1
|
Kadry AA, Adel M, Abubshait SA, Yahya G, Sharaky M, Serya RAT, Abouzid KAM. Targeting DNA repair mechanisms: Spirobenzoxazinone and salicylamide derivatives as novel candidates for PARP-1 inhibition in cancer therapy. Bioorg Med Chem 2025; 124:118173. [PMID: 40252565 DOI: 10.1016/j.bmc.2025.118173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/21/2025]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) plays a crucial role in DNA repair, mediating approximately 90 % of ADP-ribosylation processes associated with DNA damage response. Consequently, inhibiting PARP-1 with small molecules represents a promising strategy for cancer therapy. Utilizing a structure-based design and molecular hybridization approach, we developed three novel series of spirobenzoxazinone-piperdine/salicylamide-based derivatives. These compounds were evaluated for their in vitro PARP-1 inhibitory activity, and their structure-activity relationships were analyzed. At 10 µM concentration, derivatives (18a-d) demonstrated nearly complete inhibition, and the spirocyclic derivative (7c) also achieved a considerable inhibitory effect, with IC50 values in the low micromolar range. The most promising compounds (7c, 18a-d) were tested for their antiproliferative activity against six cancer cell lines. Notably, compounds (7c) and (18d) exhibited significant antiproliferative effects against H1299 and FaDu cells, which correlated with their calculated logP values. These compounds were also tested against normal human skin fibroblasts (HSF), revealing a favorable safety profile compared to cancer cells. Basal anti-PARP-1 activity of the most promising compounds was validated in the HCT116 colorectal cancer cell line. Western blot analysis confirmed robust cleavage of PARP-1, indicating enzymatic inhibition and loss of PARP-1 activity. Combining these inhibitors with doxorubicin showed synergistic lethality in colony-formation assay. Finally, a molecular docking study was conducted to examine the binding modes of these compounds within the PARP-1 active site. The results demonstrated binding modes comparable to those of olaparib and other approved PARP-1 inhibitors, maintaining the key interactions necessary for activity. Based on these findings, compounds (7c) and (18d) emerge as promising candidates for further development in targeting anti-cancer drug resistance through PARP-1 inhibition.
Collapse
Affiliation(s)
- Alaa Ahmed Kadry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassaia, Cairo 11566, Egypt
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassaia, Cairo 11566, Egypt.
| | - Samar A Abubshait
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Molecular Biology Institute of Barcelona, Spanish National Research Council, Catalonia, Spain
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo 11796, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassaia, Cairo 11566, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassaia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Torchelsen FKVDS, Mazzeti AL, Mosqueira VCF. Drugs in preclinical and early clinical development for the treatment of Chagas´s disease: the current status. Expert Opin Investig Drugs 2024; 33:575-590. [PMID: 38686546 DOI: 10.1080/13543784.2024.2349289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Chagas disease is spreading faster than expected in different countries, and little progress has been reported in the discovery of new drugs to combat Trypanosoma cruzi infection in humans. Recent clinical trials have ended with small hope. The pathophysiology of this neglected disease and the genetic diversity of parasites are exceptionally complex. The only two drugs available to treat patients are far from being safe, and their efficacy in the chronic phase is still unsatisfactory. AREAS COVERED This review offers a comprehensive examination and critical review of data reported in the last 10 years, and it is focused on findings of clinical trials and data acquired in vivo in preclinical studies. EXPERT OPINION The in vivo investigations classically in mice and dog models are also challenging and time-consuming to attest cure for infection. Poorly standardized protocols, availability of diagnosis methods and disease progression markers, the use of different T. cruzi strains with variable benznidazole sensitivities, and animals in different acute and chronic phases of infection contribute to it. More synchronized efforts between research groups in this field are required to put in evidence new promising substances, drug combinations, repurposing strategies, and new pharmaceutical formulations to impact the therapy.
Collapse
Affiliation(s)
- Fernanda Karoline Vieira da Silva Torchelsen
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lia Mazzeti
- Department of Biomedical Sciences and Health, Academic Unit of Passos, University of Minas Gerais State, Passos, Brazil
| | | |
Collapse
|
3
|
Wu X, Zhang Y, Liu S, Liu C, Tang G, Cao X, Lei X, Peng J. Research applications of “linkers” in small molecule drugs design in fragment-based. Bioorg Chem 2022; 127:105921. [DOI: 10.1016/j.bioorg.2022.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Accepted: 05/28/2022] [Indexed: 11/02/2022]
|
4
|
Cullen DR, Gallagher A, Duncan CL, Pengon J, Rattanajak R, Chaplin J, Gunosewoyo H, Kamchonwongpaisan S, Payne A, Mocerino M. Synthesis and evaluation of tetrahydroisoquinoline derivatives against Trypanosoma brucei rhodesiense. Eur J Med Chem 2021; 226:113861. [PMID: 34624822 DOI: 10.1016/j.ejmech.2021.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
Human African Trypanosomiasis (HAT) is a neglected tropical disease caused by the parasitic protozoan Trypanosoma brucei (T. b.), and affects communities in sub-Saharan Africa. Previously, analogues of a tetrahydroisoquinoline scaffold were reported as having in vitro activity (IC50 = 0.25-70.5 μM) against T. b. rhodesiense. In this study the synthesis and antitrypanosomal activity of 80 compounds based around a core tetrahydroisoquinoline scaffold are reported. A detailed structure activity relationship was revealed, and five derivatives (two of which have been previously reported) with inhibition of T. b. rhodesiense growth in the sub-micromolar range were identified. Four of these (3c, 12b, 17b and 26a) were also found to have good selectivity over mammalian cells (SI > 50). Calculated logD values and preliminary ADME studies predict that these compounds are likely to have good absorption and metabolic stability, with the ability to passively permeate the blood brain barrier. This makes them excellent leads for a blood-brain barrier permeable antitrypanosomal scaffold.
Collapse
Affiliation(s)
- Danica R Cullen
- School of Molecular and Life Sciences - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Ashlee Gallagher
- School of Molecular and Life Sciences - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| | - Caitlin L Duncan
- School of Molecular and Life Sciences - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Jutharat Pengon
- BIOTEC Medical Molecular Biotechnology Research Group - National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Roonglawan Rattanajak
- BIOTEC Medical Molecular Biotechnology Research Group - National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Jason Chaplin
- Epichem Pty Ltd. Suite 5, 3 Brodie-Hall Drive Bentley, WA, 6102, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Sumalee Kamchonwongpaisan
- BIOTEC Medical Molecular Biotechnology Research Group - National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Alan Payne
- School of Molecular and Life Sciences - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Mauro Mocerino
- School of Molecular and Life Sciences - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
5
|
Mazzeti AL, Capelari-Oliveira P, Bahia MT, Mosqueira VCF. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J Exp Pharmacol 2021; 13:409-432. [PMID: 33833592 PMCID: PMC8020333 DOI: 10.2147/jep.s267378] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Currently, only nitroheterocyclic nifurtimox (NFX) and benznidazole (BNZ) are available for the treatment of Chagas disease, with limitations such as variable efficacy, long treatment regimens and toxicity. Different strategies have been used to discover new active molecules for the treatment of Chagas disease. Target-based and phenotypic screening led to thousands of compounds with anti-T. cruzi activity, notably the nitroheterocyclic compounds, fexinidazole and its metabolites. In addition, drug repurposing, drug combinations, re-dosing regimens and the development of new formulations have been evaluated. The CYP51 antifungal azoles, as posaconazole, ravuconazole and its prodrug fosravuconazole presented promising results in experimental Chagas disease. Drug combinations of nitroheterocyclic and azoles were able to induce cure in murine infection. New treatment schemes using BNZ showed efficacy in the experimental chronic stage, including against dormant forms of T. cruzi. And finally, sesquiterpene lactone formulated in nanocarriers displayed outstanding efficacy against different strains of T. cruzi, susceptible or resistant to BNZ, the reference drug. These pre-clinical results are encouraging and provide interesting evidence to improve the treatment of patients with Chagas disease.
Collapse
Affiliation(s)
- Ana Lia Mazzeti
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.,Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Patricia Capelari-Oliveira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
6
|
Kamdem BP, Elizabeth FI. The Role of Nitro (NO 2-), Chloro (Cl), and Fluoro (F) Substitution in the Design of Antileishmanial and Antichagasic Compounds. Curr Drug Targets 2021; 22:379-398. [PMID: 33371845 DOI: 10.2174/1389450121666201228122239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Neglected tropical diseases (NTDs) are responsible for over 500,000 deaths annually and are characterized by multiple disabilities. Leishmaniasis and Chagas diseases are among the most severe NTDs, and are caused by the Leishmania sp and Trypanosoma cruzi, respectively. Glucantime, pentamidine, and miltefosine are commonly used to treat leishmaniasis, whereas nifurtimox, benznidazole are current treatments for Chagas disease. However, these treatments are associated with drug resistance and severe side effects. Hence, the development of synthetic products, especially those containing N02, F, or Cl, are known to improve biological activity. The present work summarizes the information on the antileishmanial and antitrypanosomal activity of nitro-, chloro-, and fluorosynthetic derivatives. Scientific publications referring to halogenated derivatives in relation to antileishmanial and antitrypanosomal activities were hand-searched in databases such as SciFinder, Wiley, Science Direct, PubMed, ACS, Springer, Scielo, and so on. According to the literature information, more than 90 compounds were predicted as lead molecules with reference to their IC50/EC50 values in in vitro studies. It is worth mentioning that only active compounds with known cytotoxic effects against mammalian cells were considered in the present study. The observed activity was attributed to the presence of nitro-, fluoro-, and chloro-groups in the compound backbone. All in all, nitro and halogenated derivatives are active antileishmanial and antitrypanosomal compounds and can serve as the baseline for the development of new drugs against leishmaniasis and Chagas disease. However, efforts in in vitro and in vivo toxicity studies of the active synthetic compounds is still needed. Pharmacokinetic studies and the mechanism of action of the promising compounds need to be explored. The use of new catalysts and chemical transformation can afford unexplored halogenated compounds with improved antileishmanial and antitrypanosomal activity.
Collapse
Affiliation(s)
- Boniface P Kamdem
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Mantoani SP, de Andrade P, Chierrito TPC, Figueredo AS, Carvalho I. Potential Triazole-based Molecules for the Treatment of Neglected Diseases. Curr Med Chem 2019; 26:4403-4434. [DOI: 10.2174/0929867324666170727103901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Neglected Diseases (NDs) affect million of people, especially the poorest population
around the world. Several efforts to an effective treatment have proved insufficient
at the moment. In this context, triazole derivatives have shown great relevance in
medicinal chemistry due to a wide range of biological activities. This review aims to describe
some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased
molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis
and Leishmaniasis.
Collapse
Affiliation(s)
- Susimaire Pedersoli Mantoani
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | - Peterson de Andrade
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | | | - Andreza Silva Figueredo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| |
Collapse
|
8
|
Quantitative Structure-Activity Relationships for Structurally Diverse Chemotypes Having Anti- Trypanosoma cruzi Activity. Int J Mol Sci 2019; 20:ijms20112801. [PMID: 31181717 PMCID: PMC6600563 DOI: 10.3390/ijms20112801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Small-molecule compounds that have promising activity against macromolecular targets from Trypanosoma cruzi occasionally fail when tested in whole-cell phenotypic assays. This outcome can be attributed to many factors, including inadequate physicochemical and pharmacokinetic properties. Unsuitable physicochemical profiles usually result in molecules with a poor ability to cross cell membranes. Quantitative structure-activity relationship (QSAR) analysis is a valuable approach to the investigation of how physicochemical characteristics affect biological activity. In this study, artificial neural networks (ANNs) and kernel-based partial least squares regression (KPLS) were developed using anti-T. cruzi activity data for broadly diverse chemotypes. The models exhibited a good predictive ability for the test set compounds, yielding q2 values of 0.81 and 0.84 for the ANN and KPLS models, respectively. The results of this investigation highlighted privileged molecular scaffolds and the optimum physicochemical space associated with high anti-T. cruzi activity, which provided important guidelines for the design of novel trypanocidal agents having drug-like properties.
Collapse
|
9
|
Georgiadis MO, Kourbeli V, Ioannidou V, Karakitsios E, Papanastasiou I, Tsotinis A, Komiotis D, Vocat A, Cole ST, Taylor MC, Kelly JM. Synthesis of diphenoxyadamantane alkylamines with pharmacological interest. Bioorg Med Chem Lett 2019; 29:1278-1281. [PMID: 30981579 DOI: 10.1016/j.bmcl.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/31/2023]
Abstract
In this work, the synthesis and the pharmacological evaluation of diphenoxyadamantane alkylamines Ia-f and IIa-f is described. The new diphenoxy-substituted adamantanes share structural features present in trypanocidal and antitubercular agents. 1-Methylpiperazine derivative Ia is the most potent against T. brucei compound, whilst its hexylamine congener IIf exhibits a significant antimycobacterial activity.
Collapse
Affiliation(s)
- Markos-Orestis Georgiadis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece
| | - Violeta Kourbeli
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece
| | - Vaya Ioannidou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece
| | - Evangelos Karakitsios
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece
| | - Ioannis Papanastasiou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece.
| | - Andrew Tsotinis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece
| | - Dimitri Komiotis
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, 41221 Larissa, Greece
| | - Anthony Vocat
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | - Stewart T Cole
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland; Institut Pasteur, 25-28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1 E7HT, UK
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1 E7HT, UK
| |
Collapse
|
10
|
Martín-Escolano R, Moreno-Viguri E, Santivañez-Veliz M, Martin-Montes A, Medina-Carmona E, Paucar R, Marín C, Azqueta A, Cirauqui N, Pey AL, Pérez-Silanes S, Sánchez-Moreno M. Second Generation of Mannich Base-Type Derivatives with in Vivo Activity against Trypanosoma cruzi. J Med Chem 2018; 61:5643-5663. [PMID: 29883536 DOI: 10.1021/acs.jmedchem.8b00468] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chagas disease is a potentially life-threatening and neglected tropical disease caused by Trypanosoma cruzi. One of the most important challenges related to Chagas disease is the search for new, safe, effective, and affordable drugs since the current therapeutic arsenal is inadequate and insufficient. Here, we report a simple and cost-effective synthesis and the biological evaluation of the second generation of Mannich base-type derivatives. Compounds 7, 9, and 10 showed improved in vitro efficiency and lower toxicity than benznidazole, in addition to no genotoxicity; thus, they were applied in in vivo assays to assess their activity in both acute and chronic phases of the disease. Compound 10 presented a similar profile to benznidazole from the parasitological perspective but also yielded encouraging data, as no toxicity was observed. Moreover, compound 9 showed lower parasitaemia and higher curative rates than benznidazole, also with lower toxicity in both acute and chronic phases. Therefore, further studies should be considered to optimize compound 9 to promote its further preclinical evaluation.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Departament of Parasitology , Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada , Severo Ochoa s/n , E-18071 Granada , Spain
| | - Elsa Moreno-Viguri
- Universidad de Navarra , Department of Organic and Pharmaceutical Chemistry, Instituto de Salud Tropical , Pamplona 31008 , Spain
| | - Mery Santivañez-Veliz
- Universidad de Navarra , Department of Organic and Pharmaceutical Chemistry, Instituto de Salud Tropical , Pamplona 31008 , Spain
| | - Alvaro Martin-Montes
- Departament of Parasitology , Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada , Severo Ochoa s/n , E-18071 Granada , Spain
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, Faculty of Sciences , University of Granada , Av. Fuentenueva s/n , 18071 Granada , Spain
| | - Rocío Paucar
- Universidad de Navarra , Department of Organic and Pharmaceutical Chemistry, Instituto de Salud Tropical , Pamplona 31008 , Spain
| | - Clotilde Marín
- Departament of Parasitology , Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada , Severo Ochoa s/n , E-18071 Granada , Spain
| | - Amaya Azqueta
- Universidad de Navarra , Department of Pharmacology and Toxicology , Pamplona 31008 , Spain
| | - Nuria Cirauqui
- Department of Pharmaceutical Sciences , Federal University of Rio de Janeiro , Rio de Janeiro 21949-900 , Brazil
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences , University of Granada , Av. Fuentenueva s/n , 18071 Granada , Spain
| | - Silvia Pérez-Silanes
- Universidad de Navarra , Department of Organic and Pharmaceutical Chemistry, Instituto de Salud Tropical , Pamplona 31008 , Spain
| | - Manuel Sánchez-Moreno
- Departament of Parasitology , Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada , Severo Ochoa s/n , E-18071 Granada , Spain
| |
Collapse
|
11
|
Cyrhetrenylaniline and new organometallic phenylimines derived from 4- and 5-nitrothiophene: Synthesis, characterization, X-Ray structures, electrochemistry and in vitro anti- T. brucei activity. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Papadopoulou MV, Bloomer WD, Rosenzweig HS. The antitubercular activity of various nitro(triazole/imidazole)-based compounds. Bioorg Med Chem 2017; 25:6039-6048. [DOI: 10.1016/j.bmc.2017.09.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 02/04/2023]
|
13
|
Nitrotriazole-Based Compounds as Antichagasic Agents in a Long-Treatment In Vivo Assay. Antimicrob Agents Chemother 2017; 61:AAC.02717-16. [PMID: 28242662 DOI: 10.1128/aac.02717-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/15/2022] Open
Abstract
3-Nitrotriazole-based compounds belonging to various chemical subclasses were found to be very effective against Chagas disease both in vitro and in vivo after a short administration schedule. In this study, five compounds with specific characteristics were selected to be administered for longer periods of time to mice infected with the virulent Trypanosoma cruzi Y strain to further evaluate their effectiveness as antichagasic agents and whether or not potential adverse effects occur. Benznidazole was included for comparison purposes. Complete parasitemia depletion, weight gain, 100% survival, and a lack of myocardial inflammation were observed with four of the compounds and benznidazole administered intraperitoneally at 15 or 20 mg/kg of body weight/day for 40 days. There was a significant reduction in the number of treatment days (number of doses) necessary to induce parasitemia suppression with all four compounds compared to that required with benznidazole. Partial cures were obtained with only one compound tested at 15 mg/kg/day and on the schedule mentioned above but not with benznidazole. Taken together, our data suggest that these compounds demonstrate potent trypanocidal activity comparable to or better than that of the reference drug, benznidazole, when they are administered at the same dose and on the same schedule.
Collapse
|
14
|
Cullen DR, Pengon J, Rattanajak R, Chaplin J, Kamchonwongpaisan S, Mocerino M. Scoping Studies into the Structure-Activity Relationship (SAR) of Phenylephrine-Derived Analogues as Inhibitors ofTrypanosoma brucei rhodesiense. ChemistrySelect 2016. [DOI: 10.1002/slct.201601059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Danica R. Cullen
- Department of Chemistry; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| | - Jutharat Pengon
- BIOTEC Medical Molecular Biology Research Unit; National Science and Technology Development Agency; 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Roonglawan Rattanajak
- BIOTEC Medical Molecular Biology Research Unit; National Science and Technology Development Agency; 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Jason Chaplin
- Epichem Pty Ltd; Suite 5, 3 Brodie-Hall Drive Bentley WA 6102 Australia
| | - Sumalee Kamchonwongpaisan
- BIOTEC Medical Molecular Biology Research Unit; National Science and Technology Development Agency; 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Mauro Mocerino
- Department of Chemistry; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| |
Collapse
|
15
|
Russell S, Rahmani R, Jones AJ, Newson HL, Neilde K, Cotillo I, Rahmani Khajouei M, Ferrins L, Qureishi S, Nguyen N, Martinez-Martinez MS, Weaver DF, Kaiser M, Riley J, Thomas J, De Rycker M, Read KD, Flematti GR, Ryan E, Tanghe S, Rodriguez A, Charman SA, Kessler A, Avery VM, Baell JB, Piggott MJ. Hit-to-Lead Optimization of a Novel Class of Potent, Broad-Spectrum Trypanosomacides. J Med Chem 2016; 59:9686-9720. [DOI: 10.1021/acs.jmedchem.6b00442] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Stephanie Russell
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Raphaël Rahmani
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Amy J. Jones
- Eskitis
Institute for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | - Harriet L. Newson
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Kevin Neilde
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- GlaxoSmithKline, 28760 Tres Cantos, Spain
| | | | - Marzieh Rahmani Khajouei
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Lori Ferrins
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sana Qureishi
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Nghi Nguyen
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Donald F. Weaver
- Department
of Chemistry, Dalhousie University, Halifax Nova Scotia B3H 4R2, Canada
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse, 4051 Basel, Switzerland
- University of Basel, Petesplatz
1, 4003 Basel, Switzerland
| | - Jennifer Riley
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - John Thomas
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Manu De Rycker
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Kevin D. Read
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Gavin R. Flematti
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Eileen Ryan
- Centre
for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Scott Tanghe
- Anti-Infectives
Screening Core, New York University School of Medicine, New York, New York 10010, United States
| | - Ana Rodriguez
- Anti-Infectives
Screening Core, New York University School of Medicine, New York, New York 10010, United States
| | - Susan A. Charman
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Centre
for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | | | - Vicky M. Avery
- Eskitis
Institute for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | - Jonathan B. Baell
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew J. Piggott
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| |
Collapse
|
16
|
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Wilkinson SR, Szular J, Kaiser M. Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur J Med Chem 2016; 123:895-904. [PMID: 27543881 PMCID: PMC5049494 DOI: 10.1016/j.ejmech.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023]
Abstract
3-Nitro-1H-1,2,4-triazole-based acetamides bearing a biphenyl- or a phenoxyphenyl moiety have shown remarkable antichagasic activity both in vitro and in an acute murine model, as well as substantial in vitro antileishmanial activity but lacked activity against human African trypanosomiasis. We have shown now that by inserting a methylene group in the linkage to obtain the corresponding propanamides, both antichagasic and in particular anti-human African trypanosomiasis potency was increased. Therefore, IC50 values at low nM concentrations against both T. cruzi and T. b. rhodesiense, along with huge selectivity indices were obtained. Although several propanamides were active against Leishmania donovani, they were slightly less potent than their corresponding acetamides. There was a good correlation between lipophilicity (clogP value) and trypanocidal activity, for all new compounds. Type I nitroreductase, an enzyme absent from the human host, played a role in the activation of the new compounds, which may function as prodrugs. Antichagasic activity in vivo was also demonstrated with representative propanamides.
Collapse
Affiliation(s)
| | | | | | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Joanna Szular
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Parasite Chemotherapy, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Wilkinson SR, Szular J, Kaiser M. Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds. Eur J Med Chem 2016; 117:179-86. [PMID: 27092415 PMCID: PMC4876673 DOI: 10.1016/j.ejmech.2016.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/27/2022]
Abstract
A small series of 5-nitro-2-aminothiazole-based amides containing arylpiperazine-, biphenyl- or aryloxyphenyl groups in their core were synthesized and evaluated as antitrypanosomatid agents. All tested compounds were active or moderately active against Trypanosoma cruzi amastigotes in infected L6 cells and Trypanosoma brucei brucei, four of eleven compounds were moderately active against Leishmania donovani axenic parasites while none were deemed active against T. brucei rhodesiense. For the most active/moderately active compounds a moderate selectivity against each parasite was observed. There was good correlation between lipophilicity (clogP value) and antileishmanial activity or toxicity against L6 cells. Similarly, good correlation existed between clogP values and IC50 values against T. cruzi in structurally related subgroups of compounds. Three compounds were more potent as antichagasic agents than benznidazole but were not activated by the type I nitrorectusase (NTR).
Collapse
Affiliation(s)
| | | | | | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Joanna Szular
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Parasite Chemotherapy, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Bhambra AS, Edgar M, Elsegood MR, Li Y, Weaver GW, Arroo RR, Yardley V, Burrell-Saward H, Krystof V. Design, synthesis and antitrypanosomal activities of 2,6-disubstituted-4,5,7-trifluorobenzothiophenes. Eur J Med Chem 2016; 108:347-353. [DOI: 10.1016/j.ejmech.2015.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022]
|