1
|
Yang X, Wang L, Lin P, Ning Y, Lin Y, Xie Y, Zhao C, Mu L, Xu C. Discovery of Artesunate (ARS) PROTACs as GPX4 protein degraders for the treatment of bladder cancer. Eur J Med Chem 2025; 293:117710. [PMID: 40339473 DOI: 10.1016/j.ejmech.2025.117710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025]
Abstract
Bladder cancer is the second most prevalent malignancy of the urinary system worldwide, with high incidence and mortality rates. However, existing drugs for bladder cancer treatment often cause numerous adverse reactions. Although artesunate (ARS) exhibits anti-bladder cancer activity, its scope is rather limited and the specific targets remain unclear. Therefore, in this study, the Proteolysis-Targeting Chimera (PROTAC) technology was used to design and synthesize novel ARS derivatives. The antitumor activities of these compounds were evaluated against three human bladder cancer cell lines (T24, RT4, and J82). Of these compounds, A7 exhibited 12-fold stronger antiproliferative activity against bladder cancer cells than ARS. Molecular docking, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA) and western blotting studies demonstrated that A7 directly targeted and degraded glutathione peroxidase 4 (GPX4) protein through the ubiquitin-proteasome system. A7 further induced bladder cancer cell ferroptosis. Furthermore, A7 showed potent tumor suppressive activity in a xenograft T24 nude mouse model. In conclusion, our findings indicate that A7 exerts notable antitumor effects against bladder cancer in vitro and in vivo. This study highlights the tremendous potential of the PROTAC technology in enhancing the efficacy of natural products and identifying therapeutic targets, demonstrating its broad application prospects in the development of natural products-based drugs.
Collapse
Affiliation(s)
- Xiyue Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Linghui Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Peiyu Lin
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yueni Ning
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yusi Lin
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yingying Xie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Congke Zhao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Jian Y, Yue P, Qiao H. 28-Day Repeated Dose Toxicity and Toxicokinetics Study on Dihydroartemisinin (DHA) in SD Rats. J Appl Toxicol 2025; 45:755-766. [PMID: 39710504 DOI: 10.1002/jat.4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Dihydroartemisinin (DHA) is an effective antimalarial drug with potential antitumor efficacy, yet toxicological information is limited. The present study was designed to evaluate the potential toxicity of oral DHA. DHA was administered orally by gavage to SD rats at doses of 0, 25, 50, and 75/60 mg/kg b.w./day for 28 days, followed by a 4-week recovery period. Concomitant toxicokinetics was also evaluated. Due to potential toxicity affecting survival, only the female top dose was adjusted from 75 to 60 mg/kg on study day 14 (D14). Female rats in the low-dose group and male rats in the low- and medium-dose groups did not show any signs of toxicity. In contrast, male rats in the high-dose group and female rats in the medium- and high-dose groups showed significant toxic effects, including weight loss, hair loss, and gastrointestinal reactions (soft stools, perianal dirt, and fecal abnormalities). At the end of administration, female rats in the 75/60 (dose-adjusted) mg/kg dose group had significantly higher reticulocytes (Ret% and RETIC) and alanine aminotransferase (ALT), increased liver weights, and significantly lower hemoglobin (HGB). In addition, histopathology showed mild vacuolation of hepatocytes. These findings suggest that female rats have a greater toxic response than males, and toxicokinetics further demonstrate this sex difference. However, the toxic effects of DHA were reversed at the end of the 4-week recovery period. Therefore, the liver was identified as the primary target organ. The no-observed-adverse-effect-level (NOAEL) was 25 and 50 mg/kg b.w./day in female and male rats, respectively.
Collapse
Affiliation(s)
- Yang Jian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Peng Yue
- Jiangsu Center for Safety Evaluation of Drugs, Jiangsu Provincial Institute of Materia Medica, Nanjing, China
| | - Hongqun Qiao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
3
|
Meher RK, Mir SA, Shilbayeh SAR, Khan SUD, Rasheed S, Vohra S, Ekka NJ, Nayak B, Khan S. Analysis of anti-cancer and anti-inflammatory activity in Typhonium flagelliforme rhizome extract by induction of apoptosis: An in-vitro study. Fitoterapia 2025; 182:106470. [PMID: 40054700 DOI: 10.1016/j.fitote.2025.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Plants are major source of bioactive compounds. Typhonium flagelliforme is an important medicinal plant that has various health benefits and crucial properties including analgesic activity, antimicrobial activity, anti-inflammatory activity and anticancer activity. This study aims to determine the anticancer and anti-inflammatory potential in aqueous, acetone, ethanolic, and methanolic extracts of Typhonium flagelliforme against various cell lines using various molecular techniques. The current in-vitro findings demonstrate that methanolic extract contains excellent anti-cancer potential. It induced apoptosis in different cell lines at low concentrations. Moreover, we observed the cell cycle arrest by the induction of cellular stress at the G2/M phase in SCC-225 cells. The mitochondrial transmembrane potential disruption indicated that active compounds of T. flagelliforme photochemicals induce apoptosis and modulate ROS and NO2 activity in cancer cells. The results indicate that methanolic extracts promote the proliferation of the macrophage cell line (Raw 264.7) relative to untreated cells. Methanolic extract of T. flagelliforme demonstrated superior anti-inflammatory activity compared to other extracts. The proliferation of T. flagelliforme plant extract-treated oral cancer cells was significantly inhibited by the downregulation of NEK-7 expression compared to LPS alone. The outcome of the current work will be helpful in developing the understanding of the anticancer potential of bioactive compounds of T. flagelliforme against different cancer lines for the design and development of novel anti-cancer drugs. Moreover, the current study suggested that selected bioactive compounds can be further studied at the molecular level to evaluate the potential for the treatment of cancer and associated malignancies.
Collapse
Affiliation(s)
- Rajesh Kumar Meher
- School of Life Sciences, Sambalpur University, Jyoti Vihar, 768019, Odisha, India
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar, 768019, Odisha, India
| | - Sireen Abdul Rahim Shilbayeh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Shahzad Rasheed
- Department of Anatomy and Physiology, College of Medicine, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nirius Jenan Ekka
- School of Life Sciences, Sambalpur University, Jyoti Vihar, 768019, Odisha, India
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Jyoti Vihar, 768019, Odisha, India.
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, UP 247554, India.
| |
Collapse
|
4
|
Fotopoulos I, Hadjipavlou-Litina D. Approaches for the discovery of cinnamic acid derivatives with anticancer potential. Expert Opin Drug Discov 2024; 19:1281-1291. [PMID: 39105559 DOI: 10.1080/17460441.2024.2387122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Cinnamic acid is a privileged scaffold for the design of biologically active compounds with putative anticancer potential, following different synthetic methodologies and procedures. Since there is a need for the production of potent anticancer, cinnamate moiety can significantly contribute in the design of new and more active anticancer agents. AREAS COVERED In this review, the authors provide a review on the synthetic approaches for the discovery of cinnamic acid derivatives with anticancer potential. Results from molecular simulations, hybridization, and chemical derivatization along with biological experiments in vitro and structural activity relationships are given, described, and discussed by the authors. Information for the mechanism of action is taken from original literature sources. EXPERT OPINION The authors suggest that (i) numerous areas of biology-pharmacology need to be considered: selectivity, in vivo studies, toxicity and drug-likeness, the mechanism of action in animals and humans, development of more efficient assays for various cancer types; (ii) hybridization techniques outbalance in the discovery and production of compounds with higher activity and greater selectivity; (iii) repositioning offers new anticancer cinnamic agents.
Collapse
Affiliation(s)
- Ioannis Fotopoulos
- Department of Pharmaceutical Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
5
|
Guo W, Liu Y, Chen B, Fan L. Target prediction and potential application of dihydroartemisinin on hepatocarcinoma treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7711-7724. [PMID: 38713259 DOI: 10.1007/s00210-024-03123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
With high incidence of hepatocarcinoma and limited effective treatments, most patients suffer in pain. Antitumor drugs are single-targeted, toxicity, causing adverse side effects and resistance. Dihydroartemisinin (DHA) inhibits tumor through multiple mechanisms effectively. This study explores and evaluates safety and potential mechanism of DHA towards human hepatocarcinoma based on network pharmacology in a comprehensive way. Adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of DHA were evaluated with pkCSM, SwissADME, and ADMETlab. Potential targets of DHA were obtained from SwissTargetPrediction, Drugbank, TargetNET, and PharmMapper. Target gene of hepatocarcinoma was obtained from OMIM, GeneCards, and DisGeNET. Overlapping targets and hub genes were identified and analyzed for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway. Molecular docking was utilized to investigate the interactions sites and hydrogen bonds. Cell counting kit-8 (CCK8), wound healing, invasion, and migration assays on HepG2 and SNU387 cell proved DHA inhibits malignant biological features of hepatocarcinoma cell. DHA is safe and desirable for clinical application. A total of 131 overlapping targets were identified. Biofunction analysis showed targets were involved in kinase activity, protein phosphorylation, intracellular reception, signal transduction, transcriptome dysregulation, PPAR pathway, and JAK-STAT signaling axis. Top 9 hub genes were obtained using MCC (Maximal Clique Centrality) algorithm, namely CDK1, CCNA2, CCNB1, CCNB2, KIF11, CHEK1, TYMS, AURKA, and TOP2A. Molecular docking suggests that all hub genes form a stable interaction with DHA for optimal binding energy were all less than - 5 kcal/mol. Dihydroartemisinin might be a potent and safe anticarcinogen based on its biological safety and effective therapeutic effect.
Collapse
Affiliation(s)
- Wenjia Guo
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu'e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bingdi Chen
- The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Lieying Fan
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
7
|
Adhikari S, Nath P, Das A, Datta A, Baildya N, Duttaroy AK, Pathak S. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomed Pharmacother 2024; 171:116211. [PMID: 38290253 DOI: 10.1016/j.biopha.2024.116211] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.
Collapse
Affiliation(s)
- Suman Adhikari
- Department of Chemistry, Govt. Degree Collage, Dharmanagar, Tripura (N) 799253, India.
| | - Priyatosh Nath
- Department of Human Physiology, Tripura University, Suryamaninagar, West Tripura 799022, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit Datta
- Department of Botany, Ambedkar College, Fatikroy, Unakoti 799290, Tripura, India
| | - Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda 732209, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
8
|
Marchesi E, Perrone D, Navacchia ML. Molecular Hybridization as a Strategy for Developing Artemisinin-Derived Anticancer Candidates. Pharmaceutics 2023; 15:2185. [PMID: 37765156 PMCID: PMC10536797 DOI: 10.3390/pharmaceutics15092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Artemisinin is a natural compound extracted from Artemisia species belonging to the Asteraceae family. Currently, artemisinin and its derivatives are considered among the most significant small-molecule antimalarial drugs. Artemisinin and its derivatives have also been shown to possess selective anticancer properties, however, there are several limitations and gaps in knowledge that retard their repurposing as effective anticancer agents. Hybridization resulting from a covalent combination of artemisinin with one or more active pharmacophores has emerged as a promising approach to overcome several issues. The variety of hybridization partners allows improvement in artemisinin activity by tuning the ability of conjugated artemisinin to interact with various molecule targets involved in multiple biological pathways. This review highlights the current scenario of artemisinin-derived hybrids with potential anticancer activity. The synthetic approaches to achieve the corresponding hybrids and the structure-activity relationships are discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy
| |
Collapse
|
9
|
Ashraf W, Ahmad T, Reynoird N, Hamiche A, Mély Y, Bronner C, Mousli M. Natural and Synthetic Anticancer Epidrugs Targeting the Epigenetic Integrator UHRF1. Molecules 2023; 28:5997. [PMID: 37630248 PMCID: PMC10459542 DOI: 10.3390/molecules28165997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tanveer Ahmad
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Nicolas Reynoird
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| |
Collapse
|
10
|
Novel Thioethers of Dihydroartemisinin Exhibiting Their Biological Activities. HETEROATOM CHEMISTRY 2023. [DOI: 10.1155/2023/6761186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Eleven conjugates between dihydroartemisinin (DHA) with thiols containing both ether and thioether bonds were designed, synthesized by a two-step procedure including etherification and S-alkylation. Analysis of the NMR spectral data indicated that the dimer of DHA with thiols 6-mercaptopurine and 2-mercaptoimidazole was produced with yields of 31% and 62%, respectively. Furthermore, the tautomerization of thiol 5-methoxy-2-mercaptobenzimidazole led to the formation of a mixture of two isomers in which they might be interchangeable through a dynamic tautomeric equilibrium in the solution. Screening in vitro biological activities revealed that most of the synthesized conjugates showed good cytotoxic and anti-inflammatory activity, while three of them displayed α-glucosidase inhibitory activity. Notably, two conjugates 5d and 5e of DHA with thiols 2-mercaptopyrimidine and 2-mercaptobenzothiazole had an effect in all tested activities in which conjugate 5e is the most potent.
Collapse
|
11
|
Deng H, Xu Q, Guo HY, Huang X, Chen F, Jin L, Quan ZS, Shen QK. Application of cinnamic acid in the structural modification of natural products: A review. PHYTOCHEMISTRY 2023; 206:113532. [PMID: 36470328 DOI: 10.1016/j.phytochem.2022.113532] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Natural products can generally exhibit a variety of biological activities, but most show mediocre performance in preliminary activity evaluation. Natural products often require structural modification to obtain promising lead compounds. Cinnamic acid (CA) is readily available and has diverse biological activities and low cytotoxicity. Introducing CA into natural products may improve their performance, enhance biological activity, and reduce toxic side effect. Herein, we aimed to discuss related applications of CA in the structural modification of natural products and provide a theoretical basis for future derivatization and drug development of natural products. Published articles, web databases (PubMed, Science Direct, SCI Finder, and CNKI), and clinical trial websites (https://clinicaltrials.gov/) related to natural products and CA derivatives were included in the discussion. Based on the inclusion criteria, 128 studies were selected and discussed herein. Screening natural products of CA derivatives allowed for classification by their biological activities. The full text is organized according to the biological activities of the derivatives, with the following categories: anti-tumor, neuroprotective, anti-diabetic, anti-microbial, anti-parasitic, anti-oxidative, anti-inflammatory, and other activities. The biological activity of each CA derivative is discussed in detail. Notably, most derivatives exhibited enhanced biological activity and reduced cytotoxicity compared with the lead compound. CA has various advantages and can be widely used in the synthesis of natural product derivatives to enhance the properties of drug candidates or lead compounds.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
12
|
Yadav K, Singh D, Singh MR, Chauhan NS, Minz S, Pradhan M. Nanobiomaterials as novel modules in the delivery of artemisinin and its derivatives for effective management of malaria. NATURAL PRODUCTS IN VECTOR-BORNE DISEASE MANAGEMENT 2023:447-466. [DOI: 10.1016/b978-0-323-91942-5.00003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Xu C, Xiao L, Lin P, Yang X, Zou X, Mu L, Yang X. Synthesis and Antitumor Activities of Novel Mitochondria-Targeted Dihydroartemisinin Ether Derivatives. ACS OMEGA 2022; 7:38832-38846. [PMID: 36340114 PMCID: PMC9631890 DOI: 10.1021/acsomega.2c04562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ten novel mitochondria-targeted dihydroartemisinin ether derivatives were designed, synthesized, and evaluated for antitumor activity against five cancer cell lines in vitro. Profoundly, compound D8-T (IC50 = 56.9 nM) showed the most potent antiproliferative activity against the T24 cells with low cytotoxicity in normal human umbilical vein endothelial cells. High-performance liquid chromatography analysis confirmed that D8-T targeted mitochondria 6.3-fold higher than DHA. ATP content assay demonstrated that D8-T decreased the ATP level of bladder cancer cells. The effect of D8-T on cell apoptosis was determined by flow cytometry and western blot of Bax and Bcl-2. Surprisingly, the results indicated that D8-T did not induce bladder cancer cell apoptosis. In contrast, the cell cycle analysis and western blot of CDK4, CDK6, cyclin D1, and p21 demonstrated that the cancer cell cycle was arrested at the G1 phase after D8-T treatment. Furthermore, the consistent results were received by RNA-seq assay. These promising findings implied that D8-T could serve as a great candidate against bladder cancer for further investigation.
Collapse
|
14
|
Zhang J, Li Y, Wan J, Zhang M, Li C, Lin J. Artesunate: A review of its therapeutic insights in respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154259. [PMID: 35849970 DOI: 10.1016/j.phymed.2022.154259] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Artesunate, as a semi-synthetic artemisinin derivative of sesquiterpene lactone, is widely used in clinical antimalarial treatment due to its endoperoxide group. Recent studies have found that artesunate may have multiple pharmacological effects, indicating its significant therapeutic potential in multiple respiratory diseases. PURPOSE This review aims to summarize proven and potential therapeutic effects of artesunate in common respiratory disorders. STUDY DESIGN This review summarizes the pharmacological properties of artesunate and then interprets the function of artesunate in various respiratory diseases in detail, such as bronchial asthma, chronic obstructive pulmonary disease, lung injury, lung cancer, pulmonary fibrosis, coronavirus disease 2019, etc., on different target cells and receptors according to completed and ongoing in silico, in vitro, and in vivo studies (including clinical trials). METHODS Literature was searched in electronic databases, including Pubmed, Web of Science and CNKI with the primary keywords of 'artesunate', 'pharmacology', 'pharmacokinetics', 'respiratory disorders', 'lung', 'pulmonary', and secondary search terms of 'Artemisia annua L.', 'artemisinin', 'asthma', 'chronic obstructive lung disease', 'lung injury', 'lung cancer', 'pulmonary fibrosis', 'COVID-19' and 'virus' in English and Chinese. All experiments were included. Reviews and irrelevant studies to the therapeutic effects of artesunate on respiratory diseases were excluded. Information was sort out according to study design, subject, intervention, and outcome. RESULTS Artesunate is promising to treat multiple common respiratory disorders via various mechanisms, such as anti-inflammation, anti-oxidative stress, anti-hyperresponsiveness, anti-proliferation, airway remodeling reverse, induction of cell death, cell cycle arrest, etc. CONCLUSION: Artesunate has great potential to treat various respiratory diseases.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China
| | - Yun Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China; Beijing University of Chinese Medicine, Beijing 100-029, China
| | - Jingxuan Wan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China
| | - Mengyuan Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China
| | - Chunxiao Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China; Peking University China‑Japan Friendship School of Clinical Medicine, Beijing 100-029, China
| | - Jiangtao Lin
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China.
| |
Collapse
|
15
|
Barbosa FAR, Rode MP, Santos Canto RF, Silva AH, Creczynski‐Pasa TB, Braga AL. Antiproliferative Effect and Autophagy Inhibition of Dihydropyrimidinone‐Cinnamic Acid Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Flavio Augusto Rocha Barbosa
- Laboratório de Síntese de Substâncias de Selênio Bioativas (LabSelen) Departamento de Química Universidade Federal de Santa Catarina (UFSC) 88040-900 Florianópolis SC Brazi
| | - Michele Patrícia Rode
- Grupo de Estudos de Interações entre Micro e Macromoléculas (GEIMM) Departamento de Ciências Farmacêuticas Universidade Federal de Santa Catarina (UFSC) 88040-370 Florianópolis SC Brazil
| | - Rômulo Faria Santos Canto
- Laboratório de Química Medicinal de Compostos de Selênio (QMCSe) Departamento de Farmacociências Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) 90050-170 Porto Alegre RS Brazil
| | - Adny Henrique Silva
- Grupo de Estudos de Interações entre Micro e Macromoléculas (GEIMM) Departamento de Ciências Farmacêuticas Universidade Federal de Santa Catarina (UFSC) 88040-370 Florianópolis SC Brazil
| | - Tânia Beatriz Creczynski‐Pasa
- Grupo de Estudos de Interações entre Micro e Macromoléculas (GEIMM) Departamento de Ciências Farmacêuticas Universidade Federal de Santa Catarina (UFSC) 88040-370 Florianópolis SC Brazil
| | - Antonio Luiz Braga
- Laboratório de Síntese de Substâncias de Selênio Bioativas (LabSelen) Departamento de Química Universidade Federal de Santa Catarina (UFSC) 88040-900 Florianópolis SC Brazi
| |
Collapse
|
16
|
Cinnamamide derivatives with 4-hydroxypiperidine moiety enhance effect of doxorubicin to cancer cells and protect cardiomyocytes against drug-induced toxicity through CBR1 inhibition mechanism. Life Sci 2022; 305:120777. [DOI: 10.1016/j.lfs.2022.120777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/06/2022]
|
17
|
Guo M, Jin J, Zhao D, Rong Z, Cao LQ, Li AH, Sun XY, Jia LY, Wang YD, Huang L, Li YH, He ZJ, Li L, Ma RK, Lv YF, Shao KK, Cao HL. Research Advances on Anti-Cancer Natural Products. Front Oncol 2022; 12:866154. [PMID: 35646647 PMCID: PMC9135452 DOI: 10.3389/fonc.2022.866154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Malignant tumors seriously threaten people's health and life worldwide. Natural products, with definite pharmacological effects and known chemical structures, present dual advantages of Chinese herbs and chemotherapeutic drug. Some of them exhibit favorable anti-cancer activity. Natural products were categorized into eight classes according to their chemical structures, including alkaloids, terpenoids and volatile oils, inorganic salts, phenylpropanoids, flavonoids and isoflavones, quinone, saponins and polysaccharides. The review focused on the latest advances in anti-cancer activity of representative natural products for every class. Additionally, anti-cancer molecular mechanism and derivatization of natural products were summarized in detail, which would provide new core structures and new insights for anti-cancer new drug development.
Collapse
Affiliation(s)
- Meng Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dong Zhao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Zheng Rong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu-Qi Cao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ai-Hong Li
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
| | - Xiao-Ying Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li-Yi Jia
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yin-Di Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ling Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi-Heng Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhong-Jing He
- College of Life Sciences, Northwest University, Xi’an, China
| | - Long Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Rui-Kang Ma
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yi-Fan Lv
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ke-Ke Shao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hui-Ling Cao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
18
|
Feng LS, Cheng JB, Su WQ, Li HZ, Xiao T, Chen DA, Zhang ZL. Cinnamic acid hybrids as anticancer agents: A mini-review. Arch Pharm (Weinheim) 2022; 355:e2200052. [PMID: 35419808 DOI: 10.1002/ardp.202200052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Cancer, as a long-lasting and dramatic disease, affects almost one-third of human beings globally. Chemotherapeutics play an important role in cancer treatment, but multidrug resistance and severe adverse effects have already become the main causes of failure in tumor chemotherapy. Therefore, it is an urgent need to develop novel chemotherapeutics. Cinnamic acid contains a ubiquitous α,β-unsaturated acid moiety presenting potential therapeutic effects in the treatment of cancer as these derivatives could act on cancer cells by diverse mechanisms of action. Accordingly, cinnamic acid derivatives are critical scaffolds in discovering novel anticancer agents. This review provides a comprehensive overview of cinnamic acid hybrids as anticancer agents. The structure-activity relationship, as well as the mechanisms of action, are also discussed, covering articles published from 2012 to 2021.
Collapse
Affiliation(s)
- Lian-Shun Feng
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Jin-Bo Cheng
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Wen-Qi Su
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Hong-Ze Li
- WuXi AppTec Co., Ltd., Chengdu, Peoples' Republic of China
| | - Tao Xiao
- WuXi AppTec Co., Ltd., Chengdu, Peoples' Republic of China
| | - De-An Chen
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Zhi-Liu Zhang
- WuXi AppTec Co., Ltd., Shanghai, Peoples' Republic of China
| |
Collapse
|
19
|
Xia T, Liu S, Xu G, Zhou S, Luo Z. Dihydroartemisinin induces cell apoptosis through repression of UHRF1 in prostate cancer cells. Anticancer Drugs 2022; 33:e113-e124. [PMID: 34387595 DOI: 10.1097/cad.0000000000001156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Prostate cancer (PCa) seriously jeopardizes men's health worldwide. Dihydroartemisinin, which is an effective antimalarial agent, has shown potential anticancer effects in various human cancer cell lines, including PCa cells. However, the mechanisms underlying the anticancer activity of dihydroartemisinin are not fully understood. Ubiquitin-like with plant homeodomain and ring finger domain 1 (UHRF1) is highly expressed in a variety of tumors and is negatively correlated with the prognosis of various tumors. We reported previously that UHRF1 is downregulated during apoptosis induced by dihydroartemisinin in PC-3 PCa cells. In this study, we transfected PC-3 cells with lentiviruses containing UHRF1 or shRNA-UHRF1. Then, the cells were treated with dihydroartemisinin at different concentrations. Our data showed that overexpression of UHRF1 promoted cell proliferation and migration in PC-3 cells, inhibited cell apoptosis, increased cell proportion in G2 phase, increased DNA methyltransferase 1 and decreased p16INK4A expression at mRNA and protein levels. Downregulation of UHRF1 produces the opposite results. Moreover, the phenomena caused by overexpression of UHRF1 were inhibited after dihydroartemisinin treatment. Compared with control cells, cells overexpressing UHRF1 can resist the proapoptotic and antiproliferative effects of dihydroartemisinin to a certain extent. The effects of UHRF1 knockdown were further aggravated by dihydroartemisinin treatment, but no statistically significant effect was observed with increasing drug concentration. Our results suggested that dihydroartemisinin decreases proliferation and migration but enhances apoptosis of PCa cells, likely by downregulating UHRF1 and upregulating p16INK4A.
Collapse
Affiliation(s)
- Tong Xia
- Laboratory of Medical Experiment Technology, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
20
|
Li Q, Ma Q, Xu L, Gao C, Yao L, Wen J, Yang M, Cheng J, Zhou X, Zou J, Zhong X, Guo X. Human Telomerase Reverse Transcriptase as a Therapeutic Target of Dihydroartemisinin for Esophageal Squamous Cancer. Front Pharmacol 2021; 12:769787. [PMID: 34744749 PMCID: PMC8569230 DOI: 10.3389/fphar.2021.769787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: To elucidate the oncogenic role of human telomerase reverse transcriptase (hTERT) in esophageal squamous cancer and unravel the therapeutic role and molecular mechanism of dihydroartemisinin (DHA) by targeting hTERT. Methods: The expression of hTERT in esophageal squamous cancer and the patients prognosis were analyzed by bioinformatic analysis from TCGA database, and further validated with esophageal squamous cancer tissues in our cohort. The Cell Counting Kit-8 (CCK8) and colony formation assay were used to evaluate the proliferation of esophageal squamous cancer cell lines (Eca109, KYSE150, and TE1) after hTERT overexpression or treated with indicated concentrations of DHA. Transwell migration assay and scratch assay were employed to determine the migration abilities of cancer cells. Fluorescence microscopy and flow cytometry were conducted to measure the intracellular reactive oxygen species (ROS) levels in cancer cells after treated with DHA. Moreover, RT-PCR and Western blot were performed to test the alteration of associated genes on mRNA and protein level in DHA treated esophageal squamous cancer cell lines, respectively. Furthermore, tumor-bearing nude mice were employed to evaluate the anticancer effect of DHA in vivo. Results: We found that hTERT was significantly upregulated in esophageal squamous cancer both from TCGA database and our cohort also. Overexpression of hTERT evidently promoted the proliferation and migration of esophageal squamous cancer cells in vitro. Moreover, DHA could significantly inhibit the proliferation and migration of esophageal cancer cell lines Eca109, KYSE150, and TE1 in vitro, and significantly down-regulate the expression of hTERT on both mRNA and protein level in a time- and dose-dependent manner as well. Further studies showed that DHA could induce intracellular ROS production in esophageal cancer cells and down-regulate SP1 expression, a transcription factor that bound to the promoter region of hTERT gene. Moreover, overexpression of SP1 evidently promoted the proliferation and migration of Eca109 and TE1 cells. Intriguingly, rescue experiments showed that inhibiting ROS by NAC alleviated the downregulation of SP1 and hTERT in cells treated with DHA. Furthermore, overexpression of SP1 or hTERT could attenuate the inhibition effect of DHA on the proliferation and migration of Eca109 cells. In tumor-bearing nude mice model, DHA significantly inhibited the growth of esophageal squamous cancer xenografts, and downregulated the expression of SP1 and hTERT protein, while no side effects were observed from heart, kidney, liver, and lung tissues by HE stain. Conclusion: hTERT plays an oncogenic role in esophageal squamous cancer and might be a therapeutic target of DHA through regulating ROS/SP1 pathway.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Chuanli Gao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Lihua Yao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Jilin Wen
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Miyuan Yang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Jibing Cheng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Xi Zhou
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Jiang Zou
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
21
|
Zhang Q, Jin L, Jin Q, Wei Q, Sun M, Yue Q, Liu H, Li F, Li H, Ren X, Jin G. Inhibitory Effect of Dihydroartemisinin on the Proliferation and Migration of Melanoma Cells and Experimental Lung Metastasis From Melanoma in Mice. Front Pharmacol 2021; 12:727275. [PMID: 34539408 PMCID: PMC8443781 DOI: 10.3389/fphar.2021.727275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 12/05/2022] Open
Abstract
Melanoma is aggressive and can metastasize in the early stage of tumor. It has been proved that dihydroartemisinin (DHA) positively affects the treatment of tumors and has no apparent toxic and side effects. Our previous research has shown that DHA can suppress the formation of melanoma. However, it remains poorly established how DHA impacts the invasion and metastasis of melanoma. In this study, B16F10 and A375 cell lines and metastatic tumor models will be used to investigate the effects of DHA. The present results demonstrated that DHA inhibited the proliferative capacity in A375 and B16F10 cells. As expected, the migration capacity of A375 and B16F10 cells was also reduced after DHA administration. DHA alleviated the severity and histopathological changes of melanoma in mice. DHA induced expansion of CD8+CTL in the tumor microenvironment. By contrast, DHA inhibited Treg cells infiltration into the tumor microenvironment. DHA enhanced apoptosis of melanoma by regulating FasL expression and Granzyme B secretion in CD8+CTLs. Moreover, DHA impacts STAT3-induced EMT and MMPS in tumor tissue. Furthermore, Metabolomics analysis indicated that PGD2 and EPA significantly increased after DHA administration. In conclusion, DHA inhibited the proliferation, migration and metastasis of melanoma in vitro and in vivo. These results have important implications for the potential use of DHA in the treatment of melanoma in humans.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Linbo Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Qiang Wei
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Mingyuan Sun
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Qi Yue
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Huan Liu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Fangfang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Honghua Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Xiangshan Ren
- Department of Pathology and Physiology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
22
|
Qiu F, Liu J, Mo X, Liu H, Chen Y, Dai Z. Immunoregulation by Artemisinin and Its Derivatives: A New Role for Old Antimalarial Drugs. Front Immunol 2021; 12:751772. [PMID: 34567013 PMCID: PMC8458561 DOI: 10.3389/fimmu.2021.751772] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Artemisinin and its derivatives (ARTs) are known as conventional antimalarial drugs with clinical safety and efficacy. Youyou Tu was awarded a Nobel Prize in Physiology and Medicine due to her discovery of artemisinin and its therapeutic effects on malaria. Apart from antimalarial effects, mounting evidence has demonstrated that ARTs exert therapeutic effects on inflammation and autoimmune disorders because of their anti-inflammatory and immunoregulatory properties. In this aspect, tremendous progress has been made during the past five to seven years. Therefore, the present review summarizes recent studies that have explored the anti-inflammatory and immunomodulatory effects of ARTs on autoimmune diseases and transplant rejection. In this review, we also discuss the cellular and molecular mechanisms underlying the immunomodulatory effects of ARTs. Recent preclinical studies will help lay the groundwork for clinical trials using ARTs to treat various immune-based disorders, especially autoimmune diseases.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junfeng Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiumei Mo
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Trimethoxycinnamates and Their Cholinesterase Inhibitory Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of twelve nature-inspired 3,4,5-trimethoxycinnamates were prepared and characterized. All compounds, including the starting 3,4,5-trimethoxycinnamic acid, were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro; the selectivity index (SI) was also determined. 2-Fluororophenyl (2E)-3-(3,4,5-trimethoxyphenyl)-prop-2-enoate demonstrated the highest SI (1.71) in favor of BChE inhibition. 2-Chlorophenyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate showed the highest AChE-inhibiting (IC50 = 46.18 µM) as well as BChE-inhibiting (IC50 = 32.46 µM) activity with an SI of 1.42. The mechanism of action of the most potent compound was determined by the Lineweaver–Burk plot as a mixed type of inhibition. An in vitro cell viability assay confirmed the insignificant cytotoxicity of the discussed compounds on the two cell lines. Trends between structure, physicochemical properties and activity were discussed.
Collapse
|
24
|
Li Q, Ma Q, Cheng J, Zhou X, Pu W, Zhong X, Guo X. Dihydroartemisinin as a Sensitizing Agent in Cancer Therapies. Onco Targets Ther 2021; 14:2563-2573. [PMID: 33880035 PMCID: PMC8053502 DOI: 10.2147/ott.s297785] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/18/2021] [Indexed: 01/03/2023] Open
Abstract
Cancer is one of the major threats to human health. Although humans have struggled with cancer for decades, the efficacy of treatments for most tumors is still very limited. Dihydroartemisinin (DHA) is a derivative of artemisinin, a first-line antimalarial drug originally developed in China. Beyond the anti-malarial effect, DHA has also been reported to show anti-inflammatory, anti-parasitosis, and immune-modulating properties in vitro and in vivo. Furthermore, an increasing number of studies report that DHA possesses anticancer activities on a wide range of cancer types both in vitro and in vivo, as well as enhances the efficacy of chemotherapy, targeted therapy, and even radiotherapy. However, the mechanisms of DHA on different tumors differ in various ways. In this review, we intend to summarize how DHA sensitizes cancer cells to anti-cancer therapies, highlight its molecular mechanisms and pharmacological effects in vitro and in vivo as well as in current clinical trials, and discuss potential issues concerning DHA. Hopefully, more attention will be paid to DHA as a sensitizer for cancer therapy in the future.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Jibing Cheng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xi Zhou
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Wenjie Pu
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| |
Collapse
|
25
|
Huang TE, Deng YN, Hsu JL, Leu WJ, Marchesi E, Capobianco ML, Marchetti P, Navacchia ML, Guh JH, Perrone D, Hsu LC. Evaluation of the Anticancer Activity of a Bile Acid-Dihydroartemisinin Hybrid Ursodeoxycholic-Dihydroartemisinin in Hepatocellular Carcinoma Cells. Front Pharmacol 2020; 11:599067. [PMID: 33343369 PMCID: PMC7748086 DOI: 10.3389/fphar.2020.599067] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy in adults and accounts for 85-90% of all primary liver cancer. Based on the estimation by the International Agency for Research on Cancer in 2018, liver cancer is the fourth leading cause of cancer death globally. Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is a well-known drug for the treatment of malaria. Previous studies have demonstrated that DHA exhibits antitumor effects toward a variety of human cancers and has a potential for repurposing as an anticancer drug. However, its short half-life is a concern and may limit the application in cancer therapy. We have reported that UDC-DHA, a hybrid of bile acid ursodeoxycholic acid (UDCA) and DHA, is ∼12 times more potent than DHA against a HCC cell line HepG2. In this study, we found that UDC-DHA was also effective against another HCC cell line Huh-7 with an IC50 of 2.16 μM, which was 18.5-fold better than DHA with an IC50 of 39.96 μM. UDC-DHA was much more potent than the combination of DHA and UDCA at 1:1 molar ratio, suggesting that the covalent linkage rather than a synergism between UDCA and DHA is critical for enhancing DHA potency in HepG2 cells. Importantly, UDC-DHA was much less toxic to normal cells than DHA. UDC-DHA induced G0/G1 arrest and apoptosis. Both DHA and UDC-DHA significantly elevated cellular reactive oxygen species generation but with different magnitude and timing in HepG2 cells; whereas only DHA but not UDC-DHA induced reactive oxygen species in Huh-7 cells. Depolarization of mitochondrial membrane potential was detected in both HepG2 and Huh-7 cells and may contribute to the anticancer effect of DHA and UDC-DHA. Furthermore, UDC-DHA was much more stable than DHA based on activity assays and high performance liquid chromatography-MS/MS analysis. In conclusion, UDC-DHA and DHA may exert anticancer actions via similar mechanisms but a much lower concentration of UDC-DHA was required, which could be attributed to a better stability of UDC-DHA. Thus, UDC-DHA could be a better drug candidate than DHA against HCC and further investigation is warranted.
Collapse
Affiliation(s)
- Tzu-En Huang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Yi-Ning Deng
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Elena Marchesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Massimo L Capobianco
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna, Italy
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna, Italy
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Xu C, Zhang H, Mu L, Yang X. Artemisinins as Anticancer Drugs: Novel Therapeutic Approaches, Molecular Mechanisms, and Clinical Trials. Front Pharmacol 2020; 11:529881. [PMID: 33117153 PMCID: PMC7573816 DOI: 10.3389/fphar.2020.529881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Artemisinin and its derivatives have shown broad-spectrum antitumor activities in vitro and in vivo. Furthermore, outcomes from a limited number of clinical trials provide encouraging evidence for their excellent antitumor activities. However, some problems such as poor solubility, toxicity and controversial mechanisms of action hamper their use as effective antitumor agents in the clinic. In order to accelerate the use of ARTs in the clinic, researchers have recently developed novel therapeutic approaches including developing novel derivatives, manufacturing novel nano-formulations, and combining ARTs with other drugs for cancer therapy. The related mechanisms of action were explored. This review describes ARTs used to induce non-apoptotic cell death containing oncosis, autophagy, and ferroptosis. Moreover, it highlights the ARTs-caused effects on cancer metabolism, immunosuppression and cancer stem cells and discusses clinical trials of ARTs used to treat cancer. The review provides additional insight into the molecular mechanism of action of ARTs and their considerable clinical potential.
Collapse
Affiliation(s)
- Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
27
|
Cibotaru S, Sandu AI, Belei D, Marin L. Water soluble PEGylated phenothiazines as valuable building blocks for bio-materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111216. [PMID: 32806288 DOI: 10.1016/j.msec.2020.111216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/21/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
The paper reports a series of three new PEGylated phenothiazine derivatives which keep the potential of valuable building blocks for preparing eco-materials addressed to a large realm of fields, from bio-medicine to opto-electronics. They were synthetized by connecting the hydrophilic poly(ethylene glycol) to the hydrophobic phenothiazine via an ether, ester, or amide linking group. The successful synthesis of the targeted polymers and their purity were demonstrated by NMR and FTIR spectroscopy methods. Their capacity to self-assembly in water was studied by DLS and UV-vis techniques and the particularities of the formed aggregates were investigated by fluorescence spectroscopy, SEM, AFM, POM and UV light microscopy. The biocompatibility was assessed on normal human dermal fibroblasts and human cervical cancer cells. The synthetized compounds showed the formation of luminescent aggregates and proved excellent biocompatibility on normal cells. In addition, a concentration dependent cytotoxicity against HeLa cancer cells was noticed for the PEGylated phenothiazine containing an ester unit.
Collapse
Affiliation(s)
- Sandu Cibotaru
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Dalila Belei
- "Alexandru Ioan Cuza" University, Department of Organic Chemistry, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
28
|
Alven S, Aderibigbe BA. Nanoparticles Formulations of Artemisinin and Derivatives as Potential Therapeutics for the Treatment of Cancer, Leishmaniasis and Malaria. Pharmaceutics 2020; 12:E748. [PMID: 32784933 PMCID: PMC7466127 DOI: 10.3390/pharmaceutics12080748] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer, malaria, and leishmaniasis remain the deadly diseases around the world although several strategies of treatment have been developed. However, most of the drugs used to treat the aforementioned diseases suffer from several pharmacological limitations such as poor pharmacokinetics, toxicity, drug resistance, poor bioavailability and water solubility. Artemisinin and its derivatives are antimalarial drugs. However, they also exhibit anticancer and antileishmanial activity. They have been evaluated as potential anticancer and antileishmanial drugs but their use is also limited by their poor water solubility and poor bioavailability. To overcome the aforementioned limitations associated with artemisinin and its derivatives used for the treatment of these diseases, they have been incorporated into nanoparticles. Several researchers incorporated this class of drugs into nanoparticles resulting in enhanced therapeutic outcomes. Their potential efficacy for the treatment of parasitic infections such as malaria and leishmaniasis and chronic diseases such as cancer has been reported. This review article will be focused on the nanoparticles formulations of artemisinin and derivatives for the treatment of cancer, malaria, and leishmaniasis and the biological outcomes (in vitro and in vivo).
Collapse
|
29
|
Tsamesidis I, Pério P, Pantaleo A, Reybier K. Oxidation of Erythrocytes Enhance the Production of Reactive Species in the Presence of Artemisinins. Int J Mol Sci 2020; 21:ijms21134799. [PMID: 32646002 PMCID: PMC7369783 DOI: 10.3390/ijms21134799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
In red blood cells, hemoglobin iron represents the most plausible candidate to catalyze artemisinin activation but the limited reactivity of iron bound to hemoglobin does not play in favor for its direct involvement. Denatured hemoglobin appears a more likely candidate for artemisinin redox activation because it is expected to contain reactive iron and it has been described to release free heme and/or iron in erythrocyte. The aim of our study is to investigate, using three different methods: fluorescence, electron paramagnetic resonance and liquid chromatography coupled to mass spectrometry, how increasing the level of accessible iron into the red blood cells can enhance the reactive oxygen species (ROS) production derived from artemisinin. The over-increase of iron was achieved using phenylhydrazine, a strong oxidant that causes oxidative stress within erythrocytes, resulting in oxidation of oxyhemoglobin and leading to the formation of methemoglobin, which is subsequently converted into irreversible hemichromes (iron (III) compounds). Our findings confirmed, using the iron III chelator, desferrioxamine, the indirect participation of iron (III) compounds in the activation process of artemisinins. Furthermore, in strong reducing conditions, the activation of artemisinin and the consequent production of ROS was enhanced. In conclusion, we demonstrate, through the measurement of intra-erythrocytic superoxide and hydrogen peroxide production using various methods, that artemisinin activation can be drastically enhanced by pre-oxidation of erythrocytes.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Pharma-Dev UMR 152, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (P.P.); (K.R.)
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Correspondence:
| | - Pierre Pério
- Pharma-Dev UMR 152, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (P.P.); (K.R.)
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Karine Reybier
- Pharma-Dev UMR 152, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (P.P.); (K.R.)
| |
Collapse
|
30
|
Cheong DHJ, Tan DWS, Wong FWS, Tran T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol Res 2020; 158:104901. [PMID: 32405226 PMCID: PMC7217791 DOI: 10.1016/j.phrs.2020.104901] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Artemisinins are sesquiterpene lactones with a peroxide moiety that are isolated from the herb Artemisia annua. It has been used for centuries for the treatment of fever and chills, and has been recently approved for the treatment of malaria due to its endoperoxidase properties. Progressively, research has found that artemisinins displayed multiple pharmacological actions against inflammation, viral infections, and cell and tumour proliferation, making it effective against diseases. Moreover, it has displayed a relatively safe toxicity profile. The use of artemisinins against different respiratory diseases has been investigated in lung cancer models and inflammatory-driven respiratory disorders. These studies revealed the ability of artemisinins in attenuating proliferation, inflammation, invasion, and metastasis, and in inducing apoptosis. Artemisinins can regulate the expression of pro-inflammatory cytokines, nuclear factor-kappa B (NF-κB), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), promote cell cycle arrest, drive reactive oxygen species (ROS) production and induce Bak or Bax-dependent or independent apoptosis. In this review, we aim to provide a comprehensive update of the current knowledge of the effects of artemisinins in relation to respiratory diseases to identify gaps that need to be filled in the course of repurposing artemisinins for the treatment of respiratory diseases. In addition, we postulate whether artemisinins can also be repurposed for the treatment of COVID-19 given its anti-viral and anti-inflammatory properties.
Collapse
Affiliation(s)
- Dorothy H J Cheong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Daniel W S Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Fred W S Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Immunology Program, Life Science Institute, National University of Singapore, 117456, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, 138602, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore.
| |
Collapse
|
31
|
Marchesi E, Chinaglia N, Capobianco ML, Marchetti P, Huang TE, Weng HC, Guh JH, Hsu LC, Perrone D, Navacchia ML. Dihydroartemisinin-Bile Acid Hybridization as an Effective Approach to Enhance Dihydroartemisinin Anticancer Activity. ChemMedChem 2020; 14:779-787. [PMID: 30724466 DOI: 10.1002/cmdc.201800756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/02/2019] [Indexed: 12/29/2022]
Abstract
A series of hybrid compounds based on natural products-bile acids and dihydroartemisinin-were prepared by different synthetic methodologies and investigated for their in vitro biological activity against HL-60 leukemia and HepG2 hepatocellular carcinoma cell lines. Most of these hybrids presented significantly improved antiproliferative activities with respect to dihydroartemisinin and the parent bile acid. The two most potent hybrids of the series exhibited a 10.5- and 15.4-fold increase in cytotoxic activity respect to dihydroartemisinin alone in HL-60 and HepG2 cells, respectively. Strong evidence that an ursodeoxycholic acid hybrid induced apoptosis was obtained by flow cytometric analysis and western blot analysis.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Nicola Chinaglia
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Massimo L Capobianco
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tzu-En Huang
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Hao-Cheng Weng
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
32
|
Shabir G, Saeed A, Qasim M, Bolte M, Hökelek T, Erben MF. On the planarity of the cyclobutane ring in the crystal of dimethyl 2,4-bis(3,4-dimethoxyphenyl)cyclobutane-1,3-dicarboxylate: a natural bond orbital and Hirshfeld surface analysis study. NEW J CHEM 2020. [DOI: 10.1039/d0nj02739a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The α-form of this 1,3-di-(substituted)-2,4-bis-(substituted)-cyclobutane derivative displays a planar ring in the gas phase and solution. The intermolecular interactions in the crystal have been determined.
Collapse
Affiliation(s)
- Ghulam Shabir
- Department of Chemistry
- Quaid-I-Azam University
- Islamabad 45320
- Pakistan
| | - Aamer Saeed
- Department of Chemistry
- Quaid-I-Azam University
- Islamabad 45320
- Pakistan
| | - Muhammad Qasim
- Department of Chemistry
- Quaid-I-Azam University
- Islamabad 45320
- Pakistan
| | - Michael Bolte
- Institut für Anorganische Chemie
- J. W. Goethe-Universität
- Max-von-Laue-Str. 7
- D-60438 Frankfurt/Main
- Germany
| | - Tuncer Hökelek
- Department of Physics
- Hacettepe University
- 06800 Beytepe-Ankara
- Turkey
| | - Mauricio Federico Erben
- CEQUINOR (UNLP, CONICET-CCT La Plata)
- Departamento de Química, Facultad de Ciencias Exactas
- Universidad Nacional de La Plata
- Bv. 120 1465
- La Plata (1900)
| |
Collapse
|
33
|
Cinnamic Acid Conjugates in the Rescuing and Repurposing of Classical Antimalarial Drugs. Molecules 2019; 25:molecules25010066. [PMID: 31878190 PMCID: PMC6982862 DOI: 10.3390/molecules25010066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Cinnamic acids are compounds of natural origin that can be found in many different parts of a wide panoply of plants, where they play the most diverse biological roles, often in a conjugated form. For a long time, this has been driving Medicinal Chemists towards the investigation of the therapeutic potential of natural, semi-synthetic, or fully synthetic cinnamic acid conjugates. These efforts have been steadily disclosing promising drug leads, but a wide chemical space remains that deserves to be further explored. Amongst different reported approaches, the combination or conjugation of cinnamic acids with known drugs has been addressed in an attempt to produce either synergistic or multi-target action. In this connection, the present review will focus on efforts of the past decade regarding conjugation with cinnamic acids as a tool for the rescuing or the repurposing of classical antimalarial drugs, and also on future perspectives in this particular field of research.
Collapse
|
34
|
Li N, Xu M, Wang B, Shi Z, Zhao Z, Tang Y, Wang X, Sun J, Chen L. Discovery of Novel Celastrol Derivatives as Hsp90–Cdc37 Interaction Disruptors with Antitumor Activity. J Med Chem 2019; 62:10798-10815. [DOI: 10.1021/acs.jmedchem.9b01290] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Manyi Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Zhixian Shi
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Zihao Zhao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Yunqing Tang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Xinyue Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| |
Collapse
|
35
|
Liu J, Ren Y, Hou Y, Zhang C, Wang B, Li X, Sun R, Liu J. Dihydroartemisinin Induces Endothelial Cell Autophagy through Suppression of the Akt/mTOR Pathway. J Cancer 2019; 10:6057-6064. [PMID: 31762815 PMCID: PMC6856569 DOI: 10.7150/jca.33704] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/24/2019] [Indexed: 12/23/2022] Open
Abstract
Aims: Dihydroartemisinin (DHA), a derivative of artemisinin, suppresses angiogenesis by regulating endothelial cell phenotypes. In this study, we investigated the effect of DHA on endothelial cell autophagy and the underlying mechanisms. Methods: Human umbilical vein endothelial cells (HUVECs) were treated with DHA. Formation of autophagosomes in HUVECs was observed by fluorescence microscope after pcDNA3.1-green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) plasmids transfection. Dichlorofluorescein diacetate (DCFH-DA) staining was used to detect intracellular reactive oxygen species (ROS). Western blot was performed to detect the protein levels of LC3, p62, beclin 1, autophagy-related protein (Atg) 5, p-Akt (protein kinase B), p-mTOR (mammalian target of rapamycin), p-4E-BP1 (eukaryotic translation initiation factor 4E-binding protein 1), and p-p70S6K (p70 ribosomal S6 kinase). Results: DHA increased LC3-II and the number of fluorescent GFP-LC3 puncta in HUVECs. Silencing ATG5 by siRNA interference attenuated DHA-induced LC3-II elevation. DHA enhanced ROS production, but pretreatment with antioxidant N-acety-l-cysteine (NAC) failed to reduce DHA-induced autophagy in HUVECs. Pretreatment with PD98059, SP600125 and SB203580, the inhibitors of ERK, JNK, and p38 MAPK, did not reverse autophagy in DHA-treated HUVECs. DHA significantly reduced phosphorylation of Akt, mTOR, p70S6K, 4E-BP1 in HUVECs. Rapamycin, an mTOR antagonist, compromised DHA-induced autophagy. Conclusion: DHA induces autophagy in HUVECs by inhibition of the Akt/mTOR pathway
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| | - Yanjun Ren
- Department of Orthopaedics; Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| | - Yinglong Hou
- Department of Cardiology; Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| | - Caiqing Zhang
- Department of Respiratory Medicine; Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| | - Bei Wang
- Department of Ultrasound, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| | - Xiaorui Li
- Graduate School, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Rong Sun
- Advanced Medical Research Institute, Shandong University, Jinan, China.,The Second Hospital of Shandong University, Jinan, China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| |
Collapse
|
36
|
Li YN, Fan ML, Liu HQ, Ma B, Dai WL, Yu BY, Liu JH. Dihydroartemisinin derivative DC32 inhibits inflammatory response in osteoarthritic synovium through regulating Nrf2/NF-κB pathway. Int Immunopharmacol 2019; 74:105701. [PMID: 31228817 DOI: 10.1016/j.intimp.2019.105701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
Synovitis is an aseptic inflammation that leads to joint effusion, pain and swelling. As one of the main drivers of pathogenesis in osteoarthritis (OA), the presence of synovitis contributes to pain, incidence and progression of OA. In our previous study, DC32 [(9α,12α-dihydroartemisinyl) bis(2'-chlorocinnmate)], a dihydroartemisinin derivative, was found to have an antirheumatic ability via immunosuppression, but the effect of DC32 on synovitis has not been fully illuminated. In this study, we chose to evaluate the effect and mechanism of DC32 on attenuating synovial inflammation. Fibroblast-like synoviocytes (FLSs) of papain-induced OA rats were isolated and cultured. And DC32 significantly inhibited the invasion and migration of cultured OA-FLSs, as well as the transcription of IL-6, IL-1β, CXCL12 and CX3CL1 in cultured OA-FLSs measured by qPCR. DC32 remarkably inhibited the activation of ERK and NF-κB pathway, increased the expression of Nrf2 and HO-1 in cultured OA-FLSs detected by western blot. DC32 inhibited the degradation and phosphorylation of IκBα which further prevented the phosphorylation of NF-κB p65 and the effect of DC32 could be relieved by siRNA for Nrf2. In papain-induced OA mice, DC32 significantly alleviated papain-induced mechanical allodynia, knee joint swelling and infiltration of inflammatory cell in synovium. DC32 upregulated the mRNA expression of Type II collagen and aggrecan, and downregulated the mRNA expression of MMP2, MMP3, MMP13 and ADAMTS-5 in the knee joints of papain-induced OA mice measured by qPCR. The level of TNF-α in the serum and secretion of TNF-α in the knee joints were also reduced by DC32 in papain-induced OA mice. In conclusion, DC32 inhibited the inflammatory response in osteoarthritic synovium through regulating Nrf2/NF-κB pathway and attenuated OA. In this way, DC32 may be a potential agent in the treatment of OA.
Collapse
Affiliation(s)
- Ya-Nan Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng-Lin Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Han-Qing Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bin Ma
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
37
|
Ganga Reddy V, Srinivasa Reddy T, Privér SH, Bai Y, Mishra S, Wlodkowic D, Mirzadeh N, Bhargava S. Synthesis of Gold(I) Complexes Containing Cinnamide: In Vitro Evaluation of Anticancer Activity in 2D and 3D Spheroidal Models of Melanoma and In Vivo Angiogenesis. Inorg Chem 2019; 58:5988-5999. [DOI: 10.1021/acs.inorgchem.9b00281] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- V. Ganga Reddy
- Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| | - T. Srinivasa Reddy
- Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| | - Steven H. Privér
- Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| | - Yutao Bai
- Phenomics Laboratory, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, Victoria 3083, Australia
| | - Shweta Mishra
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Parisar, Indore, Madhya Pradesh 452 001, India
| | - Donald Wlodkowic
- Phenomics Laboratory, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, Victoria 3083, Australia
| | - Nedaossadat Mirzadeh
- Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| | - Suresh Bhargava
- Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| |
Collapse
|
38
|
Zhao Z, Song H, Xie J, Liu T, Zhao X, Chen X, He X, Wu S, Zhang Y, Zheng X. Research progress in the biological activities of 3,4,5-trimethoxycinnamic acid (TMCA) derivatives. Eur J Med Chem 2019; 173:213-227. [PMID: 31009908 PMCID: PMC7115657 DOI: 10.1016/j.ejmech.2019.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 01/02/2023]
Abstract
TMCA (3,4,5-trimethoxycinnamic acid) ester and amide are privileged structural scaffolds in drug discovery which are widely distributed in natural products and consequently produced diverse therapeutically relevant pharmacological functions. Owing to the potential of TMCA ester and amide analogues as therapeutic agents, researches on chemical syntheses and modifications have been carried out to drug-like candidates with broad range of medicinal properties such as antitumor, antiviral, CNS (central nervous system) agents, antimicrobial, anti-inflammatory and hematologic agents for a long time. At the same time, SAR (structure-activity relationship) studies have draw greater attention among medicinal chemists, and many of the lead compounds were derived for various disease targets. However, there is an urgent need for the medicinal chemists to further exploit the precursor in developing chemical entities with promising bioactivity and druggability. This review concisely summarizes the synthesis and biological activity for TMCA ester and amide analogues. It also comprehensively reveals the relationship of significant biological activities along with SAR studies. 3,4,5-Trimethoxycinnamic acid (TMCA) derivatives show applications in different pathophysiological conditions due to its privileged structural scaffolds. Natural derived TMCA analogues and chemically modified TMCA ester and amide analogues and their bioactivities are focused in this review. Additionally, it also comprehensively summarized the relationship of significant biological activities along with SAR studies of synthetic TMCA derivatives.
Collapse
Affiliation(s)
- Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Huanhuan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jing Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Tian Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xufei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xirui He
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China; Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China.
| |
Collapse
|
39
|
Synthesis and structure-activity relationship studies of parthenolide derivatives as potential anti-triple negative breast cancer agents. Eur J Med Chem 2019; 166:445-469. [DOI: 10.1016/j.ejmech.2019.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
|
40
|
Kumar MS, Yadav TT, Khair RR, Peters GJ, Yergeri MC. Combination Therapies of Artemisinin and its Derivatives as a Viable Approach for Future Cancer Treatment. Curr Pharm Des 2019; 25:3323-3338. [PMID: 31475891 DOI: 10.2174/1381612825666190902155957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many anticancer drugs have been developed for clinical usage till now, but the major problem is the development of drug-resistance over a period of time in the treatment of cancer. Anticancer drugs produce huge adverse effects, ultimately leading to death of the patient. Researchers have been focusing on the development of novel molecules with higher efficacy and lower toxicity; the anti-malarial drug artemisinin and its derivatives have exhibited cytotoxic effects. METHODS We have done extensive literature search for artemisinin for its new role as anti-cancer agent for future treatment. Last two decades papers were referred for deep understanding to strengthen its role. RESULT Literature shows changes at 9, 10 position in the artemisinin structure produces anticancer activity. Artemisinin shows anticancer activity in leukemia, hepatocellular carcinoma, colorectal and breast cancer cell lines. Artemisinin and its derivatives have been studied as combination therapy with several synthetic compounds, RNA interfaces, recombinant proteins and antibodies etc., for synergizing the effect of these drugs. They produce an anticancer effect by causing cell cycle arrest, regulating signaling in apoptosis, angiogenesis and cytotoxicity activity on the steroid receptors. Many novel formulations of artemisinin are being developed in the form of carbon nanotubes, polymer-coated drug particles, etc., for delivering artemisinin, since it has poor water/ oil solubility and is chemically unstable. CONCLUSION We have summarize the combination therapies of artemisinin and its derivatives with other anticancer drugs and also focussed on recent developments of different drug delivery systems in the last 10 years. Various reports and clinical trials of artemisinin type drugs indicated selective cytotoxicity along with minimal toxicity thus projecting them as promising anti-cancer agents in future cancer therapies.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Tanuja T Yadav
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Rohan R Khair
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Mayur C Yergeri
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| |
Collapse
|
41
|
Fan M, Li Y, Yao C, Liu X, Liu J, Yu B. DC32, a Dihydroartemisinin Derivative, Ameliorates Collagen-Induced Arthritis Through an Nrf2-p62-Keap1 Feedback Loop. Front Immunol 2018; 9:2762. [PMID: 30538709 PMCID: PMC6277526 DOI: 10.3389/fimmu.2018.02762] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Artemisinins have been reported to have diverse functions, such as antimalaria, anticancer, anti-inflammation, and immunoregulation activities. DC32 [(9α,12α-dihydroartemisinyl) bis(2′-chlorocinnmate)], a dihydroartemisinin derivative possessing potent immunosuppressive properties, was synthesized in our previous study. Collagen-induced arthritis (CIA) in DBA/1 mice and inflammatory model in NIH-3T3 cells were established to evaluate the effect of DC32 on RA and discover the underlying mechanisms. The results showed that DC32 could markedly alleviate footpad inflammation, reduce cartilage degradation, activate the Nrf2/HO-1 signaling pathway, and increase the transcription of p62 in DBA/1 mice with CIA. Further mechanistic exploration with NIH-3T3 cells indicated that DC32 could increase the transcription, expression, and nuclear translocation of Nrf2. In addition, DC32 promoted degradation of Keap1 protein and upregulated HO-1 and p62 expression. Furthermore, the effect of DC32 on Keap1 degradation could be prevented by p62 knockdown using siRNA. Administration of DC32 could inhibit the activation of Akt/mTOR and ERK, and pretreatment of NIH-3T3 cells with the autophagy inhibitor 3-methyladenine (3-MA) attenuated the degradation of Keap1 induced by DC32. These results suggest that DC32 inhibits the degradation of Nrf2 by promoting p62-mediated selective autophagy and that p62 upregulation contributed to a positive feedback loop for persistent activation of Nrf2. In summary, our present study demonstrated that DC32 significantly suppressed rheumatoid arthritis (RA) via the Nrf2-p62-Keap1 feedback loop by increasing the mRNA and protein levels of Nrf2 and inducing p62 expression. These findings provide new mechanisms for artemisinins in RA treatment and a potential strategy for discovering antirheumatic drugs.
Collapse
Affiliation(s)
- Menglin Fan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanan Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhua Yao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiufeng Liu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jihua Liu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
42
|
Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells. Cell Death Dis 2018; 9:1048. [PMID: 30323180 PMCID: PMC6189137 DOI: 10.1038/s41419-018-1006-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
Dihydroartemisinin (DHA) and its analogs are reported to possess selective anticancer activity. Here, we reported a novel DHA derivative DHA-37 that exhibited more potent anticancer activity on the cells tested. Distinct from DHA-induced apoptosis, DHA-37 triggered excessive autophagic cell death, and became the main contributor to DHA-37-induced A549 cell death. Incubation of the cells with DHA-37 but not DHA produced increased dots distribution of GFP-LC3 and expression ratio of LC3-II/LC3-I, and enhanced the formation of autophagic vacuoles as revealed by TEM. Treatment with the autophagy inhibitor 3-MA, LY294002, or chloroquine could reverse DHA-37-induced cell death. In addition, DHA-37-induced cell death was associated significantly with the increased expression of HMGB1, and knockdown of HMGB1 could reverse DHA-37-induced cell death. More importantly, the elevated HMGB1 expression induced autophagy through the activation of the MAPK signal but not PI3K-AKT–mTOR pathway. In addition, DHA-37 also showed a wonderful performance in A549 xenograft mice model. These findings suggest that HMGB1 as a target candidate for apoptosis-resistant cancer treatment and artemisinin-based drugs could be used in inducing autophagic cell death.
Collapse
|
43
|
Fan M, Li Y, Yao C, Liu X, Liu X, Liu J. Dihydroartemisinin derivative DC32 attenuates collagen-induced arthritis in mice by restoring the Treg/Th17 balance and inhibiting synovitis through down-regulation of IL-6. Int Immunopharmacol 2018; 65:233-243. [PMID: 30336338 DOI: 10.1016/j.intimp.2018.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
Imbalance of Treg/Th17 and chronic synovitis characterized by the recruitment and infiltration of inflammatory cells are the typical features of rheumatoid arthritis (RA). IL-6 promotes the differentiation and function of Th17 cells, which contributes to the imbalance of Treg/Th17 and aggravates lymphocytic infiltration in joints. DC32, a dihydroartemisinin derivative, was found to have anti-inflammatory and immunosuppressive activities in previous study. The aim of this study is to evaluate the effects and mechanisms of DC32 in immunodeficiency and inflammatory infiltration of RA. In vivo, the antirheumatic effect of DC32 was evaluated in a collagen-induced arthritis (CIA) mouse model in DBA/1 mice. The percentages of Treg and Th17 and transcription of IL-6 in the spleen were assayed. In vitro, a coculture system of ConA-activated lymphocytes and fibroblast-like synoviocytes (FLSs) from rat with adjuvant arthritis (AA) was established. The effects and mechanisms of DC32 on synovitis were investigated. It was shown that DC32 inhibited footpad swelling and lymphocytic infiltration in mice with CIA and significantly restored the Treg/Th17 balance by reducing the transcription of IL-6 in splenocytes. DC32 significantly inhibited the lymphocyte-induced invasion and migration of FLSs by decreasing the secretion of MMPs (MMP-2, MMP-3) in vitro. DC32 also reduced the transcription of chemokines (CXCL12, CX3CL1) and IL-6 in FLSs, as well as IL-6 levels in the supernatant. These results demonstrated that DC32 may attenuate RA by restoring Treg/Th17 balance and inhibiting lymphocytic infiltration through downregulation of the expression and transcription of IL-6. This study supports the potential of DC32 to down-regulate IL-6 for the treatment of RA and other related autoimmune diseases.
Collapse
Affiliation(s)
- Menglin Fan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanan Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhua Yao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiufeng Liu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuming Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jihua Liu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
44
|
Yang S, Zhang D, Shen N, Wang G, Tang Z, Chen X. Dihydroartemisinin increases gemcitabine therapeutic efficacy in ovarian cancer by inducing reactive oxygen species. J Cell Biochem 2018; 120:634-644. [PMID: 30256439 DOI: 10.1002/jcb.27421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/12/2018] [Indexed: 01/03/2023]
Abstract
Ovarian cancer is the major cause of death in women gynecological malignancy and gemcitabine (GEM) is commonly used in related chemotherapy. However, more than 90% GEM is catalyzed into an inactive metabolite 2'-deoxy-2',2'-difluorouridine by stromal and cellular cytidine deaminase (CDA). Dihydroartemisinin (DHA), which possesses an intramolecular endoperoxide bridge, could be activated by heme or ferrous iron to produce reactive oxygen species (ROS). The excess ROS generation will excite expression of heme oxygenase-1 and suppress CDA expression. Under low CDA expression, the inactivation of GEM is decreased in turn to exert excellent therapeutic efficiency. Herein, we first studied the ROS generation by DHA in vitro with A2780 cells by means of flow cytometry and confocal laser scanning microscopy. Furthermore, cytotoxicity assay in vitro showed that DHA + GEM had synergistic effect, with molar ratio of DHA and GEM at 10. Eventually, in A2780 ovarian cancer xenograft tumor model, DHA + GEM exhibited significant antitumor efficiency with lower blood toxicity than GEM alone. Noteworthy, the combination treatment group completely eliminated the tumors on day 14.
Collapse
Affiliation(s)
- Shengcai Yang
- College of Chemistry, Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Guanyi Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xuesi Chen
- College of Chemistry, Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
45
|
Insights into the mechanism of antiproliferative effects of primaquine-cinnamic acid conjugates on MCF-7 cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:337-348. [PMID: 31259699 DOI: 10.2478/acph-2018-0021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
In our previous paper, we showed that three primaquine-cinnamic acid conjugates composed of primaquine (PQ) residue and cinnamic acid derivatives (CADs) bound directly by an amide linkage (1) or through an acylsemicarbazide spacer (2 and 3) had significant growth inhibitory effects on some cancer cell lines. Compound 1 induced significant growth inhibition in the colorectal adenocarcinoma (SW620), human breast adenocarcinoma (MCF-7) and cervical carcinoma (HeLa) cell lines, while compounds 2 and 3 selectively inhibited the growth of MCF-7 cells. To better understand the underlying mechanisms of action of these PQ-CADs, morphological studies of the effects of test compounds on MCF-7 cells were undertaken using haematoxylin and eosin stain. Further analysis to determine the effects of test compounds on caspase activity and on the levels of apoptosis proteins were undertaken using the enzyme-linked immunosorbent assay (ELISA). Haematoxylin and eosin staining revealed that compounds 1 and 3 induced morphological changes in MCF-7 cells characteristic of apoptosis, while 2-treated cells were in interphase. Cell cycle analysis showed that cells treated with 1 and 3 were in sub-G1, while cells treated with 2 were mainly in interphase (G1 phase). Further, the study showed that the treatment of MCF-7 cells with 1 and 3 resulted in poly ADP ribose polymerase (PARP) cleavage as well as caspase-9 activation, indicating that they induced apoptotic cell death. We further investigated their effects on two important processes during metastasis, namely, migration and invasion. Compounds 1 and 3 inhibited the migration and invasion of MCF-7 cells, while compound 2 had a marginal effect.
Collapse
|
46
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:303-319. [PMID: 29633188 PMCID: PMC6102173 DOI: 10.1007/s13659-018-0162-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 05/02/2023]
Abstract
Cancer is the leading cause of human death which seriously threatens human life. The antimalarial drug artemisinin and its derivatives have been discovered with considerable anticancer properties. Simultaneously, a variety of target-selective artemisinin-related compounds with high efficiency have been discovered. Many researches indicated that artemisinin-related compounds have cytotoxic effects against a variety of cancer cells through pleiotropic effects, including inhibiting the proliferation of tumor cells, promoting apoptosis, inducing cell cycle arrest, disrupting cancer invasion and metastasis, preventing angiogenesis, mediating the tumor-related signaling pathways, and regulating tumor microenvironment. More importantly, artemisinins demonstrated minor side effects to normal cells and manifested the ability to overcome multidrug-resistance which is widely observed in cancer patients. Therefore, we concentrated on the new advances and development of artemisinin and its derivatives as potential antitumor agents in recent 5 years. It is our hope that this review could be helpful for further exploration of novel artemisinin-related antitumor agents.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - P Saravana Prabha
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, China.
| |
Collapse
|
47
|
Liu H, Liu X, Zhang L. Computational Analysis of Artimisinin Derivatives on the Antitumor Activities. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:433-443. [PMID: 29094266 PMCID: PMC5709249 DOI: 10.1007/s13659-017-0142-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
The study on antitumor activities of artemisinin and its derivatives has been closely focused on in recent years. Herein, 2D and 3D QSAR analysis was performed on the basis of a series of artemisinin derivatives with known bioactivities against the non-small-cell lung adenocarcinoma A549 cells. Four QSAR models were successfully established by CoMSIA, CoMFA, topomer CoMFA and HQSAR approaches with respective characteristic values q2 = 0.567, R2 = 0.968, ONC = 5; q2 = 0.547, R2 = 0.980, ONC = 7; q2 = 0.559, R2 = 0.921, ONC = 7 and q2 = 0.527, R2 = 0.921, ONC = 6. The predictive ability of CoMSIA with r2 = 0.991 is the best one compared with the other three approaches, such as CoMFA (r2 = 0.787), topomer CoMFA (r2 = 0.819) and HQSAR (r2 = 0.743). The final QSAR models can provide guidance in structural modification of artemisinin derivatives to improve their anticancer activities.
Collapse
Affiliation(s)
- Hui Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China.
| | - Xingyong Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Li Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| |
Collapse
|
48
|
Effect of dihydroartemisinin on UHRF1 gene expression in human prostate cancer PC-3 cells. Anticancer Drugs 2017; 28:384-391. [PMID: 28059831 DOI: 10.1097/cad.0000000000000469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the second most common cancer in men around the world, prostate cancer is increasingly gaining more attention. Dihydroartemisinin (DHA) has been proven to be a promising anticancer agent in vitro as well as in vivo in accumulating data. However, the detailed mechanisms of how DHA action in human prostate cancer PC-3 cells remain elusive. This study aimed to investigate the effects of DHA, a novel anticancer agent, by inhibiting the expression of ubiquitin like containing PHD and ring finger 1 (UHRF1) in PC-3 cells. The apoptosis and cell-cycle distribution were detected by flow cytometry. Quantitative real-time PCR was performed to examine both UHRF1 and DNA methyltransferase 1 (DNMT1) expressions at mRNA levels, whereas the expressions of UHRF1, DNMT1, and p16 proteins at protein levels were detected by Western blotting. Methylation levels of p16 CpG islands were determined by bisulfite genomic sequencing. We showed that DHA induced the downregulation of UHRF1 and DNMT1, accompanied by an upregulation of p16 in PC-3 cells. Decreased p16 promoter methylation levels in DHA-treated groups were also observed in PC-3 cells. Furthermore, DHA significantly induced apoptosis and G1/S cell-cycle arrest in PC-3 cells. Our results suggested that downregulation of UHRF1/DNMT1 is upstream to many cellular events, including G1 cell arrest, demethylation of p16, and apoptosis. Together, our study provides new evidence that DHA may serve as a potential therapeutic agent in the treatment of prostate cancer.
Collapse
|
49
|
Qu C, Ma J, Liu X, Xue Y, Zheng J, Liu L, Liu J, Li Z, Zhang L, Liu Y. Dihydroartemisinin Exerts Anti-Tumor Activity by Inducing Mitochondrion and Endoplasmic Reticulum Apoptosis and Autophagic Cell Death in Human Glioblastoma Cells. Front Cell Neurosci 2017; 11:310. [PMID: 29033794 PMCID: PMC5626852 DOI: 10.3389/fncel.2017.00310] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/19/2017] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) is the most advanced and aggressive form of gliomas. Dihydroartemisinin (DHA) has been shown to exhibit anti-tumor activity in various cancer cells. However, the effect and molecular mechanisms underlying its anti-tumor activity in human GBM cells remain to be elucidated. Our results proved that DHA treatment significantly reduced cell viability in a dose- and time-dependent manner by CCK-8 assay. Further investigation identified that the cell viability was rescued by pretreatment either with Z-VAD-FMK, 3-methyladenine (3-MA) or in combination. Moreover, DHA induced apoptosis of GBM cells through mitochondrial membrane depolarization, release of cytochrome c and activation of caspases-9. Enhanced expression of GRP78, CHOP and eIF2α and activation of caspase 12 were additionally confirmed that endoplasmic reticulum (ER) stress pathway of apoptosis was involved in the cytotoxicity of DHA. DHA-treated GBM cells exhibited the morphological and biochemical changes typical of autophagy. Co-treatment with chloroquine (CQ) significantly induced the above effects. Furthermore, ER stress and mitochondrial dysfunction were involved in the DHA-induced autophagy. Further study revealed that accumulation of reactive oxygen species (ROS) was attributed to the DHA induction of apoptosis and autophagy. The illustration of these molecular mechanisms will present a novel insight for the treatment of human GBM.
Collapse
Affiliation(s)
- Chengbin Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Lei Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| |
Collapse
|
50
|
Synthesis and cytotoxic activity of new artemisinin hybrid molecules against human leukemia cells. Bioorg Med Chem 2017; 25:3357-3367. [DOI: 10.1016/j.bmc.2017.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/11/2022]
|