1
|
Minneci M, Misevicius M, Rozas I. Green Synthesis of Nitroaryl Thioureas: Towards an Improved Preparation of Guanidinium DNA Binders. Bioorg Med Chem Lett 2023; 90:129346. [PMID: 37217024 DOI: 10.1016/j.bmcl.2023.129346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
We present a general efficient green method for the preparation of nitro N,N'-diaryl thioureas via a one-pot method using cyrene as a solvent with almost quantitative yields. This confirmed the viability of cyrene as a green alternative to THF in the synthesis of thiourea derivatives. After screening different reducing conditions, the nitro N,N'-diaryl thioureas were selectively reduced using Zn dust in the presence of water and acid to the corresponding amino N,N'-diaryl thioureas. These were then used to test the installation of the Boc-protected guanidine group with N,N'-bis-Boc protected pyrazole-1-carboxamidine as a guanidylating reagent not requiring mercury(II) activation. Finally, the TFA salts obtained after Boc-deprotection of two sample compounds were tested for their affinity towards DNA showing no binding.
Collapse
Affiliation(s)
- Marco Minneci
- School of Chemistry, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Matas Misevicius
- School of Chemistry, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Isabel Rozas
- School of Chemistry, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
2
|
Vijayaraj A, Prabu R, Suresh R, Sangeetha Kumari R, Kaviyarasan V, Narayanan V, Tamizhdurai P, Mangesh V, Ali Alasmary F, Rajaji U, Govindasamy M. DNA binding, Cleavage, Catalytic, Magnetic Active; 2,2–bipyridyl based d-f hetero binuclear Gd(III), Cu(II) Complexes and Their Electrochemical, Fluorescence Studies. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
3
|
Costas-Lago MC, Vila N, Rahman A, Besada P, Rozas I, Brea J, Loza MI, González-Romero E, Terán C. Novel Pyridazin-3(2 H)-one-Based Guanidine Derivatives as Potential DNA Minor Groove Binders with Anticancer Activity. ACS Med Chem Lett 2022; 13:463-469. [PMID: 35300077 PMCID: PMC8919506 DOI: 10.1021/acsmedchemlett.1c00633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Novel aryl guanidinium analogues containing the pyridazin-3(2H)-one core were proposed as minor groove binders (MGBs) with the support of molecular docking studies. The target dicationic or monocationic compounds, which show the guanidium group at different positions of the pyridazinone moiety, were synthesized using the corresponding silyl-protected pyridazinones as key intermediates. Pyridazinone scaffolds were converted into the adequate bromoalkyl derivatives, which by reaction with N,N'-di-Boc-protected guanidine followed by acid hydrolysis provided the hydrochloride salts 1-14 in good yields. The ability of new pyridazin-3(2H)-one-based guanidines as DNA binders was studied by means of DNA UV-thermal denaturation experiments. Their antiproliferative activity was also explored in three cancer cell lines (NCI-H460, A2780, and MCF-7). Compounds 1-4 with a bis-guanidinium structure display a weak DNA binding affinity and exhibit a reasonable cellular viability inhibition percentage in the three cancer cell lines studied.
Collapse
Affiliation(s)
- María Carmen Costas-Lago
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Noemí Vila
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Adeyemi Rahman
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Pedro Besada
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - José Brea
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, España
| | - María Isabel Loza
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, España
| | - Elisa González-Romero
- Departamento de Química Analítica y Alimentaria, Universidade de Vigo, 36310 Vigo, España
| | - Carmen Terán
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| |
Collapse
|
4
|
Nafie MS, Arafa K, Sedky NK, Alakhdar AA, Arafa RK. Triaryl dicationic DNA minor-groove binders with antioxidant activity display cytotoxicity and induce apoptosis in breast cancer. Chem Biol Interact 2020; 324:109087. [PMID: 32294457 DOI: 10.1016/j.cbi.2020.109087] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Despite advances in cancer treatment modalities, DNA still stands as one of the targets for anticancer agents. DNA minor groove binders (MGBs) represent an important investigational chemotherapeutic class with promising cytotoxic capacity. Herein this study reports the potent cytotoxic effect of a series of repurposed flexible bis-imidamides 1-4, triaryl bis-guanidine 5 and bis-N-substituted guanidines 6,7 having a 1,4-diphenoxybenzene scaffold backbone on MCF-7 and MDA-MB-231 breast cancer cell lines. Of these compounds, imidamide 4 was chosen for further in-vitro, in-vivo and molecular dynamics (MD) studies owing to its promising anti-tumor activity, with IC50 values on MCF-7 and MDA-MB-231 breast cancer cell lines of 1.9 and 2.08 μM, respectively. Annexin V/propidium iodide apoptosis assay revealed apoptosis induction on imidamide 4 treated MCF-7 cells. RT-PCR assay results demonstrated the proapoptotic effect of compound 4 through increase of mRNA levels of the pro-apoptotic genes; p53, PUMA, and Bax, and inhibiting the anti-apoptotic Bcl-2 gene expression in MCF-7 cells. Moreover, compound 4 induced a G0/G1 cell-cycle arrest in MCF-7 in a dose-dependent manner. Corroborating in-vivo experiments on Ehrlich ascites carcinoma (EAC)-bearing mice, reflected the anticancer strength of derivative 4. For further target validation, molecular dynamics (MD) studies demonstrated an energetically favorable binding of imidamide 4 with the DNA minor groove AT rich site. In effect, imidamide 4 can be viewed as a promising hit dicationic compound with good cytotoxic and apoptotic inducing activity against breast cancer that can be adopted for future optimization.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Chemistry Department, Faculty of Science Suez Canal University, Ismailia, 41522, Egypt
| | - Kholoud Arafa
- Center for Materials Science, Zewail City of Science and Technology, 12578, Cairo, Egypt
| | - Nada K Sedky
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City, El Ismailia, 41611, Cairo, Egypt
| | - Amira A Alakhdar
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578, Cairo, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, 12578, Cairo, Egypt.
| |
Collapse
|
5
|
Ullah H, Previtali V, Mihigo HB, Twamley B, Rauf MK, Javed F, Waseem A, Baker RJ, Rozas I. Structure-activity relationships of new Organotin(IV) anticancer agents and their cytotoxicity profile on HL-60, MCF-7 and HeLa human cancer cell lines. Eur J Med Chem 2019; 181:111544. [DOI: 10.1016/j.ejmech.2019.07.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
|
6
|
Rahman A, O'Sullivan P, Rozas I. Recent developments in compounds acting in the DNA minor groove. MEDCHEMCOMM 2018; 10:26-40. [PMID: 30774852 DOI: 10.1039/c8md00425k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
The macromolecule that carries genetic information, DNA, is considered as an exceptional target for diseases depending on cellular division of malignant cells (i.e. cancer), microbes (i.e. bacteria) or parasites (i.e. protozoa). To aim for a comprehensive review to cover all aspects related to DNA targeting would be an impossible task and, hence, the objective of the present review is to present, from a medicinal chemistry point of view, recent developments of compounds targeting the minor groove of DNA. Accordingly, we discuss the medicinal chemistry aspects of heterocyclic small-molecules binding the DNA minor groove, as novel anticancer, antibacterial and antiparasitic agents.
Collapse
Affiliation(s)
- Adeyemi Rahman
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Patrick O'Sullivan
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Isabel Rozas
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| |
Collapse
|
7
|
Previtali V, Trujillo C, Amet R, Zisterer DM, Rozas I. Effect of isouronium/guanidinium substitution on the efficacy of a series of novel anti-cancer agents. MEDCHEMCOMM 2018; 9:735-743. [PMID: 30108964 PMCID: PMC6072505 DOI: 10.1039/c8md00089a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/19/2018] [Indexed: 12/30/2022]
Abstract
Considering our hypothesis that the guanidinium moiety in the protein kinase type III inhibitor 1 interacts with a phosphate of ATP within the hinge region, the nature of the interactions established between a model isouronium and the phosphate groups of ATP was computationally analysed indicating that an isouronium derivative of 1 will interact in a similar manner with ATP. Thus, a number of compounds were prepared to assess the effect of the guanidinium/isouronium substitution on cancer cell growth; additionally, the molecular shortening and conformational change induced by replacing the di-substituted guanidine-linker of 1 by an amide was explored. The effect of these compounds on cell viability was tested in human leukaemia, breast cancer and cervical cancer cell lines and the resulting IC50 values were compared with those of the lead compound 1. Replacement of the di-substituted guanidine-linker by an amide results in the loss of cytotoxicity; however, substitution of the mono-substituted guanidinium by an isouronium cation seems to be beneficial for cell growth inhibition. Additionally, the effect of these compounds on the MAPK/ERK pathway was studied by means of Western blotting and the results indicate that the isouronium derivative 2 decreases the levels of phosphorylated, and thus activated, ERK (pERK) both in leukaemia and breast cancer cells, whereas lead compound 1 only shows an effect on pERK levels in breast cancer cells. This confirms that both compounds could interfere with the MAPK/ERK pathway although other targets cannot be ruled out.
Collapse
Affiliation(s)
- Viola Previtali
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160 Pearse Street , Dublin 2 , Ireland .
| | - Cristina Trujillo
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160 Pearse Street , Dublin 2 , Ireland .
| | - Rebecca Amet
- School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160 Pearse Street , Dublin 2 , Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160 Pearse Street , Dublin 2 , Ireland
| | - Isabel Rozas
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160 Pearse Street , Dublin 2 , Ireland .
| |
Collapse
|