1
|
Liu Y, Zhao C, Liu J, Du Y. Design, synthesis, and biological evaluation of novel KRN7000 analogues using 5α-gem-difluorocarba-β-l-arabinopyranose. Carbohydr Res 2025; 552:109457. [PMID: 40081114 DOI: 10.1016/j.carres.2025.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Two novel KRN7000 analogues, where d-galactopyranosyl residue was replaced by 5α-gem-difluorocarba-β-l-arabinopyranose, were designed based on docking computation and energy decomposition analyses. The target compounds were synthesized employing the key steps of Ferrier's carbocyclic ring closure and gem-difluoride formation with d-galactose as starting material. The in vivo bioassay revealed that the designed glycolipids could stimulate iNKT cells to produce cytokines IFN-γ and IL-4. The introduced hydroxyl groups on glycolipid acyl chain provided extra CD1d substrate affinities, and thus favored to boost Th1-type cytokine secretion. When the ring oxygen was replaced by CF2 group on sugar unit, its TCR affinities were enhanced in contrast with KRN7000. The in vivo cytokine profiles induced by synthetic glycolipids were initially dominated by the binding ability of CD1/glycolipid, and then adjusted by affinity toward TCR in CD1/α-GalCer/TCR triplex structure. The current results could be helpful in designing of more efficient α-GalCer analogs.
Collapse
Affiliation(s)
- Yuanfang Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, China
| |
Collapse
|
2
|
Mishra VK, Khanna A, Tiwari G, Tyagi R, Sagar R. Recent developments on the synthesis of biologically active glycohybrids. Bioorg Chem 2024; 145:107172. [PMID: 38340475 DOI: 10.1016/j.bioorg.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The exploration of hybridization emerges as a potent tool in advancing drug discovery research, with a significant emphasis on carbohydrate-containing hybrid scaffolds. Evidence indicates that linking carbohydrate molecules to privileged bioactive scaffolds enhances the bioactivity of drug molecules. This synergy results in a diverse range of activities, making carbohydrate scaffolds pivotal for synthesizing compound libraries with significant functional and structural diversity. Beyond their synthesis utility, these scaffolds offer applications in screening bioactive molecules, presenting alternative avenues for drug development. This comprehensive review spanning 2015 to 2023 focuses on synthesized glycohybrid molecules, revealing their bioactivity in areas such as anti-microbial, anti-cancer, anti-diabetic, anti-inflammatory activities, enzyme inhibition and pesticides. Numerous novel glycohybrids surpass positive control drugs in biological activity. This focused study not only highlights the diverse bioactivities of glycohybrids but also underscores their promising role in innovative drug development strategies.
Collapse
Affiliation(s)
- Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, 110067 New Delhi
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, 110067 New Delhi.
| |
Collapse
|
3
|
Qahtan MQM, Bakhite EA, Kumari J, M Sayed A, Kandeel M, Sriram D, Abdu-Allah HHM. Synthesis, biological evaluation and molecular docking study of some new 4-aminosalicylic acid derivatives as anti-inflammatory and antimycobacterial agents. Bioorg Chem 2023; 132:106344. [PMID: 36669356 DOI: 10.1016/j.bioorg.2023.106344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
In this study, new derivatives of the antitubercular and anti-inflammatory drug, 4-aminosaliclic acids (4-ASA) were synthesized, characterized, and evaluated for these activities. In vivo and in viro evaluation of anti-inflammatory activity revealed that compounds 10, 19 and 20 are the most active with potent cyclooxygenase-2 (COX-2) and 5-lipooxgenase (5-LOX) inhibition and without causing gasric lesions. The minimum inhibitory concentrations (MIC) of the newly synthesized compound were, also, measured against Mycobacterium tuberculosis H37RV. Among the tested compounds 17, 19 and 20 exhibited significant activities against the growth of M. tuberculosis. 20 is the most potent with (MIC 1.04 µM) 2.5 folds more potent than the parent drug 4-ASA. 20 displayed low cytotoxicity against normal cell providing a high therapeutic index. Important structure features were analyzed by docking and structure-activity relationship analysis to give better insights into the structural determinants for predicting the anti-inflammatory and anti-TB activities. Our results indicated that compounds 19 and 20 are potential lead compounds for the discovery of dual anti-inflammatory and anti-TB drug candidates.
Collapse
Affiliation(s)
- Maha Q M Qahtan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt; Chemistry Department, Faculty of Science, Taiz University, Taiz, Yemen
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Ahmed M Sayed
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
4
|
Graminha AE, Popolin C, Honorato de Araujo-Neto J, Correa RS, de Oliveira KM, Godoy LR, Vegas LC, Ellena J, Batista AA, Cominetti MR. New ruthenium complexes containing salicylic acid and derivatives induce triple-negative tumor cell death via the intrinsic apoptotic pathway. Eur J Med Chem 2022; 243:114772. [DOI: 10.1016/j.ejmech.2022.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 11/04/2022]
|
5
|
Deshmukh R, Harwansh RK, Paul SD, Shukla R. Controlled release of sulfasalazine loaded amidated pectin microparticles through Eudragit S 100 coated capsule for management of inflammatory bowel disease. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Discovery of small-molecule candidates against inflammatory bowel disease. Eur J Med Chem 2020; 185:111805. [DOI: 10.1016/j.ejmech.2019.111805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
|
7
|
Advances in Pharmaceutical Strategies Enhancing the Efficiencies of Oral Colon-Targeted Delivery Systems in Inflammatory Bowel Disease. Molecules 2018; 23:molecules23071622. [PMID: 29973488 PMCID: PMC6099616 DOI: 10.3390/molecules23071622] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a common disease characterized by chronic inflammation in gastrointestinal tracts, which is primarily treated by administering anti-inflammatory and immunosuppressive drugs that inhibit the burden of intestinal inflammation and improve disease-related symptoms. However, the established therapeutic strategy has limited therapeutic efficacy and adverse drug reactions. Therefore, new disease-targeting drug-delivery strategies to develop more effective treatments are urgent. This review provides an overview of the drug-targeting strategies that can be used to treat IBD, and our recent attempts on the colon-specific delivery system (Pae-SME-CSC) with a paeonol-loaded self-microemulsion (Pae-SMEDDS) are introduced.
Collapse
|