1
|
Xu L, Jang H, Nussinov R. Capturing Autoinhibited PDK1 Reveals the Linker's Regulatory Role, Informing Innovative Inhibitor Design. J Chem Inf Model 2024; 64:7709-7724. [PMID: 39348509 PMCID: PMC12101721 DOI: 10.1021/acs.jcim.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
PDK1 is crucial for PI3K/AKT/mTOR and Ras/MAPK cancer signaling. It phosphorylates AKT in a PIP3-dependent but S6K, SGK, and RSK kinases in a PIP3-independent manner. Unlike its substrates, its autoinhibited monomeric state has been unclear, likely due to its low population time, and phosphorylation in the absence of PIP3 has been puzzling too. Here, guided by experimental data, we constructed models and performed all-atom molecular dynamics simulations. In the autoinhibited PDK1 conformation that resembles autoinhibited AKT, binding of the linker between the kinase and PH domains to the PIF-binding pocket promotes the formation of the Glu130-Lys111 salt bridge and weakens the association of the kinase domain with the PH domain, shifting the population from the autoinhibited state to states accessible to the membrane and its kinase substrates. The interaction of the substrates' hydrophobic motif and the PDK1 PIF-binding pocket facilitates the release of the autoinhibition even in the absence of PIP3. Phosphorylation of the serine-rich motif within the linker further attenuates the association of the PH domain with the kinase domain. These suggest that while the monomeric autoinhibited state is relatively stable, it can readily shift to its active, catalysis-prone state to phosphorylate its diverse substrates. Our findings reveal the PDK1 activation mechanism and discover the regulatory role of PDK1's linker, which lead to two innovative linker-based inhibitor strategies: (i) locking the autoinhibited PDK1 through optimization of the interactions of AKT inhibitors with the PH domain of PDK1 and (ii) analogs (small molecules or peptidomimetics) that mimic the linker interactions with the PIF-binding pocket.
Collapse
Affiliation(s)
- Liang Xu
- Computational
Structural Biology Section, Frederick National Laboratory for Cancer
Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National Laboratory for Cancer
Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National Laboratory for Cancer
Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
2
|
Salerno S, Barresi E, Baglini E, Poggetti V, Da Settimo F, Taliani S. Target-Based Anticancer Indole Derivatives for the Development of Anti-Glioblastoma Agents. Molecules 2023; 28:molecules28062587. [PMID: 36985576 PMCID: PMC10056347 DOI: 10.3390/molecules28062587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and frequent primary brain tumor, with a poor prognosis and the highest mortality rate. Currently, GBM therapy consists of surgical resection of the tumor, radiotherapy, and adjuvant chemotherapy with temozolomide. Consistently, there are poor treatment options and only modest anticancer efficacy is achieved; therefore, there is still a need for the development of new effective therapies for GBM. Indole is considered one of the most privileged scaffolds in heterocyclic chemistry, so it may serve as an effective probe for the development of new drug candidates against challenging diseases, including GBM. This review analyzes the therapeutic benefit and clinical development of novel indole-based derivatives investigated as promising anti-GBM agents. The existing indole-based compounds which are in the pre-clinical and clinical stages of development against GBM are reported, with particular reference to the most recent advances between 2013 and 2022. The main mechanisms of action underlying their anti-GBM efficacy, such as protein kinase, tubulin and p53 pathway inhibition, are also discussed. The final goal is to pave the way for medicinal chemists in the future design and development of novel effective indole-based anti-GBM agents.
Collapse
|
3
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Shankaraiah N, Tokala R, Bora D. Contribution of Knoevenagel Condensation Products towards Development of Anticancer Agents: An Updated Review. ChemMedChem 2022; 17:e202100736. [PMID: 35226798 DOI: 10.1002/cmdc.202100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Knoevenagel condensation is an entrenched, prevailing, prominent arsenal following greener principles in the generation of α, β-unsaturated ketones/carboxylic acids by involving carbonyl functionalities and active methylenes. This reaction has proved to be a major driving force in many multicomponent reactions indicating the prolific utility towards the development of biologically fascinating molecules. This eminent reaction was acclimatised on different pharmacophoric aldehydes (benzimidazole, β-carboline, phenanthrene, indole, imidazothiadiazole, pyrazole etc.) and active methylenes (oxindole, barbituric acid, Meldrum's acid, thiazolidinedione etc.) to generate the library of chemical compounds. Their potential was also explicit to understand the significance of functionalities involved, which thereby evoke further developments in drug discovery. Furthermore, most of these reaction products exhibited remarkable anticancer activity in nanomolar to micromolar ranges by targeting different cancer targets like DNA, microtubules, Topo-I/II, and kinases (PIM, PARP, NMP, p300/CBP) etc. This review underscores the efficiency of the Knoevenagel condensation explored in the past six-year to generate molecules of pharmacological interest, predominantly towards cancer. The present review also provides the aspects of structure-activity relationships, mode of action and docking study with possible interaction with the target protein.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER, Department of Medicinal Chemistry, Balanagar, 500037, Hyderabad, INDIA
| | - Ramya Tokala
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| | - Darshana Bora
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| |
Collapse
|
5
|
Sestito S, Bacci A, Chiarugi S, Runfola M, Gado F, Margheritis E, Gul S, Riveiro ME, Vazquez R, Huguet S, Manera C, Rezai K, Garau G, Rapposelli S. Development of potent dual PDK1/AurA kinase inhibitors for cancer therapy: Lead-optimization, structural insights, and ADME-Tox profile. Eur J Med Chem 2021; 226:113895. [PMID: 34624821 DOI: 10.1016/j.ejmech.2021.113895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
We report the synthesis of novel first-in-class 2-oxindole-based derivatives as dual PDK1-AurA kinase inhibitors as a novel strategy to treat Ewing sarcoma. The most potent compound 12 is suitable for progression to in vivo studies. The specific attributes of 12 included nanomolar inhibitory potency against both phosphoinositide-dependent kinase-1 (PDK1) and Aurora A (AurA) kinase, with acceptable in vitro ADME-Tox properties (cytotoxicity in 2 healthy and 14 hematological and solid cancer cell-lines; inhibition of PDE4C1, SIRT7, HDAC4, HDAC6, HDAC8, HDAC9, AurB, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and hERG). X-ray crystallography and docking studies led to the identification of the key AurA and PDK1/12 interactions. Finally, in vitro drug-intake kinetics and in vivo PK appear to indicate that these compounds are attractive lead-structures for the design and synthesis of PDK1/AurA dual-target molecules to further investigate the in vivo efficacy against Ewing Sarcoma.
Collapse
Affiliation(s)
- Simona Sestito
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Andrea Bacci
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Sara Chiarugi
- BioStructures Lab, IIT@NEST - Istituto Italiano di Tecnologia, 56127, Pisa, Italy; NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | | | - Francesca Gado
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Eleonora Margheritis
- BioStructures Lab, IIT@NEST - Istituto Italiano di Tecnologia, 56127, Pisa, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, 22525, Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, 22525, Hamburg, Germany
| | | | - Ramiro Vazquez
- Early Drug Development Group, Boulogne-Billancourt, France
| | - Samuel Huguet
- Radio-Pharmacology Department, Curie Institut-René Huguenin Hospital, Saint Cloud, France
| | | | - Keyvan Rezai
- Radio-Pharmacology Department, Curie Institut-René Huguenin Hospital, Saint Cloud, France
| | - Gianpiero Garau
- BioStructures Lab, IIT@NEST - Istituto Italiano di Tecnologia, 56127, Pisa, Italy.
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy; CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, 56126, Pisa, Italy.
| |
Collapse
|
6
|
Hassan R, Mohi-Ud-Din R, Dar MO, Shah AJ, Mir PA, Shaikh M, Pottoo FH. Bioactive Heterocyclic Compounds as Potential Therapeutics in the Treatment of Gliomas: A Review. Anticancer Agents Med Chem 2021; 22:551-565. [PMID: 34488596 DOI: 10.2174/1871520621666210901112954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most alarming diseases, with an estimation of 9.6 million deaths in 2018. Glioma occurs in glial cells surrounding nerve cells. The majority of the patients with gliomas have a terminal prognosis, and the ailment has significant sway on patients and their families, be it physical, psychological, or economic wellbeing. As Glioma exhibits, both intra and inter tumour heterogeneity with multidrug resistance and current therapies are ineffective. So the development of safer anti gliomas agents is the need of hour. Bioactive heterocyclic compounds, eithernatural or synthetic,are of potential interest since they have been active against different targets with a wide range of biological activities, including anticancer activities. In addition, they can cross the biological barriers and thus interfere with various signalling pathways to induce cancer cell death. All these advantages make bioactive natural compounds prospective candidates in the management of glioma. In this review, we assessed various bioactive heterocyclic compounds, such as jaceosidin, hispudlin, luteolin, silibinin, cannabidiol, tetrahydrocannabinol, didemnin B, thymoquinone, paclitaxel, doxorubicin, and cucurbitacins for their potential anti-glioma activity. Also, different kinds of chemical reactions to obtain various heterocyclic derivatives, e.g. indole, indazole, benzimidazole, benzoquinone, quinoline, quinazoline, pyrimidine, and triazine, are listed.
Collapse
Affiliation(s)
- Reyaz Hassan
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir. India
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir. India
| | - Mohammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Science and Research (NIPER), S.A.S. Nagar, Mohali, Punjab-160062. India
| | - Abdul Jalil Shah
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir. India
| | - Prince Ahad Mir
- Amritsar Pharmacy College, 12 KM stone Amritsar Jalandhar GT Road, Mandwala-143001. India
| | - Majeed Shaikh
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam. Saudi Arabia
| |
Collapse
|
7
|
Small Molecules of Marine Origin as Potential Anti-Glioma Agents. Molecules 2021; 26:molecules26092707. [PMID: 34063013 PMCID: PMC8124757 DOI: 10.3390/molecules26092707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Marine organisms are able to produce a plethora of small molecules with novel chemical structures and potent biological properties, being a fertile source for discovery of pharmacologically active compounds, already with several marine-derived agents approved as drugs. Glioma is classified by the WHO as the most common and aggressive form of tumor on CNS. Currently, Temozolomide is the only chemotherapeutic option approved by the FDA even though having some limitations. This review presents, for the first time, a comprehensive overview of marine compounds described as anti-glioma agents in the last decade. Nearly fifty compounds were compiled in this document and organized accordingly to their marine sources. Highlights on the mechanism of action and ADME properties were included. Some of these marine compounds could be promising leads for the discovery of new therapeutic alternatives for glioma treatment.
Collapse
|
8
|
Dhokne P, Sakla AP, Shankaraiah N. Structural insights of oxindole based kinase inhibitors as anticancer agents: Recent advances. Eur J Med Chem 2021; 216:113334. [PMID: 33721669 DOI: 10.1016/j.ejmech.2021.113334] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Small-molecule kinase inhibitors are being continuously explored as new anticancer therapeutics. Kinases are the phosphorylating enzymes which regulate numerous cellular functions such as proliferation, differentiation, migration, metabolism, and angiogenesis by activating several signalling pathways. Kinases have also been frequently found to be deregulated and overexpressed in cancerous tissues. Therefore, modulating the kinase activity by employing small molecules has emerged as a strategic approach for cancer treatment. On the other hand, oxindole motifs have surfaced as privileged scaffolds with significant multi-kinase inhibitory activity. The present review summarises recent advances in the development of oxindole based kinase inhibitors. The role of distinguished structural frameworks of oxindoles, such as 3-alkenyl oxindoles, spirooxindoles, 3-iminooxindoles and similar hydrazone derivatives have been described based on their kinase inhibition potential. Furthermore, the design strategies, mechanism of actions, structure activity relationships (SARs) and their mode of interaction with target protein have been critically highlighted.
Collapse
Affiliation(s)
- Prajwal Dhokne
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
9
|
Daniele S, La Pietra V, Piccarducci R, Pietrobono D, Cavallini C, D'Amore VM, Cerofolini L, Giuntini S, Russomanno P, Puxeddu M, Nalli M, Pedrini M, Fragai M, Luchinat C, Novellino E, Taliani S, La Regina G, Silvestri R, Martini C, Marinelli L. CXCR4 antagonism sensitizes cancer cells to novel indole-based MDM2/4 inhibitors in glioblastoma multiforme. Eur J Pharmacol 2021; 897:173936. [PMID: 33581134 DOI: 10.1016/j.ejphar.2021.173936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma Multiforme (GBM) is a highly invasive primary brain tumour characterized by chemo- and radio-resistance and poor overall survival. GBM can present an aberrant functionality of p53, caused by the overexpression of the murine double minute 2 protein (MDM2) and its analogue MDM4, which may influence the response to conventional therapies. Moreover, tumour resistance/invasiveness has been recently attributed to an overexpression of the chemokine receptor CXCR4, identified as a pivotal mediator of glioma neovascularization. Notably, CXCR4 and MDM2-4 cooperate in promoting tumour invasion and progression. Although CXCR4 actively promotes MDM2 activation leading to p53 inactivation, MDM2-4 knockdown induces the downregulation of CXCR4 gene transcription. Our study aimed to assess if the CXCR4 signal blockade could enhance glioma cells' sensitivity to the inhibition of the p53-MDMs axis. Rationally designed inhibitors of MDM2/4 were combined with the CXCR4 antagonist, AMD3100, in human GBM cells and GBM stem-like cells (neurospheres), which are crucial for tumour recurrence and chemotherapy resistance. The dual MDM2/4 inhibitor RS3594 and the CXCR4 antagonist AMD3100 reduced GBM cell invasiveness and migration in single-agent treatment and mainly in combination. AMD3100 sensitized GBM cells to the antiproliferative activity of RS3594. It is noteworthy that these two compounds present synergic effects on cancer stem components: RS3594 inhibited the growth and formation of neurospheres, AMD3100 induced differentiation of neurospheres while enhancing RS3594 effectiveness preventing their proliferation/clonogenicity. These results confirm that blocking CXCR4/MDM2/4 represents a valuable strategy to reduce GBM proliferation and invasiveness, acting on the stem cell component too.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy
| | | | | | | | | | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, And Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P), 50019, Sesto Fiorentino (FI), Italy
| | - Stefano Giuntini
- Department of Chemistry "Ugo Schiff″, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Pasquale Russomanno
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Marianna Nalli
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Martina Pedrini
- Department of Chemistry, University of Milan, 20133, Milano, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, And Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P), 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry "Ugo Schiff″, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, And Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P), 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry "Ugo Schiff″, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy.
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy.
| |
Collapse
|
10
|
Jordan A, Stoy P, Sneddon HF. Chlorinated Solvents: Their Advantages, Disadvantages, and Alternatives in Organic and Medicinal Chemistry. Chem Rev 2020; 121:1582-1622. [DOI: 10.1021/acs.chemrev.0c00709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrew Jordan
- GlaxoSmithKline Carbon Neutral Laboratory for Sustainable Chemistry, Jubilee Campus, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, U.K
| | - Patrick Stoy
- Drug Design and Selection, Platform and Technology Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Helen F. Sneddon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
11
|
Casari I, Domenichini A, Sestito S, Capone E, Sala G, Rapposelli S, Falasca M. Dual PDK1/Aurora Kinase A Inhibitors Reduce Pancreatic Cancer Cell Proliferation and Colony Formation. Cancers (Basel) 2019; 11:cancers11111695. [PMID: 31683659 PMCID: PMC6896057 DOI: 10.3390/cancers11111695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023] Open
Abstract
Deregulation of different intracellular signaling pathways is a common feature in cancer. Numerous studies indicate that persistent activation of the phosphoinositide 3-kinase (PI3K) pathway is often observed in cancer cells. 3-phosphoinositide dependent protein kinase-1 (PDK1), a transducer protein that functions downstream of PI3K, is responsible for the regulation of cell proliferation and migration and it also has been found to play a key role in different cancers, pancreatic and breast cancer amongst others. As PI3K is being described to be aberrantly expressed in several cancer types, designing inhibitors targeting various downstream molecules of PI3K has been the focus of anticancer agent development for a long time. In particular, dual inhibitory drugs targeting key signaling molecules in the PI3K pathway have attracted the attention of scientists. Several drugs have progressed to clinical trials, with limited success due to toxicity and bioavailability concerns. Very few anticancer drugs targeting the PI3K pathway have been approved for clinical use and their efficacy is particularly limited towards certain tumors such as pancreatic cancer. Here, we tested two drugs displaying dual inhibitory activity towards PDK1 and Aurora kinase A in a panel of pancreatic cancer cell lines and in two in vivo models of pancreatic cancer. Our data show that both inhibitors are able to impair cell proliferation and clonogenic potential in pancreatic cancer cells. However, the limited activity of both compounds in vivo indicates that further optimization of the pharmacokinetics properties is required.
Collapse
Affiliation(s)
- Ilaria Casari
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia.
| | - Alice Domenichini
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia.
| | - Simona Sestito
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy.
| | - Emily Capone
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy.
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy.
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy.
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia.
| |
Collapse
|
12
|
Abstract
INTRODUCTION 3-Phosphoinositide-dependent kinase 1 (PDK1), the 'master kinase of the AGC protein kinase family', plays a key role in cancer development and progression. Although it has been rather overlooked, in the last decades a growing number of molecules have been developed to effectively modulate the PDK1 enzyme. AREAS COVERED This review collects different PDK1 inhibitors patented from October 2014 to December 2018. The molecules have been classified on the basis of the chemical structure/type of inhibition, and for each general structure, examples have been discussed in extenso. EXPERT OPINION The role of PDK1 in cancer development and progression as well as in metastasis formation and in chemoresistance has been confirmed by many studies. Therefore, the pharmaceutical discovery in both public and private institutions is still ongoing despite the plentiful molecules already published. The majority of the new molecules synthetized interact with binding sites different from the ATP binding site (i.e. PIF pocket or DFG-out conformation). However, many researchers are still looking for innovative PDK1 modulation strategy such as combination of well-known inhibitory agents or multitarget ligands, aiming to block, together with PDK1, other different critical players in the wide panorama of proteins involved in tumor pathways.
Collapse
Affiliation(s)
- Simona Sestito
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | |
Collapse
|
13
|
Yu Z, Chen Z, Su Q, Ye S, Yuan H, Kuai M, Lv M, Tu Z, Yang X, Liu R, Hu G, Li Q. Dual inhibitors of RAF-MEK-ERK and PI3K-PDK1-AKT pathways: Design, synthesis and preliminary anticancer activity studies of 3-substituted-5-(phenylamino) indolone derivatives. Bioorg Med Chem 2019; 27:944-954. [PMID: 30777660 DOI: 10.1016/j.bmc.2019.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
The dysfunction and mutual compensatory activation of RAF-MEK-ERK and PI3K-PDK1-AKT pathways have been demonstrated as the hallmarks in several primary and recurrent cancers. The strategy of concurrent blocking of these two pathways shows clinical merits on effective cancer therapy, such as combinatory treatments and dual-pathway inhibitors. Herein, we report a novel prototype of dual-pathway inhibitors by means of merging the core structural scaffolds of a MEK1 inhibitor and a PDK1 inhibitor. A library of 43 compounds that categorized into three series (Series I-III) was synthesized and tested for antitumor activity in lung cancer cells. The results from structure-activity relationship (SAR) analysis showed the following order of antitumor activity that 3-hydroxy-5-(phenylamino) indolone (Series III) > 3-alkenyl-5-(phenylamino) indolone (Series I) > 3-alkyl-5-(phenylamino) indolone (Series II). A lead compound 9za in Series III showed most potent antitumor activity with IC50 value of 1.8 ± 0.8 µM in A549 cells. Moreover, antitumor mechanism study demonstrated that 9za exerted significant apoptotic effect, and cellular signal pathway analysis revealed the potent blockage of phosphorylation levels of ERK and AKT in RAF-MEK-ERK and PI3K-PDK1-AKT pathways, respectively. The results reported here provide robust experimental basis for the discovery and optimization of dual pathway agents for anti-lung cancer therapy.
Collapse
Affiliation(s)
- Zutao Yu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, PR China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, PR China
| | - Qiongli Su
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, PR China
| | - Shiqi Ye
- School of Medicine, Shenzhen University, Shenzhen 518060, Guangdong, PR China
| | - Hongbo Yuan
- Hunan Qianjin Xiangjiang Pharmaceutical Co., Ltd, Changsha 410013, Hunan, PR China
| | - Mengni Kuai
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, PR China; Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, PR China
| | - Meng Lv
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, PR China
| | - Zhijun Tu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, PR China
| | - Xiaoping Yang
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, PR China
| | - RangRu Liu
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, PR China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, PR China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, PR China.
| |
Collapse
|
14
|
Fernandes GFDS, Fernandes BC, Valente V, Dos Santos JL. Recent advances in the discovery of small molecules targeting glioblastoma. Eur J Med Chem 2018; 164:8-26. [PMID: 30583248 DOI: 10.1016/j.ejmech.2018.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is one of the most common central nervous system cancers. It is characterized as a fast-growing tumor that arises from multiple cell types with neural stem-cell-like properties. Additionally, GBM tumors are highly invasive, which is attributed to the presence of glioblastoma stem cells that makes surgery ineffective in most cases. Currently, temozolomide is the unique chemotherapy option approved by the U.S. Food and Drug Administration for GBM treatment. This review analyzes the emergence and development of new synthetic small molecules discovered as promising anti-glioblastoma agents. A number of compounds were described herein and grouped according to the main chemical class used in the drug discovery process. Importantly, we focused only on synthetic compounds published in the last 10 years, thus excluding natural products. Furthermore, we included in this review only those most biologically active compounds with proven in vitro and/or in vivo efficacy.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, 14800-060, Brazil
| | - Barbara Colatto Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Valeria Valente
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, 14800-060, Brazil.
| |
Collapse
|
15
|
Sestito S, Runfola M, Tonelli M, Chiellini G, Rapposelli S. New Multitarget Approaches in the War Against Glioblastoma: A Mini-Perspective. Front Pharmacol 2018; 9:874. [PMID: 30123135 PMCID: PMC6085564 DOI: 10.3389/fphar.2018.00874] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common tumor of the CNS, and the deadliest form of brain cancer. The rapid progression, the anatomic location in the brain and a deficient knowledge of the pathophysiology, often limit the effectiveness of therapeutic interventions. Current pillars of GBM therapies include surgical resection, radiotherapy and chemotherapy, but the low survival rate and the short life expectation following these treatments strongly underline the urgency to identify innovative and more effective therapeutic tools. Frequently, patients subjected to a mono-target therapy, such as Temozolomide (TMZ), develop drug resistance and undergo relapse, indicating that targeting a single cellular node is not sufficient for eradication of this disease. In this context, a multi-targeted therapeutic approach aimed at using compounds, alone or in combination, capable of inhibiting more than one specific molecular target, offers a promising alternative. Such strategies have already been well integrated into drug discovery campaigns, including in the field of anticancer drugs. In this miniperspective, we will discuss the recent progress in the treatment of GBM focusing on innovative and effective preclinical strategies, which are based on a multi-targeted approach.
Collapse
Affiliation(s)
| | | | - Marco Tonelli
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Friedman R. The molecular mechanism behind resistance of the kinase FLT3 to the inhibitor quizartinib. Proteins 2017; 85:2143-2152. [PMID: 28799176 DOI: 10.1002/prot.25368] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is a drug target for leukemias. Several potent inhibitors of FLT3 exist, and bind to the inactive form of the enzyme. Unfortunately, resistance due to mutations in the kinase domain of FLT3 limits the therapeutic effects of these inhibitors. As in many other cases, it is not straightforward to explain why certain mutations lead to drug resistance. Extensive fully atomistic molecular dynamics (MD) simulations of FLT3 were carried out with an inhibited form (FLT-quizartinib complex), a free (apo) form, and an active conformation. In all cases, both the wild type (wt) proteins and two resistant mutants (D835F and Y842H) were studied. Analysis of the simulations revealed that impairment of protein-drug interactions cannot explain the resistance mutations in question. Rather, it appears that the active state of the mutant forms is perturbed by the mutations. It is therefore likely that perturbation of deactivation of the protein (which is necessary for drug binding) is responsible for the reduced affinity of the drug to the mutants. Importantly, this study suggests that it is possible to explain the source of resistance by mutations in FLT3 by an analysis of unbiased MD simulations.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39 182 Kalmar, Sweden.,Centre of Excellence "Biomaterials Chemistry", Linnaeus University, 39 182 Kalmar, Sweden
| |
Collapse
|
17
|
Design, synthesis and biological evaluation of 3-substituted-2-oxindole hybrid derivatives as novel anticancer agents. Eur J Med Chem 2017; 134:258-270. [PMID: 28419928 DOI: 10.1016/j.ejmech.2017.03.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 01/01/2023]
Abstract
The 2-oxindole nucleus is the central core to develop new anticancer agents and its substitution at the 3-position can effect antitumor activity. Utilizing a pharmacophore hybridization approach, a novel series of antiproliferative agents was obtained by the modification of the structure of 3-substituted-2-oxindole pharmacophore by the attachment of the α-bromoacryloyl moiety, acting as a Michael acceptor, at the 5-position of 2-oxindole framework. The impact of the substituent at the 3-position of 2-oxindole core on the potency and selectivity against a panel of seven different cancer cell lines was examined. We found that these hybrid molecules displayed potent antiproliferative activity against a panel of four cancer cell lines, with one-to double digit nanomolar 50% inhibitory concentrations (IC50). A distinctive selective antiproliferative activity was obtained towards CCRF-CEM and RS4; 11 leukemic cell lines. In order to study the possible mechanism of action, we observed that the two most active compounds namely 3(E) and 6(Z) strongly induce apoptosis that follow the mitochondrial pathway. Interestingly a decrease of intracellular reduced glutathione content (GSH) and reactive oxygen species (ROS) production was detected in treated cells compared with controls suggesting that these effects may be involved in their mechanism of action.
Collapse
|
18
|
Daniele S, Sestito S, Pietrobono D, Giacomelli C, Chiellini G, Di Maio D, Marinelli L, Novellino E, Martini C, Rapposelli S. Dual Inhibition of PDK1 and Aurora Kinase A: An Effective Strategy to Induce Differentiation and Apoptosis of Human Glioblastoma Multiforme Stem Cells. ACS Chem Neurosci 2017; 8:100-114. [PMID: 27797168 DOI: 10.1021/acschemneuro.6b00251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of glioblastoma multiforme (GBM) is mainly attributed to drug resistance mechanisms and to the existence of a subpopulation of glioma stem cells (GSCs). Multitarget compounds able to both affect different deregulated pathways and the GSC subpopulation could escape tumor resistance and, most importantly, eradicate the stem cell reservoir. In this respect, the simultaneous inhibition of phosphoinositide-dependent kinase-1 (PDK1) and aurora kinase A (AurA), each one playing a pivotal role in cellular survival/migration/differentiation, could represent an innovative strategy to overcome GBM resistance and recurrence. Herein, the cross-talk between these pathways was investigated, using the single-target reference compounds MP7 (PDK1 inhibitor) and Alisertib (AurA inhibitor). Furthermore, a new ligand, SA16, was identified for its ability to inhibit the PDK1 and the AurA pathways at once, thus proving to be a useful tool for the simultaneous inhibition of the two kinases. SA16 blocked GBM cell proliferation, reduced tumor invasiveness, and triggered cellular apoptosis. Most importantly, the AurA/PDK1 blocker showed an increased efficacy against GSCs, inducing their differentiation and apoptosis. To the best of our knowledge, this is the first report on combined targeting of PDK1 and AurA. This drug represents an attractive multitarget lead scaffold for the development of new potential treatments for GBM and GSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Danilo Di Maio
- Scuola Normale Superiore, Piazza
dei Cavalieri 7, I-56126 Pisa, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples Federico II, Napoli, Italy
| | | | | |
Collapse
|
19
|
Abstract
Glioblastoma (GBM) is the most aggressive of primary brain tumors. Despite the progress in understanding the biology of the pathogenesis of glioma made during the past decade, the clinical outcome of patients with GBM remains still poor. Deregulation of many signaling pathways involved in growth, survival, migration and resistance to treatment has been implicated in pathogenesis of GBM. One of these pathways is phosphatidylinositol-3 kinases (PI3K)/protein kinase B (AKT)/rapamycin-sensitive mTOR-complex (mTOR) pathway, intensively studied and widely described so far. Much less attention has been paid to the role of glycogen synthase kinase 3 β (GSK3β), a target of AKT. In this review we focus on the function of AKT/GSK3β signaling in GBM.
Collapse
|