1
|
Cavalluzzi MM, Viale M, Rotondo NP, Ferraro V, Lentini G. Drug Repositioning for Ovarian Cancer Treatment: An Update. Anticancer Agents Med Chem 2024; 24:637-647. [PMID: 38367265 DOI: 10.2174/0118715206282904240122063914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer (OC) is one of the most prevalent malignancies in female reproductive organs, and its 5-year survival is below 45%. Despite the advances in surgical and chemotherapeutic options, OC treatment is still a challenge, and new anticancer agents are urgently needed. Drug repositioning has gained significant attention in drug discovery, representing a smart way to identify new clinical applications for drugs whose human safety and pharmacokinetics have already been established, with great time and cost savings in pharmaceutical development endeavors. This review offers an update on the most promising drugs repurposable for OC treatment and/or prevention.
Collapse
Affiliation(s)
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Valeria Ferraro
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets. Biochem Pharmacol 2023; 208:115405. [PMID: 36603686 DOI: 10.1016/j.bcp.2022.115405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.
Collapse
|
3
|
Lubeluzole Repositioning as Chemosensitizing Agent on Multidrug-Resistant Human Ovarian A2780/DX3 Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227870. [PMID: 36431971 PMCID: PMC9695310 DOI: 10.3390/molecules27227870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
In a previous paper, we demonstrated the synergistic action of the anti-ischemic lubeluzole (Lube S) on the cytotoxic activity of doxorubicin (Dox) and paclitaxel in human ovarian cancer A2780 and lung cancer A549 cells. In the present paper, we extended in vitro the study to the multi-drug-resistant A2780/DX3 cell line to verify the hypothesis that the Dox and Lube S drug association may potentiate the antitumor activity of this anticancer compound also in the context of drug resistance. We also evaluated some possible mechanisms underlying this activity. We analyzed the antiproliferative activity in different cancer cell lines. Furthermore, apoptosis, Dox accumulation, MDR1 downregulation, ROS, and NO production in A2780/DX3 cells were also evaluated. Our results confirm that Lube S improves Dox antiproliferative and apoptotic activities through different mechanisms of action, all of which may contribute to the final antitumor effect. Moderate stereoselectivity was found, with Lube S significantly more effective than its enantiomer (Lube R) and the corresponding racemate (Lube S/R). Docking simulation studies on the ABCB1 Cryo-EM structure supported the hypothesis that Lube S forms a stable MDR1-Dox-Lube S complex, which hampers the protein transmembrane domain flipping and blocks the efflux of Dox from resistant A2780/DX3 cells. In conclusion, our in vitro studies reinforce our previous hypothesis for repositioning the anti-ischemic Lube S as a potentiating agent in anticancer chemotherapy.
Collapse
|
4
|
Zhang Y, Luo M, Wu P, Wu S, Lee TY, Bai C. Application of Computational Biology and Artificial Intelligence in Drug Design. Int J Mol Sci 2022; 23:13568. [PMID: 36362355 PMCID: PMC9658956 DOI: 10.3390/ijms232113568] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
Traditional drug design requires a great amount of research time and developmental expense. Booming computational approaches, including computational biology, computer-aided drug design, and artificial intelligence, have the potential to expedite the efficiency of drug discovery by minimizing the time and financial cost. In recent years, computational approaches are being widely used to improve the efficacy and effectiveness of drug discovery and pipeline, leading to the approval of plenty of new drugs for marketing. The present review emphasizes on the applications of these indispensable computational approaches in aiding target identification, lead discovery, and lead optimization. Some challenges of using these approaches for drug design are also discussed. Moreover, we propose a methodology for integrating various computational techniques into new drug discovery and design.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Mengqi Luo
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| |
Collapse
|
5
|
Bisindolylmaleimides New Ligands of CaM Protein. Molecules 2022; 27:molecules27217161. [PMID: 36363988 PMCID: PMC9653884 DOI: 10.3390/molecules27217161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
In the present study, we reported the interactions at the molecular level of a series of compounds called Bisindolylmaleimide, as potential inhibitors of the calmodulin protein. Bisindolylmaleimide compounds are drug prototypes derived from Staurosporine, an alkaloid with activity for cancer treatment. Bisindolylmaleimide compounds II, IV, VII, X, and XI, are proposed and reported as possible inhibitors of calmodulin protein for the first time. For the above, a biotechnological device was used (fluorescent biosensor hCaM M124C-mBBr) to directly determine binding parameters experimentally (Kd and stoichiometry) of these compounds, and molecular modeling tools (Docking, Molecular Dynamics, and Chemoinformatic Analysis) to carry out the theoretical studies and complement the experimental data. The results indicate that this compound binds to calmodulin with a Kd between 193–248 nM, an order of magnitude lower than most classic inhibitors. On the other hand, the theoretical studies support the experimental results, obtaining an acceptable correlation between the ΔGExperimental and ΔGTheoretical (r2 = 0.703) and providing us with complementary molecular details of the interaction between the calmodulin protein and the Bisindolylmaleimide series. Chemoinformatic analyzes bring certainty to Bisindolylmaleimide compounds to address clinical steps in drug development. Thus, these results make these compounds attractive to be considered as possible prototypes of new calmodulin protein inhibitors.
Collapse
|
6
|
Dwyer BK, Veenma DCM, Chang K, Schulman H, Van Woerden GM. Case Report: Developmental Delay and Acute Neuropsychiatric Episodes Associated With a de novo Mutation in the CAMK2B Gene (c.328G>A p.Glu110Lys). Front Pharmacol 2022; 13:794008. [PMID: 35620293 PMCID: PMC9127182 DOI: 10.3389/fphar.2022.794008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/27/2022] Open
Abstract
Mutations in the genes encoding calcium/calmodulin dependent protein kinase II (CAMK2) isoforms cause a newly recognized neurodevelopmental disorder (ND), for which the full clinical spectrum has yet to be described. Here we report the detailed description of a child with a de novo gain of function (GoF) mutation in the gene Ca/Calmodulin dependent protein kinase 2 beta (CAMK2B c.328G > A p.Glu110Lys) who presents with developmental delay and periodic neuropsychiatric episodes. The episodes manifest as encephalopathy with behavioral changes, headache, loss of language and loss of complex motor coordination. Additionally, we provide an overview of the effect of different medications used to try to alleviate the symptoms. We show that medications effective for mitigating the child’s neuropsychiatric symptoms may have done so by decreasing CAMK2 activity and associated calcium signaling; whereas medications that appeared to worsen the symptoms may have done so by increasing CAMK2 activity and associated calcium signaling. We hypothesize that by classifying CAMK2 mutations as “gain of function” or “loss of function” based on CAMK2 catalytic activity, we may be able to guide personalized empiric treatment regimens tailored to specific CAMK2 mutations. In the absence of sufficient patients for traditional randomized controlled trials to establish therapeutic efficacy, this approach may provide a rational approach to empiric therapy for physicians treating patients with dysregulated CAMK2 and associated calcium signaling.
Collapse
Affiliation(s)
- Bonnie K Dwyer
- Department of Maternal Fetal Medicine and Genetics, Palo Alto Medical Foundation, Mountain View, CA, United States
| | - Danielle C M Veenma
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,ENCORE Expertise Center, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kiki Chang
- University of Texas Houston Health Science Center, Houston, TX, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA, United States.,Panorama Research Institute, Sunnyvale, CA, United States
| | - Geeske M Van Woerden
- ENCORE Expertise Center, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
7
|
Milani G, Cavalluzzi MM, Solidoro R, Salvagno L, Quintieri L, Di Somma A, Rosato A, Corbo F, Franchini C, Duilio A, Caputo L, Habtemariam S, Lentini G. Molecular Simplification of Natural Products: Synthesis, Antibacterial Activity, and Molecular Docking Studies of Berberine Open Models. Biomedicines 2021; 9:452. [PMID: 33922200 PMCID: PMC8146520 DOI: 10.3390/biomedicines9050452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Berberine, the main bioactive component of many medicinal plants belonging to various genera such as Berberis, Coptis, and Hydrastis is a multifunctional compound. Among the numerous interesting biological properties of berberine is broad antimicrobial activity including a range of Gram-positive and Gram-negative bacteria. With the aim of identifying berberine analogues possibly endowed with higher lead-likeness and easier synthetic access, the molecular simplification approach was applied to the secondary metabolite and a series of analogues were prepared and screened for their antimicrobial activity against Gram-positive and Gram-negative bacterial test species. Rewardingly, the berberine simplified analogues displayed 2-20-fold higher potency with respect to berberine. Since our berberine simplified analogues may be easily synthesized and are characterized by lower molecular weight than the parent compound, they are further functionalizable and should be more suitable for oral administration. Molecular docking simulations suggested FtsZ, a well-known protein involved in bacterial cell division, as a possible target.
Collapse
Affiliation(s)
- Gualtiero Milani
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Roberta Solidoro
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Lara Salvagno
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II” Via Cinthia 4, 80126 Napoli, Italy; (A.D.S.); (A.D.)
| | - Antonio Rosato
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Filomena Corbo
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Carlo Franchini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II” Via Cinthia 4, 80126 Napoli, Italy; (A.D.S.); (A.D.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK;
| | - Giovanni Lentini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| |
Collapse
|
8
|
Lubeluzole: from anti-ischemic drug to preclinical antidiarrheal studies. Pharmacol Rep 2020; 73:172-184. [PMID: 33074530 DOI: 10.1007/s43440-020-00167-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lubeluzole, a neuroprotective anti-ischemic drug, was tested for its ability to act as both antibiotic chemosensitizing and antipropulsive agent for the treatment of infectious diarrhea. METHODS In the present report, the effect of lubeluzole against antidiarrheal target was tested. The antimicrobial activity towards Gram-positive and Gram-negative bacteria was investigated together with its ability to affect ileum and colon contractility. RESULTS Concerning the antimicrobial activity, lubeluzole showed synergistic effects when used in combination with minocycline against four common Gram-positive and Gram-negative bacteria (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922), although relatively high doses of lubeluzole were required. In ex vivo experiments on sections of gut smooth muscles, lubeluzole reduced the intestinal contractility in a dose-dependent manner, with greater effects observed on colon than on ileum, and being more potent than reference compounds otilonium bromide and loperamide. CONCLUSION All above results identify lubeluzole as a possible starting compound for the development of a novel class of antibacterial adjuvants endowed with spasmolytic activity.
Collapse
|
9
|
Olabi M, Stein M, Wätzig H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods 2018; 146:76-92. [PMID: 29753786 DOI: 10.1016/j.ymeth.2018.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Affinity capillary electrophoresis (ACE) analyzes noncovalent interactions between ligands and analytes based on changes in their electrophoretic mobility. This technique has been widely used to investigate various biomolecules, mainly proteins, polysaccharides and hormones. ACE is becoming a technique of choice to validate high throughput screening results, since it is very predictively working in realistic and relevant media, e.g. in body fluids. It is highly recommended to incorporate ACE as a powerful analytical tool to properly prepare animal testing and preclinical studies. The interacting molecules can be found free in solution or can be immobilized to a solid support. Thus, ACE is classified in two modes, free solution ACE and immobilized ACE. Every ACE mode has advantages and disadvantages. Each can be used for a variety of applications. This review covers literature of scopus and SciFinder data base in the period from 2016 until beginning 2018, including the keywords "affinity capillary electrophoresis", "immunoaffinity capillary electrophoresis", "immunoassay capillary electrophoresis" and "immunosorbent capillary electrophoresis". More than 200 articles have been found and 112 have been selected and thoroughly discussed. During this period, the data processing and the underlying calculations in mobility shift ACE (ms ACE), frontal analysis ACE (FA ACE) and plug-plug kinetic capillary electrophoresis (ppKCE) as mostly applied free solution techniques have substantially improved. The range of applications in diverse free solution and immobilized ACE techniques has been considerably broadened.
Collapse
Affiliation(s)
- Mais Olabi
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany.
| | - Matthias Stein
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany.
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany.
| |
Collapse
|
10
|
Farinato A, Altamura C, Desaphy JF. Effects of Benzothiazolamines on Voltage-Gated Sodium Channels. Handb Exp Pharmacol 2018; 246:233-250. [PMID: 28939972 DOI: 10.1007/164_2017_46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Benzothiazole is a versatile fused heterocycle that aroused much interest in drug discovery as anticonvulsant, neuroprotective, analgesic, anti-inflammatory, antimicrobial, and anticancer. Two benzothiazolamines, riluzole and lubeluzole, are known blockers of voltage-gated sodium (Nav) channels. Riluzole is clinically used as a neuroprotectant in amyotrophic lateral sclerosis. Inhibition of Nav channels by riluzole is voltage-dependent due to preferential binding to inactivated sodium channels. Yet the drug exerts little use-dependent block, probably because it lacks protonable amine. One important property is riluzole ability to inhibit persistent Na+ currents, which likely contributes to its neuroprotective activity. Lubeluzole showed promising neuroprotective effects in animal stroke models, but failed to show benefits in acute ischemic stroke in humans. One important concern is its propensity to prolong the cardiac QT interval, due to hERG K+ channel block. Lubeluzole very potently inhibits Nav channels in a voltage- and use-dependent manner, due to its great preferential affinity for inactivated channels and the presence of a protonable amine group. Patch-clamp experiments suggest that the binding sites of both drugs overlap the local anesthetic receptor within the ion-conducting pathway. Riluzole and lubeluzole displayed very potent antimyotonic activity in a rat model of myotonia, a pathological skeletal muscle condition characterized by high-frequency runs of action potentials. Such results well support the repurposing of riluzole as an antimyotonic drug, allowing the launch of a pilot study in myotonic patients. Riluzole, lubeluzole, and new Nav channel blockers built on the benzothiazolamine scaffold will certainly continue to be investigated for possible clinical applications.
Collapse
Affiliation(s)
- Alessandro Farinato
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Concetta Altamura
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|