modifications of TMP as DHFR inhibitors. In addition, this report presents the differences in the active site of human and pathogen DHFR. Moreover, an excellent review of DHFR inhibition and their relevance to antimicrobial and parasitic chemotherapy was presented.
Collapse
|
12
|
Bai X, Chen Y, Liu Z, Zhang L, Zhang T, Feng B. Synthesis, Antimicrobial Activities, and Molecular Docking Studies of Dihydrotriazine Derivatives Bearing a Quinoline Moiety. Chem Biodivers 2019; 16:e1900056. [PMID: 30957398 DOI: 10.1002/cbdv.201900056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
In this article, three series of dihydrotriazine derivatives bearing a quinoline moiety (5a, 5b, 8a-8c, and 9a-9m) have been designed, synthesized, and evaluated as antibacterial agents. Compounds 8a-8c were found to be the most potent of all of the compounds tested with an MIC value of 1 μg/mL against several Gram-positive (S. aureus 4220 and MRSA CCARM 3506) and Gram-negative (E. coli 1924) strains of bacteria. In addition, 3-[4-amino-6-(phenethylamino)-2,5-dihydro-1,3,5-triazin-2-yl)-6-[(3-chlorobenzyl)oxy]quinolin-2-ol (8a) showed potent inhibitory activity (MIC=2 μg/mL) against Pseudomonas aeruginosa 2742, indicating that its antibacterial spectrum is similar to those of the positive controls gatifloxacin and moxifloxacin. Structure-activity relationships (SAR) analyses and docking studies implicated the dihydrotriazine group in increasing the antimicrobial potency of the quinoline compounds. In vitro enzyme study implied that compound 8a also displayed DHFR inhibition.
Collapse
Affiliation(s)
- Xueqian Bai
- The Affiliated Hospital of Jilin Medical University, Jilin, 132013, P. R. China
| | - Ying Chen
- Department of Cardiology and Nephrology, No. 965 Hospital of PLA, Jilin, 132011, P. R. China
| | - Zhe Liu
- Department of Pharmacy, Jilin Medical University, Jilin, 132013, P. R. China
| | - Linhao Zhang
- Department of Pharmacy, Jilin Medical University, Jilin, 132013, P. R. China.,Department of Pharmacy, Yanbian University, Yanji, 133002, P. R. China
| | - Tianyi Zhang
- Department of Pharmacy, Jilin Medical University, Jilin, 132013, P. R. China
| | - Bo Feng
- Department of Pharmacy, Jilin Medical University, Jilin, 132013, P. R. China
| |
Collapse
|
13
|
Srinivasan B, Tonddast-Navaei S, Roy A, Zhou H, Skolnick J. Chemical space of Escherichia coli dihydrofolate reductase inhibitors: New approaches for discovering novel drugs for old bugs. Med Res Rev 2018; 39:684-705. [PMID: 30192413 DOI: 10.1002/med.21538] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
Escherichia coli Dihydrofolate reductase is an important enzyme that is essential for the survival of the Gram-negative microorganism. Inhibitors designed against this enzyme have demonstrated application as antibiotics. However, either because of poor bioavailability of the small-molecules resulting from their inability to cross the double membrane in Gram-negative bacteria or because the microorganism develops resistance to the antibiotics by mutating the DHFR target, discovery of new antibiotics against the enzyme is mandatory to overcome drug-resistance. This review summarizes the field of DHFR inhibition with special focus on recent efforts to effectively interface computational and experimental efforts to discover novel classes of inhibitors that target allosteric and active-sites in drug-resistant variants of EcDHFR.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Sam Tonddast-Navaei
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Ambrish Roy
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Hongyi Zhou
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
14
|
Riyadh SM, El-Motairi SA, Ahmed HEA, Khalil KD, Habib ESE. Synthesis, Biological Evaluation, and Molecular Docking of Novel Thiazoles and [1,3,4]Thiadiazoles Incorporating Sulfonamide Group as DHFR Inhibitors. Chem Biodivers 2018; 15:e1800231. [PMID: 29956887 DOI: 10.1002/cbdv.201800231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
2-(1-{4-[(4-Methylphenyl)sulfonamido]phenyl}ethylidene)thiosemicarbazide (3) was exploited as a starting material for the synthesis of two novel series of 5-arylazo-2-hydrazonothiazoles 6a - 6j and 2-hydrazono[1,3,4]thiadiazoles 10a - 10d, incorporating sulfonamide group, through its reactions with appropriate hydrazonoyl halides. The structures of the newly synthesized products were confirmed by spectral and elemental analyses. Also, the antimicrobial, anticancer, and DHFR inhibition potency for two series of thiazoles and [1,3,4]thiadiazoles were evaluated and explained by molecular docking studies and SAR analysis.
Collapse
Affiliation(s)
- Sayed M Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia.,Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shojaa A El-Motairi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah Al-Munawaraha, 41477, Saudi Arabia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Khaled D Khalil
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia.,Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - El-Sayed E Habib
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawaraha, 41477, Saudi Arabia.,Microbiology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
15
|
Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Ahmadi F, Mirzaei P, Bazgir A. Cobalt-catalyzed isocyanide insertion cyclization to dihydrobenzoimidazotriazins. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Structural and Dynamics Perspectives on the Binding of Substrate and Inhibitors in Mycobacterium tuberculosis DHFR. Sci Pharm 2017; 85:scipharm85030031. [PMID: 28914808 PMCID: PMC5620518 DOI: 10.3390/scipharm85030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022] Open
Abstract
Dihydrofolate reductase (DHFR), an essential enzyme in the folate pathway, is a potential target for new anti-tuberculosis drugs. Fifteen crystal structures of Mycobacterium tuberculosis DHFR complexed with NADPH and various inhibitors are available in the RCSB Protein Data Bank, but none of them is a substrate binding structure. Therefore, we performed molecular dynamics simulations on ternary complexes of M. tuberculosis DHFR:NADPH with a substrate (dihydrofolate) and each of three competitive inhibitors in 2,4-diaminopyrimidine series (P1, P157, and P169), in order to gain insight into the inhibition-mechanism of DHFR in the folate pathway. The binding energy and thermodynamics values of each system were calculated by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method. The dynamics of the enzyme and the motion of each amino acid residue at the active site were examined. The key factors that promote the binding of P157 and P169 on M. tuberculosis DHFR (mtbDHFR) reveal opportunities for using these compounds as novel anti-tuberculosis drugs.
Collapse
|
18
|
Srinivasan B, Tonddast-Navaei S, Skolnick J. Pocket detection and interaction-weighted ligand-similarity search yields novel high-affinity binders for Myocilin-OLF, a protein implicated in glaucoma. Bioorg Med Chem Lett 2017; 27:4133-4139. [PMID: 28739043 DOI: 10.1016/j.bmcl.2017.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Traditional structure and ligand based virtual screening approaches rely on the availability of structural and ligand binding information. To overcome this limitation, hybrid approaches were developed that relied on extraction of ligand binding information from proteins sharing similar folds and hence, evolutionarily relationship. However, they cannot target a chosen pocket in a protein. To address this, a pocket centric virtual ligand screening approach is required. Here, we employ a new, iterative implementation of a pocket and ligand-similarity based approach to virtual ligand screening to predict small molecule binders for the olfactomedin domain of human myocilin implicated in glaucoma. Small-molecule binders of the protein might prevent the aggregation of the protein, commonly seen during glaucoma. First round experimental assessment of the predictions using differential scanning fluorimetry with myoc-OLF yielded 7 hits with a success rate of 12.7%; the best hit had an apparent dissociation constant of 99nM. By matching to the key functional groups of the best ligand that were likely involved in binding, the affinity of the best hit was improved by almost 10,000 fold from the high nanomolar to the low picomolar range. Thus, this study provides preliminary validation of the methodology on a medically important glaucoma associated protein.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States
| | - Sam Tonddast-Navaei
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| |
Collapse
|
19
|
Srinivasan B, Rodrigues JV, Tonddast-Navaei S, Shakhnovich E, Skolnick J. Rational Design of Novel Allosteric Dihydrofolate Reductase Inhibitors Showing Antibacterial Effects on Drug-Resistant Escherichia coli Escape Variants. ACS Chem Biol 2017; 12:1848-1857. [PMID: 28525268 DOI: 10.1021/acschembio.7b00175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In drug discovery, systematic variations of substituents on a common scaffold and bioisosteric replacements are often used to generate diversity and obtain molecules with better biological effects. However, this could saturate the small-molecule diversity pool resulting in drug resistance. On the other hand, conventional drug discovery relies on targeting known pockets on protein surfaces leading to drug resistance by mutations of critical pocket residues. Here, we present a two-pronged strategy of designing novel drugs that target unique pockets on a protein's surface to overcome the above problems. Dihydrofolate reductase, DHFR, is a critical enzyme involved in thymidine and purine nucleotide biosynthesis. Several classes of compounds that are structural analogues of the substrate dihydrofolate have been explored for their antifolate activity. Here, we describe 10 novel small-molecule inhibitors of Escherichia coli DHFR, EcDHFR, belonging to the stilbenoid, deoxybenzoin, and chalcone family of compounds discovered by a combination of pocket-based virtual ligand screening and systematic scaffold hopping. These inhibitors show a unique uncompetitive or noncompetitive inhibition mechanism, distinct from those reported for all known inhibitors of DHFR, indicative of binding to a unique pocket distinct from either substrate or cofactor-binding pockets. Furthermore, we demonstrate that rescue mutants of EcDHFR, with reduced affinity to all known classes of DHFR inhibitors, are inhibited at the same concentration as the wild-type. These compounds also exhibit antibacterial activity against E. coli harboring the drug-resistant variant of DHFR. This discovery is the first report on a novel class of inhibitors targeting a unique pocket on EcDHFR.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center
for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - João V. Rodrigues
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Sam Tonddast-Navaei
- Center
for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Eugene Shakhnovich
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Jeffrey Skolnick
- Center
for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
20
|
Tonddast-Navaei S, Srinivasan B, Skolnick J. On the importance of composite protein multiple ligand interactions in protein pockets. J Comput Chem 2017; 38:1252-1259. [PMID: 27864975 PMCID: PMC5403588 DOI: 10.1002/jcc.24523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 01/08/2023]
Abstract
Conventional small molecule drug-discovery approaches target protein pockets. However, the limited number of geometrically distinct pockets leads to widespread promiscuity and deleterious side-effects. Here, the idea of COmposite protein LIGands (COLIG) that interact with each other as well as the protein within a single ligand binding pocket is examined. As a practical illustration, experimental evidence that E. coli Dihydrofolate reductase inhibitors are COLIGs is presented. Then, analysis of a non-redundant set of all holo PDB structures indicates that almost 47-76% of proteins (based on different sequence identity thresholds) can simultaneously bind multiple, interacting ligands in the same pocket. Moreover, most ligands that are either Singletons and COLIGs bind at the bottom of ligand binding pocket and occupy 30% and 43% of the volume of the bottom of the pocket. This suggests the use of COLIGs as a potential new class of small molecule drugs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sam Tonddast-Navaei
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Srinivasan B, Zhou H, Mitra S, Skolnick J. Novel small molecule binders of human N-glycanase 1, a key player in the endoplasmic reticulum associated degradation pathway. Bioorg Med Chem 2016; 24:4750-4758. [PMID: 27567076 DOI: 10.1016/j.bmc.2016.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 12/30/2022]
Abstract
Peptide:N-glycanase (NGLY1) is an enzyme responsible for cleaving oligosaccharide moieties from misfolded glycoproteins to enable their proper degradation. Deletion and truncation mutations in this gene are responsible for an inherited disorder of the endoplasmic reticulum-associated degradation pathway. However, the literature is unclear whether the disorder is a result of mutations leading to loss-of-function, loss of substrate specificity, loss of protein stability or a combination of these factors. In this communication, without burdening ourselves with the mechanistic underpinning of disease causation because of mutations on the NGLY1 protein, we demonstrate the successful application of virtual ligand screening (VLS) combined with experimental high-throughput validation to the discovery of novel small-molecules that show binding to the transglutaminase domain of NGLY1. Attempts at recombinant expression and purification of six different constructs led to successful expression of five, with three constructs purified to homogeneity. Most mutant variants failed to purify possibly because of misfolding and the resultant exposure of surface hydrophobicity that led to protein aggregation. For the purified constructs, our threading/structure-based VLS algorithm, FINDSITE(comb), was employed to predict ligands that may bind to the protein. Then, the predictions were assessed by high-throughput differential scanning fluorimetry. This led to the identification of nine different ligands that bind to the protein of interest and provide clues to the nature of pharmacophore that facilitates binding. This is the first study that has identified novel ligands that bind to the NGLY1 protein as a possible starting point in the discovery of ligands with potential therapeutic applications in the treatment of the disorder caused by NGLY1 mutants.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| | - Hongyi Zhou
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States
| | - Sreyoshi Mitra
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| |
Collapse
|
22
|
Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase. Biochem J 2016; 473:2165-77. [PMID: 27208174 DOI: 10.1042/bcj20160289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/16/2016] [Indexed: 02/04/2023]
Abstract
The presence of latent activities in enzymes is posited to underlie the natural evolution of new catalytic functions. However, the prevalence and extent of such substrate and catalytic ambiguity in evolved enzymes is difficult to address experimentally given the order-of-magnitude difference in the activities for native and, sometimes, promiscuous substrate/s. Further, such latent functions are of special interest when the activities concerned do not fall into the domain of substrate promiscuity. In the present study, we show a special case of such latent enzyme activity by demonstrating the presence of two mechanistically distinct reactions catalysed by the catalytic domain of receptor protein tyrosine phosphatase isoform δ (PTPRδ). The primary catalytic activity involves the hydrolysis of a phosphomonoester bond (C─O─P) with high catalytic efficiency, whereas the secondary activity is the hydrolysis of a glycosidic bond (C─O─C) with poorer catalytic efficiency. This enzyme also displays substrate promiscuity by hydrolysing diester bonds while being highly discriminative for its monoester substrates. To confirm these activities, we also demonstrated their presence on the catalytic domain of protein tyrosine phosphatase Ω (PTPRΩ), a homologue of PTPRδ. Studies on the rate, metal-ion dependence, pH dependence and inhibition of the respective activities showed that they are markedly different. This is the first study that demonstrates a novel sugar hydrolase and diesterase activity for the phosphatase domain (PD) of PTPRδ and PTPRΩ. This work has significant implications for both understanding the evolution of enzymatic activity and the possible physiological role of this new chemistry. Our findings suggest that the genome might harbour a wealth of such alternative latent enzyme activities in the same protein domain that renders our knowledge of metabolic networks incomplete.
Collapse
|