1
|
de Oliveira Silva JV, Meneguello JE, Formagio MD, de Freitas CF, Malacarne LC, Marchiosi R, de Mendonça PDSB, Zanetti Campanerut-Sá PA, Graton Mikcha JM. Multi-targets of antimicrobial photodynamic therapy mediated by erythrosine against Staphylococcus aureus identified by proteomic approach. Photochem Photobiol 2024; 100:1848-1863. [PMID: 38594817 DOI: 10.1111/php.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Staphylococcus aureus is a global challenge to the clinical field and food industry. Therefore, the development of antimicrobial photodynamic therapy (aPDT) has become one of the valuable methods to control this pathogen. The antibacterial activity of photoinactivation by erythrosine (Ery) against S. aureus has been reported, but its modes of action are unclear. This study aimed to employ a proteomic approach to analyze modes of action of Ery-aPDT against S. aureus. We determined the antibacterial effect by Ery-aPDT assays, quantified reactive oxygen species (ROS) and injury to the cell membrane, and determined protein expression using a proteomic approach combined with bioinformatic tools. Ery-aPDT was effective in reducing S. aureus to undetectable levels. In addition, the increment of ROS accompanied the increase in the reduction of cell viability, and damage to cellular membranes was shown by sublethal injury. In proteomic analysis, we found 17 differentially expressed proteins. These proteins revealed changes mainly associated with defense to oxidative stress, energy metabolism, translation, and protein biosynthesis. Thus, these results suggest that the effectiveness of Ery-aPDT is due to multi-targets in the bacterial cell that cause the death of S. aureus.
Collapse
Affiliation(s)
| | - Jean Eduardo Meneguello
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Maíra Dante Formagio
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | | | | | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Paraná, Brazil
| | | | | | | |
Collapse
|
2
|
Shinde Y, Pathan A, Chinnam S, Rathod G, Patil B, Dhangar M, Mathew B, Kim H, Mundada A, Kukreti N, Ahmad I, Patel H. Mycobacterial FtsZ and inhibitors: a promising target for the anti-tubercular drug development. Mol Divers 2024; 28:3457-3478. [PMID: 38010605 DOI: 10.1007/s11030-023-10759-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
The emergence of multidrug-resistant tuberculosis (MDR-TB) strains has rendered many anti-TB drugs ineffective. Consequently, there is an urgent need to identify new drug targets against Mycobacterium tuberculosis (Mtb). Filament Forming Temperature Sensitive Gene Z (FtsZ), a member of the cytoskeletal protein family, plays a vital role in cell division by forming a cytokinetic ring at the cell's center and coordinating the division machinery. When FtsZ is depleted, cells are unable to divide and instead elongate into filamentous structures that eventually undergo lysis. Since the inactivation of FtsZ or alterations in its assembly impede the formation of the Z-ring and septum, FtsZ shows promise as a target for the development of anti-mycobacterial drugs. This review not only discusses the potential role of FtsZ as a promising pharmacological target for anti-tuberculosis therapies but also explores the structural and functional aspects of the mycobacterial protein FtsZ in cell division. Additionally, it reviews various inhibitors of Mtb FtsZ. By understanding the importance of FtsZ in cell division, researchers can explore strategies to disrupt its function, impeding the growth and proliferation of Mtb. Furthermore, the investigation of different inhibitors that target Mtb FtsZ expands the potential for developing effective treatments against tuberculosis.
Collapse
Affiliation(s)
- Yashodeep Shinde
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Asama Pathan
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Autonomous Institute, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Gajanan Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Bhatu Patil
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Mayur Dhangar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 690525, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Anand Mundada
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University-Dehradun, Dehradun, Uttarakhand, 248002, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
3
|
Amandy FV, Neri GLL, Manzano JAH, Go AD, Macabeo APG. Polypharmacology-Driven Discovery and Design of Highly Selective, Dual and Multitargeting Inhibitors of Mycobacterium tuberculosis - A Review. Curr Drug Targets 2024; 25:620-634. [PMID: 38859782 DOI: 10.2174/0113894501306302240526160804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
The increasing demand for novel antitubercular agents has been the main 'force' of many TB research efforts due to the uncontrolled growing number of drug-resistant strains of M. tuberculosis in the clinical setting. Many strategies have been employed to address the drug-resistant issue, including a trend that is gaining attention, which is the design and discovery of Mtb inhibitors that are either dual- or multitargeting. The multiple-target design concept is not new in medicinal chemistry. With a growing number of newly discovered Mtb proteins, numerous targets are now available for developing new biochemical/cell-based assays and computer-aided drug design (CADD) protocols. To describe the achievements and overarching picture of this field in anti- infective drug discovery, we provide in this review small molecules that exhibit profound inhibitory activity against the tubercle bacilli and are identified to trace two or more Mtb targets. This review also presents emerging design methodologies for developing new anti-TB agents, particularly tailored to structure-based CADD.
Collapse
Affiliation(s)
- Franklin V Amandy
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, Adamson University, San Marcelino St., Ermita, Manila 1000, Philippines
| | - Gabriel L L Neri
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Joe A H Manzano
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Adrian D Go
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, Adamson University, San Marcelino St., Ermita, Manila 1000, Philippines
| | - Allan P G Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| |
Collapse
|
4
|
Gomes MC, Padilha EKA, Diniz GRA, Gomes EC, da Silva Santos-Júnior PF, Zhan P, da Siva-Júnior EF. Multi-target Compounds against Trypanosomatid Parasites and Mycobacterium tuberculosis. Curr Drug Targets 2024; 25:602-619. [PMID: 38910467 DOI: 10.2174/0113894501306843240606114854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
Multi-target drug treatment has become popular as a substitute for traditional monotherapy. Monotherapy can lead to resistance and side effects. Multi-target drug discovery is gaining importance as data on bioactivity becomes more abundant. The design of multi-target drugs is expected to be an important development in the pharmaceutical industry in the near future. This review presents multi-target compounds against trypanosomatid parasites (Trypanosoma cruzi, T. brucei, and Leishmania sp.) and tuberculosis (Mycobacterium tuberculosis), which mainly affect populations in socioeconomically unfavorable conditions. The article analyzes the studies, including their chemical structures, viral strains, and molecular docking studies, when available. The objective of this review is to establish a foundation for designing new multi-target inhibitors for these diseases.
Collapse
Affiliation(s)
- Midiane Correia Gomes
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Emanuelly Karla Araújo Padilha
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Gustavo Rafael Angelo Diniz
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Edilma Correia Gomes
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Paulo Fernando da Silva Santos-Júnior
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Peng Zhan
- Department of Medicinal - Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Edeildo Ferreira da Siva-Júnior
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| |
Collapse
|
5
|
Kumar N, Khanna A, Kaur K, Kaur H, Sharma A, Bedi PMS. Quinoline derivatives volunteering against antimicrobial resistance: rational approaches, design strategies, structure activity relationship and mechanistic insights. Mol Divers 2023; 27:1905-1934. [PMID: 36197551 PMCID: PMC9533295 DOI: 10.1007/s11030-022-10537-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
Emergence of antimicrobial resistance has become a great threat to human species as there is shortage of development of new antimicrobial agents. So, its mandatary to combat AMR by initiating research and developing new novel antimicrobial agents. Among phytoconstituents, Quinoline (nitrogen containing heterocyclic) have played a wide role in providing new bioactive molecules. So, this review provides rational approaches, design strategies, structure activity relationship and mechanistic insights of newly developed quinoline derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harmandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | | |
Collapse
|
6
|
Wang S, Gao Y, Song S, Li X, Zhang Z, Xiang J, Zheng L. Lewis base catalyzed allylation reaction of N-aryl amides with Morita–Baylis–Hillman carbonates. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Kumbhakonam S, Saroj S, Venkatesan N, Devarajan K, Manheri MK. Reactive Pt(II) center as part of redox-active quinoline-based heterocyclic scaffolds toward new anticancer leads. Bioorg Med Chem Lett 2020; 30:127594. [PMID: 33010449 DOI: 10.1016/j.bmcl.2020.127594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
New cisplatin analogs in which the diamminedichloro-Pt(II) unit is conjugated to dihydroquinoline- or tetrahydroquinoline frameworks were synthesized and subjected to biological evaluation in order to understand their effects on cellular redox homeostasis and cell viability. They exhibited better selectivity towards cancer cells (A549) compared to mice fibroblast NIH3T3 cells, with cytotoxicity in the same range as that of cisplatin. There was structure-dependent variation in the levels of ROS and were also able to induce cell death, as evidenced by accumulation of cells in sub-G1 phase.
Collapse
Affiliation(s)
| | - Soumya Saroj
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nalini Venkatesan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Karunagaran Devarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | | |
Collapse
|
9
|
Wang G, Huang H, Guo W, Qian C, Sun J. Unusual Skeletal Reorganization of Oxetanes for the Synthesis of 1,2-Dihydroquinolines. Angew Chem Int Ed Engl 2020; 59:11245-11249. [PMID: 32219976 DOI: 10.1002/anie.201916727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/08/2020] [Indexed: 01/29/2023]
Abstract
Skeletal reorganization is a type of fascinating transformations owing to their intriguing mechanisms and utility in complex molecule synthesis. However, only a limited amount of examples are known for most functional groups. Herein, we describe such an unusual process of oxetanes. In the presence of In(OTf)3 as catalyst, oxetane-tethered anilines reacted unexpectedly to form 1,2-dihydroquinolines. This process not only provides expedient access to dihydroquinolines, but also represents a new reaction of oxetane. Mechanistically, it is believed that the reaction proceeds through initial nitrogen attack rather than arene attack followed by a series of bond cleavage and formation events. Control experiments provided important insights into the mechanism.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Wengang Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chenxiao Qian
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Wang G, Huang H, Guo W, Qian C, Sun J. Unusual Skeletal Reorganization of Oxetanes for the Synthesis of 1,2‐Dihydroquinolines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guannan Wang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Wengang Guo
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| | - Chenxiao Qian
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| |
Collapse
|
11
|
Carro L. Recent Progress in the Development of Small-Molecule FtsZ Inhibitors as Chemical Tools for the Development of Novel Antibiotics. Antibiotics (Basel) 2019; 8:E217. [PMID: 31717975 PMCID: PMC6963470 DOI: 10.3390/antibiotics8040217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/20/2023] Open
Abstract
Antibiotics are potent pharmacological weapons against bacterial pathogens, nevertheless their efficacy is becoming compromised due to the worldwide emergence and spread of multidrug-resistant bacteria or "superbugs". Antibiotic resistance is rising to such dangerous levels that the treatment of bacterial infections is becoming a clinical challenge. Therefore, urgent action is needed to develop new generations of antibiotics that will help tackle this increasing and serious public health problem. Due to its essential role in bacterial cell division, the tubulin-like protein FtsZ has emerged as a promising target for the development of novel antibiotics with new mechanisms of action. This review highlights the medicinal chemistry efforts towards the identification of small-molecule FtsZ inhibitors with antibacterial activity in the last three years.
Collapse
Affiliation(s)
- Laura Carro
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain;
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
12
|
Pharmacophore based approach to screen and evaluate novel Mycobacterium cell division inhibitors targeting FtsZ – A modelling and experimental study. Eur J Pharm Sci 2019; 135:103-112. [DOI: 10.1016/j.ejps.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 01/09/2023]
|
13
|
Khadkikar P, Goud NS, Mohammed A, Ramamoorthy G, Ananthathatmula R, Doble M, Rizvi A, Banerjee S, Ravi A, Alvala M. An efficient and facile green synthesis of bisindole methanes as potential Mtb
FtsZ inhibitors. Chem Biol Drug Des 2018; 92:1933-1939. [DOI: 10.1111/cbdd.13363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Pratima Khadkikar
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad India
| | - N. Sridhar Goud
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad India
| | - Arifuddin Mohammed
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad India
| | - Gayathri Ramamoorthy
- Bioengineering and Drug Design Lab; Department of Biotechnology; Indian Institute of Technology Madras; Chennai India
| | - Ragamanvitha Ananthathatmula
- Bioengineering and Drug Design Lab; Department of Biotechnology; Indian Institute of Technology Madras; Chennai India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab; Department of Biotechnology; Indian Institute of Technology Madras; Chennai India
| | - Arshad Rizvi
- Department of Biochemistry; University of Hyderabad; Hyderabad India
| | | | - Alvala Ravi
- G. Pulla Reddy College of Pharmacy; Hyderabad India
| | - Mallika Alvala
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad India
| |
Collapse
|
14
|
Sridevi D, Sudhakar KU, Ananthathatmula R, Nankar RP, Doble M. Mutation at G103 of MtbFtsZ Altered their Sensitivity to Coumarins. Front Microbiol 2017; 8:578. [PMID: 28428773 PMCID: PMC5382161 DOI: 10.3389/fmicb.2017.00578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/21/2017] [Indexed: 02/02/2023] Open
Abstract
Coumarins are natural polyphenol lactones comprising of fused rings of benzene and α-pyrone. The current study demonstrates the inhibitory effect of coumarins with various substitutions on Mycobacterium smegmatis mc2 155. We also demonstrate the effect of pomegranate (Punica granatum) extract containing ellagic acid, on M. smegmatis as well as their affect on MtbFtsZ (FtsZ from Mycobacterium tuberculosis). The ellagic acid extracts from pomegranate peels inhibit mycobacteria with a MIC of 25 μM and 0.3 to 3.5 mg/mL, respectively, but failed to inhibit the polymerization of MtbFtsZ. However, the coumarins were shown to inhibit the polymerization and GTPase activity of the protein as well as have an inhibitory affect on M. smegmatis mc2 155. Docking of the most active coumarin (7-Dimethyl-4-methyl coumarin with MIC of 38.7 μM) to the GTP binding site suggests that it interacted with the G103 residue. Based on the docking results two mutants of varying activity (G103S and G103A) were constructed to elucidate the interaction of MtbFtsZ and coumarins. Mutation of G103 with Serine (a bulky group) results in an inactive mutant and substitution with alanine produces a variant that retains most of the activity of the wild type. There is a disruption of the protofilament formation of the MtbFtsZ upon interaction with coumarins as demonstrated by TEM. The coumarins increase the length of Mycobacteria five times and MtbFtsZ localization is disturbed. The mutant proteins altered the GTPase and polymerization activity of coumarins as compared to wild type protein. The results here support that coumarins inhibit proliferation of Mycobacteria by targeting the assembly of MtbFtsZ and provide the possible binding site of coumarins on MtbFtsZ. This study may aid in the design of natural products as anti-mycobacterial agents. The currently reported GTP analogs for FtsZ are toxic to the human cell lines; natural coumarins targeting the GTP binding site of MtbFtsZ may hold promise as an important drug lead for tuberculosis treatment.
Collapse
Affiliation(s)
- Duggirala Sridevi
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology MadrasChennai, India
| | - Karpagam U Sudhakar
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology MadrasChennai, India
| | - Ragamanvitha Ananthathatmula
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology MadrasChennai, India
| | - Rakesh P Nankar
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology MadrasChennai, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology MadrasChennai, India
| |
Collapse
|