1
|
Ezugwu JA, Ugwu DI, Rudrapal M, Rakshit G, Ghosh R, Hariprasad KS, Abonyi EO. Design, Synthesis, In Vivo Antimalarial Activity, and In Silico Studies of Sulfonamide-Alkanamido Thiazole-5-Carboxylate Derivatives. Chem Biodivers 2025:e202403504. [PMID: 40131203 DOI: 10.1002/cbdv.202403504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 03/26/2025]
Abstract
A series of nine substituted derivatives of 4-methyl-2-(3-methyl-2-(4-methylphenylsulfonamido)-butanamido)thiazole-5-carboxylate were synthesized, characterized, and evaluated for antimalarial activity. The synthesis involved a two-step process using methyl acetoacetate and various substituted benzenesulfonamoyl alkanamides. Structural confirmation was achieved using NMR and mass spectroscopy. The in vivo antimalarial efficacy was tested against Plasmodium berghei in Swiss albino mice, with artemisinin as the reference drug. Compounds 4e and 4h exhibited the highest inhibition rates of 81.68% and 85.34%, respectively, closely matching artemisinin (90%). Structure-activity relationship (SAR) analysis identified the sulfonamide group, alkyl chain length, and molecular flexibility as critical determinants of activity. Docking studies revealed strong binding affinities for 4e and 4h, supported by stable hydrogen bonds and hydrophobic interactions with the enzyme's active site, corroborated by molecular dynamics simulations. ADMET analysis revealed favorable pharmacokinetic and safety profiles, including high GI absorption, acceptable solubility, and low mutagenic risk. These findings highlight compounds 4e and 4h as promising leads for antimalarial drug development.
Collapse
Affiliation(s)
- James A Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
- Organic Synthesis and Processing Chemistry Division, CSIR-India Institute of Chemical Technology, Hyderabad, India
| | - David I Ugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research, Guntur, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Ranchi, India
| | - Rahul Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Ranchi, India
| | - Kurma S Hariprasad
- Organic Synthesis and Processing Chemistry Division, CSIR-India Institute of Chemical Technology, Hyderabad, India
| | - Emmanuel O Abonyi
- Department of Medical Biochemistry, Enugu State University College of Medicine, Enugu, Nigeria
| |
Collapse
|
2
|
Wang X, Yan D, Chen L. Genome-wide identification and expression analysis of the OSC gene family in Platycodon grandiflorus. PeerJ 2024; 12:e18322. [PMID: 39677956 PMCID: PMC11639181 DOI: 10.7717/peerj.18322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/24/2024] [Indexed: 12/17/2024] Open
Abstract
Platycodon grandiflorus stands as one of the most extensively utilized traditional Chinese medicinal herbs, with triterpenoids and their derivatives serving as its primary medicinal components. Oxido squalene cyclase (OSC), serving as a crucial enzyme in the triterpenoid synthesis pathway, has the capability to enzymatically generate significant quantities of sterols and triterpenoid intermediates. While the OSC gene family has been identified in numerous species, bioinformatics research on this family remains scant. Presently, the specific members of this gene family in Platycodon grandiflorus have yet to be definitively determined. In this study, we successfully identified a total of 15 PgOSC genes within the genome of Platycodon grandiflorus by conducting homology comparisons. These genes were discovered to be unevenly distributed across the five chromosomes of the species, organized in the form of gene clusters. Subsequently, we conducted a thorough analysis of the OSC gene family's evolutionary relationship by constructing a phylogenetic tree. Other characteristics of PgOSC family members, including gene structure, conserved motifs, protein three-dimensional structure, subcellular localization, and cis-acting elements were thoroughly characterized. Furthermore, We analyzed the expression of PgOSC gene in different tissues of Platycodon grandiflorus by qRT-PCR, and found that the expression of PgOSC genes in root was higher than that in stem and leaf. Upon comparing the effects of salt, heat, and drought treatments, we observed a significant induction of PgOSC gene expression in Platycodon grandiflorus specifically under salt stress conditions. In summary, this study comprehensively identified and analyzed the OSC gene family, aiming to provide basic biological information for exploring the members of PgOSC gene family.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Key Laboratory of Exploitation and Utilization of Traditional Chinese Medicine Resources of Mianyang, Mianyang, Sichuan, China
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, China
| | - Dong Yan
- Department of Basic Medical, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, China
| | - Ling Chen
- Key Laboratory of Exploitation and Utilization of Traditional Chinese Medicine Resources of Mianyang, Mianyang, Sichuan, China
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, China
| |
Collapse
|
3
|
Olanlokun JO, Owolabi AB, Odedeyi A, Oderinde SO, Bodede O, Steenkamp P, Koorbanally NA, Olorunsogo OO. Mechanism of antimalarial action and mitigation of infection-mediated mitochondrial dysfunction by phyto-constituents of Andrographis paniculata ((Burm f.) Wall. ex Nees) in Plasmodium berghei-infected mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118241. [PMID: 38670400 DOI: 10.1016/j.jep.2024.118241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andrographis paniculata (AP) ((Burm f.) Wall. ex Nees) is a medicinal plant, documented for its folkloric use in the treatment of malaria. AIM This study was designed to determine the potency of extract and fractions of A. paniculata (AP) as a curative, both for susceptible and resistant malaria and to also determine the plant's mechanism of action. This study was also designed to determine whether AP extract and its most potent fraction will mitigate infection-mediated mitochondrial dysfunction, and to assess the phytochemical constituents of the most potent fraction. MATERIALS AND METHODS n-Hexane, dichloromethane, ethylacetate and methanol were used to partition the methanol extract of A. paniculata. Graded doses of these extract and fractions were used to treat mice infected with chloroquine-sensitive strain of P. berghei in a curative model. The most potent fraction was used to treat mice infected with resistant (ANKA strain) P. berghei. Inhibition of hemozoin formation, reversal of mitochondrial dysfunction and antiinflammatory potentials were determined. A combination of ultraperformance liquid chromatography-quadrupole time of flight-mass spectrometry and nuclear magnetic resonance spectroscopy were used for chemical analysis. RESULTS Microscopy revealed that the dichloromethane fraction decreased the parasite burden the most, and inhibition of the hemozoin formation is one of its mechanisms of action. The dichloromethane fraction reversed parasite-induced mitochondrial pore opening in the host, enzyme-dependent ATP hydrolysis and peroxidation of host mitochondrial membrane phospholipids as well as its antiinflammatory potentials. The UPLC-qTOF-MS report and NMR fingerprints of the dichloromethane fraction of A. paniculata yielded fourteen compounds of which sibiricinone C was identified from the plant for the first time. CONCLUSION Fractions of A. paniculata possess antiplasmodial effects with the dichloromethane fraction having the highest potency. The potent effect of this fraction may be attributed to the phytochemicals present because it contains terpenes implicated with antimalarial and antiinflammatory activities.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria.
| | - Adesola Bunmi Owolabi
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Aminat Odedeyi
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Solomon Obaloluwa Oderinde
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olusola Bodede
- Department of Chemistry, University of Pretoria, Pretoria, 0028, South Africa
| | - Paul Steenkamp
- Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | | | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
4
|
Viana Dos Santos MB, Braga de Oliveira A, Veras Mourão RH. Brazilian plants with antimalarial activity: A review of the period from 2011 to 2022. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117595. [PMID: 38122914 DOI: 10.1016/j.jep.2023.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria continues to be a serious global public health problem in subtropical and tropical countries of the world. The main drugs used in the treatment of human malaria, quinine and artemisinin, are isolates of medicinal plants, making the use of plants a widespread practice in countries where malaria is endemic. Over the years, due to the increased resistance of the parasite to chloroquine and artemisinin in certain regions, new strategies for combating malaria have been employed, including research with medicinal plants. AIM This review focuses on the scientific production regarding medicinal plants from Brazil whose antimalarial activity was evaluated during the period from 2011 to 2022. 2. METHODOLOGY For this review, four electronic databases were selected for research: Pubmed, ScienceDirect, Scielo and Periódicos CAPES. Searches were made for full texts published in the form of scientific articles written in Portuguese or English and in a digital format. In addition, prospects for new treatments as well as future research that encourages the search for natural products and antimalarial derivatives are also presented. RESULTS A total of 61 publications were encountered, which cited 36 botanical families and 92 species using different Plasmodium strains in in vitro and in vivo assays. The botanical families with the most expressive number of species found were Rubiaceae, Apocynaceae, Fabaceae and Asteraceae (14, 14, 9 and 6 species, respectively), and the most frequently cited species were of the genera Psychotria L. (8) and Aspidosperma Mart. (12), which belong to the families Rubiaceae and Apocynaceae. Altogether, 75 compounds were identified or isolated from 28 different species, 31 of which are alkaloids. In addition, the extracts of the analyzed species, including the isolated compounds, showed a significant reduction of parasitemia in P. falciparum and P. berghei, especially in the clones W2 CQ-R (in vitro) and ANKA (in vivo), respectively. The Brazilian regions with the highest number of species analyzed were those of the north, especially the states of Pará and Amazonas, and the southeast, especially the state of Minas Gerais. CONCLUSION Although many plant species with antimalarial potential have been identified in Brazil, studies of new antimalarial molecules are slow and have not evolved to the production of a phytotherapeutic medicine. Given this, investigations of plants of traditional use and biotechnological approaches are necessary for the discovery of natural antimalarial products that contribute to the treatment of the disease in the country and in other endemic regions.
Collapse
Affiliation(s)
- Maria Beatriz Viana Dos Santos
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil.
| | - Alaíde Braga de Oliveira
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| | - Rosa Helena Veras Mourão
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil
| |
Collapse
|
5
|
Semenenko OM, Lipson VV, Sadchenko AO, Vashchenko OV, Kasian NA, Sviechnikova LV, Lisetski LM, Babak ML, Vakula VM, Borysov OV, Holota YV, Zozulya SO, Borysko PO, Mazepa OV. Synthesis of methotrexate-betulonic acid hybrids and evaluation of their effect on artificial and Caco-2 cell membranes. Steroids 2024; 201:109332. [PMID: 37939980 DOI: 10.1016/j.steroids.2023.109332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
An efficient protocol for the synthesis of novel methotrexate-betulonic acid hybrids with a (tert-butoxycarbonylamino)-3,6-dioxa-8-octanamine (Boc-DOOA) linkage has been developed. Reaction of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-betulonamide with methotrexate resulted in a mixture of isomeric conjugates which were separated by column chromatography. Their structures and composition have been fully established by 1H NMR, 13C spectra, FAB mass spectrometry and elemental analysis. The identity of conjugates was confirmed by LC-MS data. Membranotropic properties of the new hybrids were assessed on the basis of their interactions with artificial lipid membranes by differential scanning calorimetry (DSC) method. The ability of the conjugates to penetrate Caco-2 cells is inferior to methotrexate. Probably, this is due to the increasing lipophilicity, the affinity of these hybrid molecules for the lipid bilayer increases, which is confirmed by experiments with artificial membranes.
Collapse
Affiliation(s)
- Olexander M Semenenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky Ave., 60, 61072 Kharkiv, Ukraine
| | - Victoria V Lipson
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky Ave., 60, 61072 Kharkiv, Ukraine; Medicinal Chemistry Department, State Institution "V.Ya. Danilevsky Institute for Endocrine Pathology Problems" NAMS of Ukraine, Alchevskih St., 10, 61002 Kharkiv, Ukraine; Organic Chemistry Department, V.N. Karazin Kharkiv National University, Svobody Sq., 4, 61022 Kharkiv, Ukraine.
| | - Alina O Sadchenko
- Institute for Scintillation Materials, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky Ave., 60, 61072 Kharkiv, Ukraine
| | - Olga V Vashchenko
- Institute for Scintillation Materials, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky Ave., 60, 61072 Kharkiv, Ukraine
| | - Natalia A Kasian
- Institute for Scintillation Materials, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky Ave., 60, 61072 Kharkiv, Ukraine
| | - Liliia V Sviechnikova
- Institute for Scintillation Materials, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky Ave., 60, 61072 Kharkiv, Ukraine
| | - Longin M Lisetski
- Institute for Scintillation Materials, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky Ave., 60, 61072 Kharkiv, Ukraine
| | - Mykola L Babak
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky Ave., 60, 61072 Kharkiv, Ukraine
| | - Volodymyr M Vakula
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky Ave., 60, 61072 Kharkiv, Ukraine; Medicinal Chemistry Department, State Institution "V.Ya. Danilevsky Institute for Endocrine Pathology Problems" NAMS of Ukraine, Alchevskih St., 10, 61002 Kharkiv, Ukraine
| | | | | | | | | | - Olexander V Mazepa
- A. V. Bogatsky Physico-Chemical Institute NAS of Ukraine, Lustdorfska Road, 86, 65080 Odesa, Ukraine
| |
Collapse
|
6
|
Zothantluanga JH, Umar AK, Lalhlenmawia H, Vinayagam S, Borthakur MS, Patowary L, Tayeng D. Computational screening of phytochemicals for anti-parasitic drug discovery. PHYTOCHEMISTRY, COMPUTATIONAL TOOLS AND DATABASES IN DRUG DISCOVERY 2023:257-283. [DOI: 10.1016/b978-0-323-90593-0.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Özdemir Z, Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. PHYTOCHEMISTRY 2022; 203:113340. [PMID: 35987401 DOI: 10.1016/j.phytochem.2022.113340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
Medicinal plants have been used to treat different diseases throughout the human history namely in traditional medicine. Most of the plants mentioned in this review article belong among them, including those that are widely spread in the nature, counted frequently to be food and nutrition plants and producing pharmacologically important secondary metabolites. Triterpenoids represent an important group of plant secondary metabolites displaying emerging pharmacological importance. This review article sheds light on four selected triterpenoids, oleanolic, ursolic, betulinic and platanic acid, and on their amide derivatives as important natural or semisynthetic agents in cancer treatment, and, in part, in pathogenic microbe treatment. A literature search was made in the Web of Science for the given key words covering the required area of secondary plant metabolites and their amide derivatives. The most recently published findings on the biological activity of the selected triterpenoids, and on the structures and biological activity of their relevant amide derivatives have been summarized therein. Mainly anti-cancer effects, and, in part, antimicrobial and other effects of the four selected triterpenoids and their amide derivatives have also been reviewed. A comparison of the effects of the parent plant products and those of their amide derivatives has been made.
Collapse
Affiliation(s)
- Zulal Özdemir
- University of Chemistry and Technology in Prague, Technická 5, 16028, Prague 6, Czech Republic; Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Zdeněk Wimmer
- University of Chemistry and Technology in Prague, Technická 5, 16028, Prague 6, Czech Republic; Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
8
|
Sun X, Shen B, Yu H, Wu W, Sheng R, Fang Y, Guo R. Therapeutic potential of demethylzeylasteral, a triterpenoid of the genus Tripterygium wilfordii. Fitoterapia 2022; 163:105333. [DOI: 10.1016/j.fitote.2022.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
|
9
|
Hodoň J, Frydrych I, Trhlíková Z, Pokorný J, Borková L, Benická S, Vlk M, Lišková B, Kubíčková A, Medvedíková M, Pisár M, Šarek J, Das V, Ligasová A, Koberna K, Džubák P, Hajdúch M, Urban M. Triterpenoid pyrazines and pyridines - Synthesis, cytotoxicity, mechanism of action, preparation of prodrugs. Eur J Med Chem 2022; 243:114777. [PMID: 36174412 DOI: 10.1016/j.ejmech.2022.114777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
A set of fifteen triterpenoid pyrazines and pyridines was prepared from parent triterpenoid 3-oxoderivatives (betulonic acid, dihydrobetulonic acid, oleanonic acid, moronic acid, ursonic acid, heterobetulonic acid, and allobetulone). Cytotoxicity of all compounds was tested in eight cancer and two non-cancer cell lines. Evaluation of the structure-activity relationships revealed that the triterpenoid core determined whether the final molecule is active or not, while the heterocycle is able to increase the activity and modulate the specificity. Five compounds (1b, 1c, 2b, 2c, and 8) were found to be preferentially and highly cytotoxic (IC50 ≈ 1 μM) against leukemic cancer cell lines (CCRF-CEM, K562, CEM-DNR, or K562-TAX). Surprisingly, compounds 1c, 2b, and 2c are 10-fold more active in multidrug-resistant leukemia cells (CEM-DNR and K562-TAX) than in their non-resistant analogs (CCRF-CEM and K562). Pharmacological parameters were measured for the most promising candidates and two types of prodrugs were synthesized: 1) Sugar-containing conjugates, most of which had improved cell penetration and retained high cytotoxicity in the CCRF-CEM cell line, unfortunately, they lost the selectivity against resistant cells. 2) Medoxomil derivatives, among which compounds 26-28 gained activities of IC50 0.026-0.043 μM against K562 cells. Compounds 1b, 8, 21, 22, 23, and 24 were selected for the evaluation of the mechanism of action based on their highest cytotoxicity against CCRF-CEM cell line. Several experiments showed that the majority of them cause apoptosis via the mitochondrial pathway. Compounds 1b, 8, and 21 inhibit growth and disintegrate spheroid cultures of HCT116 and HeLa cells, which would be important for the treatment of solid tumors. In summary, compounds 1b, 1c, 2b, 2c, 24, and 26-28 are highly and selectively cytotoxic against cancer cell lines and were selected for future in vivo tests and further development of anticancer drugs.
Collapse
Affiliation(s)
- Jiří Hodoň
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Ivo Frydrych
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Zdeňka Trhlíková
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Jan Pokorný
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Lucie Borková
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Sandra Benická
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Martin Vlk
- Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19, Prague 1, Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Agáta Kubíčková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic; Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Martina Medvedíková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Martin Pisár
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Jan Šarek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic; Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Milan Urban
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
10
|
Mtemeli FL, Shoko R, Ndlovu J, Mugumbate G. In Silico Study of Cucurbita maxima Compounds as Potential Therapeutics Against Schistosomiasis. Bioinform Biol Insights 2022; 16:11779322221100741. [PMID: 35615403 PMCID: PMC9125113 DOI: 10.1177/11779322221100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Schistosomiasis, a disease usually related to poverty and poor sanitation, affects more than 200 million people worldwide. Since the 1970s, the medical sector has depended on a single drug, praziquantel, for the treatment of the disease. The emerging evidence of resistance of the Schistosoma parasite to praziquantel and the drug’s inefficacy against juvenile stages of the parasite makes the need to find alternative drugs an urgent matter. In this study, we explored the inhibition potential of compounds from Cucurbita maxima using molecular docking studies on Schistosoma mansoni purine nucleoside phosphorylase ( SmPNP) and Schistosoma haematobium 28-kDa glutathione S-transferase ( Sh28kDaGST). Following molecular docking studies and analysis of the active sites, the primary amino acids that were observed and shown to be involved in the SmPNP-ligand interaction are CYS 33, ARG 86, HIS 88, TYR 90, ALA 118, ALA 119, PRO 200, TYR 202, GLU 203, VAL 219, MET 221, THR 244, ASN 245, PRO 257 and HIS 259. For the Sh28dKa-ligand interaction, the primary amino acids were PHE 11, ARG 16, TRP 41, LEU 53, GLU 70 and SER 71. Momordicoside I aglycone binds to SmPNP with the lowest binding affinity of -7.9 kcal/mol by pi sigma bond interactions with HIS 88. Balsaminoside B binds to Sh28kDaGST with a binding affinity of −7.6 kcal/mol by hydrogen bond interaction with TRP 41, LEU 53 and SER 71. Pharmacokinetic studies showed favourable drug-like properties for the 10 compounds that exhibited the lowest binding energies. Therefore, we propose that bioactive compounds from C. maxima be considered as potential novel drug hits in the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Floryn Lynorah Mtemeli
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Ryman Shoko
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Joice Ndlovu
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Grace Mugumbate
- Department of Chemical Technology, Midlands State University, Gweru, Zimbabwe
| |
Collapse
|
11
|
Ramalhete C, Gonçalves BMF, Barbosa F, Duarte N, Ferreira MJU. Momordica balsamina: phytochemistry and pharmacological potential of a gifted species. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:617-646. [PMID: 35153639 PMCID: PMC8821832 DOI: 10.1007/s11101-022-09802-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/09/2022] [Indexed: 05/07/2023]
Abstract
Momordica balsamina L. (Cucurbitaceae), frequently named balsam apple, southern balsam pear or African pumpkin, is a vegetable with high nutritional value, being mostly used as food in sub-Saharan Africa. It has also been largely used in traditional medicine to treat several diseases, such as malaria fevers and diabetes. As a member of the Cucurbitaceae family, the main constituents are cucurbitane-type triterpenoids, with different oxidation patterns, named cucurbitacins. This review aims at summarizing our contribution to the phytochemical study of M. balsamina and the evaluation of the isolated cucurbitacins and derivatives as multidrug resistance reversers in cancer cells and bacteria. In this way, the selective antiproliferative activity against multidrug resistant cancer cells of cucurbitacins obtained from M. balsamina, their ability as P-glycoprotein inhibitors in cancer cells overexpressing this ABC transporter, as well as efflux pump inhibitors in resistant bacteria strains are reviewed. Moreover, the in vitro antimalarial activity of cucurbitacins and acyl derivatives against the blood and liver-stages of Plasmodium strains, and the in vivo activity of selected compounds is also reviewed. Besides our work, edible and medicinal uses, and other studies mainly reporting the biological activities of M. balsamina extracts, such as antidiabetic, antibacterial, anti-inflammatory, and antioxidant properties are also addressed.
Collapse
Affiliation(s)
- Cátia Ramalhete
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- ATLÂNTICA – Instituto Universitário, Fábrica da Pólvora de Barcarena, Barcarena, Oeiras, 2730-036 Portugal
| | - Bruno M. F. Gonçalves
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Filipa Barbosa
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Noélia Duarte
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria-José U. Ferreira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
12
|
An RP-LC-UV-TWIMS-HRMS and Chemometric Approach to Differentiate between Momordicabalsamina Chemotypes from Three Different Geographical Locations in Limpopo Province of South Africa. Molecules 2021; 26:molecules26071896. [PMID: 33801575 PMCID: PMC8036689 DOI: 10.3390/molecules26071896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Momordica balsamina leaf extracts originating from three different geographical locations were analyzed using reversed-phase liquid chromatography (RP-LC) coupled to travelling wave ion mobility (TWIMS) and high-resolution mass spectrometry (HRMS) in conjunction with chemometric analysis to differentiate between potential chemotypes. Furthermore, the cytotoxicity of the three individual chemotypes was evaluated using HT-29 colon cancer cells. A total of 11 molecular species including three flavonol glycosides, five cucurbitane-type triterpenoid aglycones and three glycosidic cucurbitane-type triterpenoids were identified. The cucurbitane-type triterpenoid aglycones were detected in the positive ionization mode following dehydration [M + H − H2O]+ of the parent compound, whereas the cucurbitane-type triterpenoid glycosides were primarily identified following adduct formation with ammonia [M + NH4]+. The principle component analysis (PCA) loadings plot and a variable influence on projection (VIP) analysis revealed that the isomeric pair balsaminol E and/or karavilagen E was the key molecular species contributing to the distinction between geographical samples. Ultimately, based on statistical analysis, it is hypothesized that balsaminol E and/or karavilagen E are likely responsible for the cytotoxic effects in HT-29 cells.
Collapse
|
13
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
14
|
Hodon J, Borkova L, Pokorny J, Kazakova A, Urban M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur J Med Chem 2019; 182:111653. [PMID: 31499360 DOI: 10.1016/j.ejmech.2019.111653] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023]
Abstract
Triterpenoids are natural products from plants and many other organisms that have various biological activities, such as antitumor, antiviral, antimicrobial, and protective activities. This review covers the synthesis and biological evaluation of pentacyclic triterpene (PT) conjugates with other molecules that have been found to increase the IC50 or improve the pharmacological profile of the parent PT. Some of these molecules are designed to target specific proteins or cellular organelles, which has resulted in highly selective lead structures for drug development. Other PT conjugates are useful for investigating their mechanism of action. This concept has been very successful: 1) Many compounds, especially mitochondria-targeting PT conjugates, have reached a selective cytotoxicity at low nanomolar concentrations in cancer cells. 2) A number of PT conjugates have had high activity against HIV or the influenza virus. 3) Fluorescent PT conjugates have been able to visualize the PT in living cells, which has allowed quantification of the uptake and distribution of the PT within the cell. 4) Biotinylated PT conjugates have been used to identify target proteins, which may help to show their mechanism of action. 5) A large number of PT conjugates with polyethylene glycol (PEG), polyamines, etc. form nanometer-sized micelles that have a much better pharmacological profile than the PT alone. In summary, the connection of a PT to an appropriate modifying molecule has resulted in extremely useful semisynthetic compounds with a high potential to treat cancer or viral infections or compounds that are useful for the study of the mechanism of action of PTs at the molecular level.
Collapse
Affiliation(s)
- Jiri Hodon
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Lucie Borkova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Jan Pokorny
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Anna Kazakova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Milan Urban
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinská 5, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
15
|
Rodionov EI, Kovaleva AA, Zorina AD, Starova GL, Trifonov RE. Synthesis of 2-Mono- and 2,2-Bis[2-(1H-tetrazol-5-yl)ethyl] Derivatives of Dipterocarpol. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s107042801803017x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Siva B, Venkanna A, Poornima B, Divya Reddy S, Boustie J, Bastien S, Jain N, Usha Rani P, Suresh Babu K. New seco-limonoids from Cipadessa baccifera: Isolation, structure determination, synthesis and their antiproliferative activities. Fitoterapia 2017; 117:34-40. [PMID: 28065696 DOI: 10.1016/j.fitote.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
A comprehensive reinvestigation of chemical constituents from CHCl3-soluble extract of Cipadessa baccifera led to the isolation of two new limonoids 1, 2 together with six known compounds 3-8. Their structures were established on the basis of extensive analysis of spectroscopic (IR, MS, 2D NMR) data. Further, a series of cipaferen G (3) derivatives were efficiently synthesized utilizing Yamaguchi esterification (2, 4, 6-trichlorobenzoyl chloride, Et3N, THF, DMAP, toluene) at the C-3 position of the limonoids core, which is being reported for the first time. The anti-proliferative activity of the isolates and the synthetic analogues were studied against HeLa, PANC 1, HepG2, SKNSH, MDA-MB-231 and IMR32 cancer cells using the sulphorodamine B assay. Among the tested compounds, 13d and 13h manifested potent activity against IMR32, HepG2 cell lines with GI50 0.013 and 0.01μM, respectively.
Collapse
Affiliation(s)
- Bandi Siva
- Natural Products Laboratory, Division of Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Arramshetti Venkanna
- Natural Products Laboratory, Division of Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Borra Poornima
- Natural Products Laboratory, Division of Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Solipeta Divya Reddy
- Natural Products Laboratory, Division of Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Joel Boustie
- UMR CNRS 6226 ISCR PNSCM, Université de Rennes 1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Schnell Bastien
- Natural Products Laboratory, Division of Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; UMR CNRS 6226 ISCR PNSCM, Université de Rennes 1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Nishant Jain
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Pathipati Usha Rani
- Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Katragadda Suresh Babu
- Natural Products Laboratory, Division of Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| |
Collapse
|
17
|
Ramalhete C, Mulhovo S, Molnar J, Ferreira MJU. Triterpenoids from Momordica balsamina: Reversal of ABCB1-mediated multidrug resistance. Bioorg Med Chem 2016; 24:5061-5067. [PMID: 27591010 DOI: 10.1016/j.bmc.2016.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/26/2016] [Accepted: 08/18/2016] [Indexed: 01/07/2023]
Abstract
The ability as P-glycoprotein (P-gp, ABCB1) modulators of thirty (1-30) triterpenoids of the cucurbitane-type was evaluated on human L5178 mouse T-lymphoma cell line transfected with the human MDR1 gene, through the rhodamine-123 exclusion assay. Compounds (1-26, and 29, 30) were previously obtained from the African medicinal plant Momordica balsamina, through both isolation (1-15) and molecular derivatization (16-26 and 29, 30). Compounds 27-28 are two new karavilagenin C (34) derivatives having succinic acid moieties. Apart from 4, 6, 8, 10 and 11, most of the isolated compounds (1-15) displayed strong MDR reversing activity in a dose-dependent mode, exhibiting a many-fold activity when compared with verapamil, used as positive control. At the lowest concentration tested, compounds 2 and 7 were the most active. However, a decrease of activity was found for the acyl derivatives (16-30). In a chemosensitivity assay, the MDR reversing activity of some of the most active compounds (1-3, 5, 7, 12-15) was further assessed on the same cell model. All the tested compounds, excepting 15, corroborated the results of the transport assay, revealing to synergistically interact with doxorubicin. Structure-activity relationship studies, taking into account previous results, showed that different substitution patterns, at both the tetracyclic nucleus and the side chain, play important role in ABCB1 reversal activity. An optimal lipophilicity was also recognized.
Collapse
Affiliation(s)
- Cátia Ramalhete
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Silva Mulhovo
- Centro de Estudos Moçambicanos e de Etnociências, Faculty of Natural Sciences and Mathematics, Pedagogical University, 21402161 Maputo, Mozambique
| | - Joseph Molnar
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
18
|
Medina-O'Donnell M, Rivas F, Reyes-Zurita FJ, Martinez A, Martin-Fonseca S, Garcia-Granados A, Ferrer-Martín RM, Lupiañez JA, Parra A. Semi-synthesis and antiproliferative evaluation of PEGylated pentacyclic triterpenes. Eur J Med Chem 2016; 118:64-78. [DOI: 10.1016/j.ejmech.2016.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022]
|