1
|
Wu YC, Lu MT, Kuo SC, Chu PC, Chang CS. Synthesis and SAR investigation of biphenylaminoquinoline derivatives with benzyloxy substituents as promising anticancer agents. Chem Biol Drug Des 2024; 103:e14509. [PMID: 38684369 DOI: 10.1111/cbdd.14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024]
Abstract
The biphenyl scaffold represents a prominent privileged structure within the realms of organic chemistry and drug development. Biphenyl derivatives have demonstrated notable biological activities, including antimicrobial, anti-inflammatory, anti-HIV, and the treatment of neuropathic pain. Importantly, their anticancer abilities should not be underestimated. In this context, the present study involves the design and synthesis of a series of biphenyl derivatives featuring an additional privileged structure, namely the quinoline core. We have also diversified the substituents attached to the benzyloxy group at either the meta or para position of the biphenyl ring categorized into two distinct groups: [4,3']biphenylaminoquinoline-substituted and [3,3']biphenylaminoquinoline-substituted compounds. We embarked on an assessment of the cytotoxic activities of these derivatives in colorectal cancer cell line SW480 and prostate cancer cell line DU145 for exploring the structure-activity relationship. Furthermore, we determined the IC50 values of selected compounds that exhibited superior inhibitory effects on cell viability against SW480, DU145 cells, as well as MDA-MB-231 and MiaPaCa-2 cells. Notably, [3,3']biphenylaminoquinoline derivative 7j displayed the most potent cytotoxicity against these four cancer cell lines, SW480, DU145, MDA-MB-231, and MiaPaCa-2, with IC50 values of 1.05 μM, 0.98 μM, 0.38 μM, and 0.17 μM, respectively. This highly promising outcome underscores the potential of [3,3']biphenylaminoquinoline 7j for further investigation as a prospective anticancer agent in future research endeavors.
Collapse
Affiliation(s)
- Yu-Chieh Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Meng-Tien Lu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Sheng-Chu Kuo
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Chih-Shiang Chang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Jeong JH, Lee H, Kim D, Park E, Woo J, Cho Y, Keum G, Lee A, Kang T, Kim J, Choo H, Lee S, Jeon B. Identification of an Antagonist Targeting G Protein and β-Arrestin Signaling Pathways of 5-HT 7R. ACS Chem Neurosci 2024; 15:1026-1041. [PMID: 38387042 DOI: 10.1021/acschemneuro.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
In consideration of the limited number of FDA-approved drugs for autism spectrum disorder (ASD), significant efforts have been devoted to identifying novel drug candidates. Among these, 5-HT7R modulators have garnered considerable attention due to their potential in alleviating autism-like behaviors in ASD animal models. In this study, we designed and synthesized biphenyl-3-ylmethylpyrrolidines 3 and biphenyl-3-yl-dihydroimidazoles 4 as 5-HT7R modulators. Through extensive biological tests of 3 and 4 in G protein and β-arrestin signaling pathways of 5-HT7R, it was determined that 2-(2'-methoxy-[1,1'-biphenyl]-3-yl)-4,5-dihydro-1H-imidazole 4h acted as a 5-HT7R antagonist in both signaling pathways. In in vivo study with Shank3-/- transgenic (TG) mice, the self-grooming behavior test was performed with 4h, resulting in a significant reduction in the duration of self-grooming. In addition, an immunohistochemical experiment with 4h restored reduced neurogenesis in Shank3-/- TG mice, which is confirmed by the quantification of doublecortin (DCX) positive neurons, suggesting the promising therapeutic potential of 4h.
Collapse
Affiliation(s)
- Jeong Hyun Jeong
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Haeun Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Doyoung Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunseo Park
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ansoo Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Taek Kang
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sanghee Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Byungsun Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
Kim D, Lee J, Kwag R, Kim H, Oh H, Moon B, Kim HJ, Seong J, Jeon B, Kang T, Choo H. N
‐(Biphenyl‐3‐ylmethyl)ethanamines as G protein‐biased agonists of
5‐HT
7
R. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Doyoung Kim
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Department of Chemistry Sogang University Mapo‐gu, Seoul Republic of Korea
| | - Jieon Lee
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST School Korea University of Science and Technology Seongbuk‐gu, Seoul Republic of Korea
| | - Rina Kwag
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Department of Chemistry Korea University Seongbuk‐gu, Seoul Republic of Korea
| | - Hyunbin Kim
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST School Korea University of Science and Technology Seongbuk‐gu, Seoul Republic of Korea
| | - Hyunji Oh
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Department of Chemistry Sogang University Mapo‐gu, Seoul Republic of Korea
| | - Bongjin Moon
- Department of Chemistry Sogang University Mapo‐gu, Seoul Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry Korea University Seongbuk‐gu, Seoul Republic of Korea
| | - Jihye Seong
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST School Korea University of Science and Technology Seongbuk‐gu, Seoul Republic of Korea
| | - Byungsun Jeon
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
| | - Taek Kang
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
| | - Hyunah Choo
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST School Korea University of Science and Technology Seongbuk‐gu, Seoul Republic of Korea
| |
Collapse
|
4
|
Lee J, Kwag R, Lee S, Kim D, Woo J, Cho Y, Kim HJ, Kim J, Jeon B, Choo H. Discovery of G Protein-Biased Ligands against 5-HT 7R. J Med Chem 2021; 64:7453-7467. [PMID: 34032427 DOI: 10.1021/acs.jmedchem.1c00110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There has been significant attention concerning the biased agonism of G protein-coupled receptors (GPCRs), and it has resulted in various pharmacological benefits. 5-HT7R belongs to a GPCR, and it is a promising pharmaceutical target for the treatment of neurodevelopmental and neuropsychiatric disorders. Based on our previous research, we synthesized a series of 6-chloro-2'-methoxy biphenyl derivatives 1, 2, and 3 with a variety of amine scaffolds. These compounds were evaluated for their binding affinities to 5-HTR subtypes and their functional selectivity toward the Gs protein and the β-arrestin signaling pathways of 5-HT7R. Among them, 2-(6-chloro-2'-methoxy-[1,1'-biphenyl]-3-yl)-N-ethylethan-1-amine, 2b, was found to be a G-protein-biased ligand of 5-HT7R. In an in vivo study with Shank3 transgenic mice, the self-grooming behavior test was performed with 2b, which increased the duration of self-grooming. The experiments further suggested that 5-HT7R is associated with autism spectrum disorders (ASDs) and could be a therapeutic target for the treatment of stereotypy in ASDs.
Collapse
Affiliation(s)
- Jieon Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Rina Kwag
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Chemistry, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soyeon Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Chemistry, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Doyoung Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Chemistry, Sogang University, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Byungsun Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
5
|
Synthesis of Biaryls Having a Piperidylmethyl Group Based on Space Integration of Lithiation, Borylation, and Suzuki-Miyaura Coupling. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Thirumaran SL, Lepailleur A, Rochais C. Structure-activity relationships of serotonin 5-HT7 receptors ligands: A review. Eur J Med Chem 2019; 183:111705. [DOI: 10.1016/j.ejmech.2019.111705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/30/2023]
|
7
|
Policarpo RL, Decultot L, May E, Kuzmič P, Carlson S, Huang D, Chu V, Wright BA, Dhakshinamoorthy S, Kannt A, Rani S, Dittakavi S, Panarese JD, Gaudet R, Shair MD. High-Affinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT). J Med Chem 2019; 62:9837-9873. [PMID: 31589440 DOI: 10.1021/acs.jmedchem.9b01238] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme that methylates nicotinamide (NAM) using cofactor S-adenosylmethionine (SAM). NNMT overexpression has been linked to diabetes, obesity, and various cancers. In this work, structure-based rational design led to the development of potent and selective alkynyl bisubstrate inhibitors of NNMT. The reported nicotinamide-SAM conjugate (named NS1) features an alkyne as a key design element that closely mimics the linear, 180° transition state geometry found in the NNMT-catalyzed SAM → NAM methyl transfer reaction. NS1 was synthesized in 14 steps and found to be a high-affinity, subnanomolar NNMT inhibitor. An X-ray cocrystal structure and SAR study revealed the ability of an alkynyl linker to span the methyl transfer tunnel of NNMT with ideal shape complementarity. The compounds reported in this work represent the most potent and selective NNMT inhibitors reported to date. The rational design principle described herein could potentially be extended to other methyltransferase enzymes.
Collapse
Affiliation(s)
| | | | | | - Petr Kuzmič
- BioKin Ltd. , Watertown , Massachusetts 02472 , United States
| | | | | | | | | | | | - Aimo Kannt
- Sanofi Research and Development , Industriepark Hoechst, H823 , D-65926 Frankfurt am Main , Germany
| | - Shilpa Rani
- Jubilant Biosys Ltd. , Yeshwantpur, Bangalore , 560 022 Karnataka , India
| | | | | | | | | |
Collapse
|
8
|
Blattner KM, Canney DJ, Pippin DA, Blass BE. Pharmacology and Therapeutic Potential of the 5-HT 7 Receptor. ACS Chem Neurosci 2019; 10:89-119. [PMID: 30020772 DOI: 10.1021/acschemneuro.8b00283] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well-documented that serotonin (5-HT) exerts its pharmacological effects through a series of 5-HT receptors. The most recently identified member of this family, 5-HT7, was first identified in 1993. Over the course of the last 25 years, this receptor has been the subject of intense investigation, and it has been demonstrated that 5-HT7 plays an important role in a wide range of pharmacological processes. As a result of these findings, modulation of 5-HT7 activity has been the focus of numerous drug discovery and development programs. This review provides an overview of the roles of 5-HT7 in normal physiology and the therapeutic potential of this interesting drug target.
Collapse
Affiliation(s)
- Kevin M. Blattner
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Daniel J. Canney
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Douglas A. Pippin
- Praeventix, LLC, 665 Stockton Drive, Suite 200H, Exton, Pennsylvania 19341, United States
| | - Benjamin E. Blass
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
9
|
Chen H, Han J, Wang L. Intramolecular Aryl Migration of Diaryliodonium Salts: Access to ortho
-Iodo Diaryl Ethers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huangguan Chen
- Key Laboratory for Advanced Materials; Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Jianwei Han
- Key Laboratory for Advanced Materials; Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis; Shanghai Institute of Organic Chemistry; The Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Limin Wang
- Key Laboratory for Advanced Materials; Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
10
|
Chen H, Han J, Wang L. Intramolecular Aryl Migration of Diaryliodonium Salts: Access to ortho-Iodo Diaryl Ethers. Angew Chem Int Ed Engl 2018; 57:12313-12317. [PMID: 30137685 DOI: 10.1002/anie.201806405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/28/2018] [Indexed: 11/07/2022]
Abstract
By using vicinal trifluoromethanesulfonate-substituted diaryliodonium salts, a novel approach was developed for the synthesis of ortho-iodo diaryl ethers by intramolecular aryl migration. The reaction conditions are mild with a broad substrate scope. Mechanistic insight suggests a sulfonyl-directed nucleophilic aromatic substitution pathway. Additionally, the product ortho-iodo diaryl ethers serve as versatile synthons as demonstrated with several coupling reactions. Furthermore, a useful thyroxine analogue of the 3-iodo-l-thyronine (3-T1 ) derivative was synthesized by this aryl migration procedure.
Collapse
Affiliation(s)
- Huangguan Chen
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Limin Wang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
11
|
Kim Y, Yeom M, Lee S, Tae J, Kim HJ, Rhim H, Seong J, Choi KI, Min SJ, Choo H. Synthesis of N
-Alkyl-Carbazole Derivatives as 5-HT7
R Antagonists. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Youngjae Kim
- Center for Neuro-Medicine, Brain Research Institute; Korea Institute of Science and Technology; Seoul 02792 Korea
- Department of Chemistry; Yonsei University; Seoul 03722 Korea
| | - Miyoung Yeom
- Center for Neuro-Medicine, Brain Research Institute; Korea Institute of Science and Technology; Seoul 02792 Korea
| | - Soyeon Lee
- Center for Neuro-Medicine, Brain Research Institute; Korea Institute of Science and Technology; Seoul 02792 Korea
- Department of Chemistry; Korea University; Seoul 02841 Korea
| | - Jinsung Tae
- Department of Chemistry; Yonsei University; Seoul 03722 Korea
| | - Hak Joong Kim
- Department of Chemistry; Korea University; Seoul 02841 Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Research Institute; Korea Institute of Science and Technology; Seoul 02792 Korea
- Division of Bio-Medical Science and Technology, KIST School; Korea University of Science and Technology; Seoul 02792 Korea
| | - Jihye Seong
- Center for Neuro-Medicine, Brain Research Institute; Korea Institute of Science and Technology; Seoul 02792 Korea
- Convergence Research Center for Diagnosis Treatment Care of Dementia; Korea Institute of Science and Technology; Seoul 02792 Korea
- Department of Biological Chemistry; Korea University of Science and Technology; Daejeon 34113 Korea
| | - Kyung Il Choi
- Small & Medium Enterprises Support Center; Korea Institute of Science and Technology; Seoul 02792 Korea
| | - Sun-Joon Min
- Department of Chemical & Molecular Engineering/Applied Chemistry; Hanyang University; Ansan 15588 Korea
| | - Hyunah Choo
- Center for Neuro-Medicine, Brain Research Institute; Korea Institute of Science and Technology; Seoul 02792 Korea
- Division of Bio-Medical Science and Technology, KIST School; Korea University of Science and Technology; Seoul 02792 Korea
| |
Collapse
|
12
|
Modica MN, Lacivita E, Intagliata S, Salerno L, Romeo G, Pittalà V, Leopoldo M. Structure-Activity Relationships and Therapeutic Potentials of 5-HT 7 Receptor Ligands: An Update. J Med Chem 2018; 61:8475-8503. [PMID: 29767995 DOI: 10.1021/acs.jmedchem.7b01898] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Serotonin 5-HT7 receptor (5-HT7R) has been the subject of intense research efforts because of its presence in brain areas such as the hippocampus, hypothalamus, and cortex. Preclinical data link the 5-HT7R to a variety of central nervous system processes including the regulation of circadian rhythms, mood, cognition, pain processing, and mechanisms of addiction. 5-HT7R blockade has antidepressant effects and may ameliorate cognitive deficits associated with schizophrenia. 5-HT7R has been recently shown to modulate neuronal morphology, excitability, and plasticity, thus contributing to shape brain networks during development and to remodel neuronal wiring in the mature brain. Therefore, the activation of 5-HT7R has been proposed as a therapeutic approach for neurodevelopmental and neuropsychiatric disorders associated with abnormal neuronal connectivity. This Perspective celebrates the silver jubilee of the discovery of 5-HT7R by providing a survey of recent studies on the medicinal chemistry of 5-HT7R ligands and on the neuropharmacology of 5-HT7R.
Collapse
Affiliation(s)
- Maria N Modica
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 Bari , Italy
| | - Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy , University of Florida , Medical Science Building, 1345 Center Drive , Gainesville , Florida 32610 , United States
| | - Loredana Salerno
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Giuseppe Romeo
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Valeria Pittalà
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 Bari , Italy
| |
Collapse
|
13
|
Zhao Q, Xiang H, Xiao JA, Xia PJ, Wang JJ, Chen X, Yang H. Selectfluor-Triggered Tandem Cyclization of o-Hydroxyarylenaminones To Access Difluorinated 2-Amino-Substituted Chromanones. J Org Chem 2017; 82:9837-9843. [DOI: 10.1021/acs.joc.7b01339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qinglan Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Haoyue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jun-An Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Peng-Ju Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jun-Jie Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
14
|
Bergström M, Suresh G, Naidu VR, Unelius CR. N
-Iodosuccinimide (NIS) in Direct Aromatic Iodination. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Bergström
- Department of Chemistry and Biomedical Sciences; Linnaeus University; 39182 Kalmar Sweden
| | - Ganji Suresh
- Department of Chemistry and Biomedical Sciences; Linnaeus University; 39182 Kalmar Sweden
| | - Veluru Ramesh Naidu
- Department of Chemistry and Biomedical Sciences; Linnaeus University; 39182 Kalmar Sweden
| | - C. Rikard Unelius
- Department of Chemistry and Biomedical Sciences; Linnaeus University; 39182 Kalmar Sweden
| |
Collapse
|