1
|
Tonkin-Reeves A, Giuliani CM, Price JT. Inhibition of autophagy; an opportunity for the treatment of cancer resistance. Front Cell Dev Biol 2023; 11:1177440. [PMID: 37363731 PMCID: PMC10290173 DOI: 10.3389/fcell.2023.1177440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
The process of macroautophagy plays a pivotal role in the degradation of long-lived, superfluous, and damaged proteins and organelles, which are later recycled for cellular use. Normal cells rely on autophagy to combat various stressors and insults to ensure survival. However, autophagy is often upregulated in cancer cells, promoting a more aggressive phenotype that allows mutated cells to evade death after exposure to therapeutic treatments. As a result, autophagy has emerged as a significant factor in therapeutic resistance across many cancer types, with underlying mechanisms such as DNA damage, cell cycle arrest, and immune evasion. This review provides a comprehensive summary of the role of autophagy in therapeutic resistance and the limitations of available autophagic inhibitors in cancer treatment. It also highlights the urgent need to explore new inhibitors that can synergize with existing therapies to achieve better patient treatment outcomes. Advancing research in this field is crucial for developing more effective treatments that can help improve the lives of cancer patients.
Collapse
Affiliation(s)
- Asha Tonkin-Reeves
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Charlett M. Giuliani
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, Melbourne, VIC, Australia
| | - John T. Price
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Xie Y, Fan S, Ni D, Wan W, Xu P, Ding Y, Zhang R, Lu J, Zhang N, Zhang Y, Xiao W, Zhao K, Luo C. An ATG4B inhibitor blocks autophagy and Sensitizes Sorafenib Inhibition Activities in HCC tumor cells. Bioorg Med Chem 2023; 84:117262. [PMID: 37018878 DOI: 10.1016/j.bmc.2023.117262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Autophagy related 4B (ATG4B) which regulates autophagy by promoting the formation of autophagosome through reversible modification of LC3, is closely related to cancer cell growth and drug resistance, and therefore is an attractive therapeutic target. Recently, ATG4B inhibitors have been reported, yet with drawbacks including weak potency. To discover more promising ATG4B inhibitors, we developed a high-throughput screening (HTS) assay and identified a new ATG4B inhibitor named DC-ATG4in. DC-ATG4in directly binds to ATG4B and inhibits its enzyme activity with an IC50 of 3.08 ± 0.47 μM. We further confirmed that DC-ATG4in is an autophagy inhibitor and blocks autophagy induced by Sorafenib in Hepatocellular Carcinoma (HCC) cells. More importantly, combination of DC-ATG4in with Sorafenib synergized the cancer cell killing effect and proliferation inhibition activities on HCC cells. Our data suggested that inactivation of autophagy via ATG4B inhibition may be a viable strategy to sensitize existing targeted therapy such as Sorafenib in the future.
Collapse
Affiliation(s)
- Yanqiu Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Shijie Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Dongxuan Ni
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650500, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Wei Wan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Pan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yiluan Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650500, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Naixia Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuanyuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650500, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Xie H, Qiang P, Wang Y, Xia F, Liu P, Li M. Discovery and mechanism studies of a novel ATG4B inhibitor Ebselen by drug repurposing and its anti-colorectal cancer effects in mice. Cell Biosci 2022; 12:206. [PMID: 36539845 PMCID: PMC9767854 DOI: 10.1186/s13578-022-00944-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cysteine protease ATG4B, a key autophagy protein, is an attractive target for colorectal cancer therapy. However, ATG4B inhibitors with higher efficiency, safety, and clear mechanism are still limited. In this study, we discovered ATG4B inhibitors based on the FDA-approved drug library through FRET-based high-throughput screening and gel-based analysis. Among the nine hits, compound Ebselen showed the most potent ATG4B inhibitory activity (IC50 = 189 nM) and exhibited controllable selectivity and structural optimizable possibility against ATG4A and caspases. We then performed mass spectrometry assay and cysteine mutations to confirm that Ebselen could covalently bind to ATG4B at Cys74. Moreover, Cys292 and Cys361 instead of Cys74 are responsible for the redox-oligomerization and efficient activity inhibition of ATG4B. Ultimately through cell culture and mouse xenograft tumor models, we established the impact of Ebselen on autophagy and tumor suppression via ATG4B inhibition other than apoptosis. These results suggest that old drug Ebselen as an ATG4B inhibitor through oxidative modification may be repurposed as a promising anti-colorectal cancer drug.
Collapse
Affiliation(s)
- Huazhong Xie
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Pengfei Qiang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Yao Wang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Fan Xia
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Peiqing Liu
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Min Li
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| |
Collapse
|
4
|
Nasrollahpour H, Khalilzadeh B, Naseri A, Sillanpää M, Chia CH. Homogeneous Electrochemiluminescence in the Sensors Game: What Have We Learned from Past Experiments? Anal Chem 2021; 94:349-365. [PMID: 34878242 DOI: 10.1021/acs.analchem.1c03909] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664-14766, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664-14766, Iran
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, 70000 Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, 70000 Ho Chi Minh City, Vietnam
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
5
|
Agrotis A, Ketteler R. On ATG4B as Drug Target for Treatment of Solid Tumours-The Knowns and the Unknowns. Cells 2019; 9:cells9010053. [PMID: 31878323 PMCID: PMC7016753 DOI: 10.3390/cells9010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionary conserved stress survival pathway that has been shown to play an important role in the initiation, progression, and metastasis of multiple cancers; however, little progress has been made to date in translation of basic research to clinical application. This is partially due to an incomplete understanding of the role of autophagy in the different stages of cancer, and also to an incomplete assessment of potential drug targets in the autophagy pathway. While drug discovery efforts are on-going to target enzymes involved in the initiation phase of the autophagosome, e.g., unc51-like autophagy activating kinase (ULK)1/2, vacuolar protein sorting 34 (Vps34), and autophagy-related (ATG)7, we propose that the cysteine protease ATG4B is a bona fide drug target for the development of anti-cancer treatments. In this review, we highlight some of the recent advances in our understanding of the role of ATG4B in autophagy and its relevance to cancer, and perform a critical evaluation of ATG4B as a druggable cancer target.
Collapse
|
6
|
Quintana M, Bilbao A, Comas-Barceló J, Bujons J, Triola G. Identification of benzo[cd]indol-2(1H)-ones as novel Atg4B inhibitors via a structure-based virtual screening and a novel AlphaScreen assay. Eur J Med Chem 2019; 178:648-666. [DOI: 10.1016/j.ejmech.2019.05.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/07/2023]
|
7
|
Noguera-Ortega E, Amaravadi RK. Autophagy in the Tumor or in the Host: Which Plays a Greater Supportive Role? Cancer Discov 2019; 8:266-268. [PMID: 29500327 DOI: 10.1158/2159-8290.cd-18-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
<b/> Autophagy has been identified as a potential therapeutic target in pancreatic ductal adenocarcinoma, one of the most lethal cancers, with few therapeutic options. Yang and colleagues successfully created a genetically engineered mouse model focused on the autophagy gene Atg4b that allows the study of therapeutic autophagy inhibition in fully formed tumors. Using this tool, they demonstrated that selective autophagy inhibition in either the tumor cells, normal host cells, or both suppresses tumor growth. Cancer Discov; 8(3); 266-8. ©2018 AACRSee related article by Yang et al., p. 276.
Collapse
Affiliation(s)
- Estela Noguera-Ortega
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Tanc M, Cleenewerck M, Kurdi A, Roelandt R, Declercq W, De Meyer G, Augustyns K, Martinet W, Van der Veken P. Synthesis and evaluation of novel benzotropolones as Atg4B inhibiting autophagy blockers. Bioorg Chem 2019; 87:163-168. [DOI: 10.1016/j.bioorg.2019.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
|
9
|
Pengo N, Prak K, Costa JR, Luft C, Agrotis A, Freeman J, Gewinner CA, Chan AWE, Selwood DL, Kriston-Vizi J, Ketteler R. Identification of Kinases and Phosphatases That Regulate ATG4B Activity by siRNA and Small Molecule Screening in Cells. Front Cell Dev Biol 2018; 6:148. [PMID: 30443548 PMCID: PMC6221980 DOI: 10.3389/fcell.2018.00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Autophagy protease ATG4B is a key regulator of the LC3/GABARAP conjugation system required for autophagosome formation, maturation and closure. Members of the ATG4 and the LC3/GABARAP family have been implicated in various diseases including cancer, and targeting the ATG4B protease has been suggested as a potential therapeutic anti-cancer strategy. Recently, it has been demonstrated that ATG4B is regulated by multiple post-translational modifications, including phosphorylation and de-phosphorylation. In order to identify regulators of ATG4B activity, we optimized a cell-based luciferase assay based on ATG4B-dependent release of Gaussia luciferase. We applied this assay in a proof-of-concept small molecule compound screen and identified activating compounds that increase cellular ATG4B activity. Next, we performed a high-throughput screen to identify kinases and phosphatases that regulate cellular ATG4B activity using siRNA mediated knockdown and cDNA overexpression. Of these, we provide preliminary evidence that the kinase AKT2 enhances ATG4B activity in cells. We provide all raw and processed data from the screens as a resource for further analysis. Overall, our findings provide novel insights into the regulation of ATG4B and highlight the importance of post-translational modifications of ATG4B.
Collapse
Affiliation(s)
- Niccolo Pengo
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Krisna Prak
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Joana R. Costa
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Christin Luft
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Alexander Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jamie Freeman
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - A. W. Edith Chan
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - David L. Selwood
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
10
|
Fu Y, Hong L, Xu J, Zhong G, Gu Q, Gu Q, Guan Y, Zheng X, Dai Q, Luo X, Liu C, Huang Z, Yin XM, Liu P, Li M. Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo. Autophagy 2018; 15:295-311. [PMID: 30176161 DOI: 10.1080/15548627.2018.1517073] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human Atg4 homologs are cysteine proteases, which play key roles in the macroautophagy/autophagy process by cleaving Atg8 homologs for conjugation to lipid membranes and for deconjugation of Atg8 homologs from membranes. Expression of ATG4B is significantly increased in colorectal cancer cells compared to normal cells, suggesting that ATG4B may be important for cancer biology. Inhibition of ATG4B may reduce the autophagy activity, thereby sensitizing cancer cells to therapeutic agents. Thus, developing specific and potent ATG4B inhibitors for research as well as for potential therapeutic uses is highly needed. In this study, we integrated in silico screening and in vitro assays to discover a potent ATG4B inhibitor, named S130, from a noncommercial library. This chemical binds to ATG4B with strong affinity and specifically suppresses the activity of ATG4B but not other proteases. S130 did not cause the impairment of autophagosome fusion, nor did it result in the dysfunction of lysosomes. Instead, S130 might attenuate the delipidation of LC3-II on the autolysosomes to suppress the recycling of LC3-I, which normally occurs after LC3-II cleavage by ATG4B. Intriguingly, S130 induced cell death, which was accompanied with autophagy stress and could be further exacerbated by nutrient deprivation. Such cytotoxicity could be partially reversed by enhancing ATG4B activity. Finally, we found that S130 was distributed in tumor tissues in vivo and was also effective in arresting the growth of colorectal cancer cells. Thus, this study indicates that ATG4B is a potential anticancer target and S130 might be a novel small-molecule candidate for future cancer therapy.
Collapse
Affiliation(s)
- Yuanyuan Fu
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Liang Hong
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Jiecheng Xu
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Guoping Zhong
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Qiong Gu
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Qianqian Gu
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Yanping Guan
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Xueping Zheng
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Qi Dai
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Xia Luo
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Cui Liu
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Zhiying Huang
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Xiao-Ming Yin
- b Department of Pathology and Laboratory Medicine , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Peiqing Liu
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Min Li
- a School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-Sen University , Guangzhou , Guangdong , China
| |
Collapse
|
11
|
Chu J, Fu Y, Xu J, Zheng X, Gu Q, Luo X, Dai Q, Zhang S, Liu P, Hong L, Li M. ATG4B inhibitor FMK-9a induces autophagy independent on its enzyme inhibition. Arch Biochem Biophys 2018; 644:29-36. [PMID: 29510087 DOI: 10.1016/j.abb.2018.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Atg4 is essential for autophagosome formation and Atg8 recycle with the function of processing the precursor and the lipidated Atg8-family proteins. Abnormal autophagic activity is involved in a variety of pathophysiological diseases and ATG4B is of interest as a potential therapeutic target due to its key roles in autophagy process. So ATG4B inhibitors are highly needed. FMK-9a is the most potent inhibitor reported so far. In this study, we confirmed FMK-9a could suppress ATG4B activity in vitro and in cells, with an IC50 of 260 nM. Besides, FMK-9a could also attenuate the process of cleavage of pro-LC3 and the delipidation of LC3-PE. Importantly, FMK-9a could induce autophagy both in HeLa and MEF cells regardless of its inhibition on ATG4B activity. Moreover, FMK-9a induced autophagy required FIP200 and ATG5. In conclusion, we demonstrated that ATG4B inhibitor FMK-9a induces autophagy independent on its enzyme inhibition. Thus, FMK-9a may plays multiple roles in autophagy process and cannot simply take it as an ATG4B inhibitor.
Collapse
Affiliation(s)
- Jiaqi Chu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Fu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jiecheng Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Xueping Zheng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Qianqian Gu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Qi Dai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Shuxian Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Liang Hong
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China.
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
12
|
He S, Li Q, Jiang X, Lu X, Feng F, Qu W, Chen Y, Sun H. Design of Small Molecule Autophagy Modulators: A Promising Druggable Strategy. J Med Chem 2017; 61:4656-4687. [PMID: 29211480 DOI: 10.1021/acs.jmedchem.7b01019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a lysosome-dependent mechanism of intracellular degradation for maintaining cellular homeostasis. Dysregulation of autophagy has been verified to be closely linked to a number of human diseases. Consequently, targeting autophagy has been highlighted as a novel therapeutic strategy for clinical utility. Mounting efforts have been done in recent years to elucidate the mechanisms of autophagy regulation and to identify potential modulators of autophagy. However, most of the compounds target complex and multifaceted pathway and proteins, which may limit the evaluation of therapeutic value and in depth studies as chemical tools. Therefore, the development of specific and active autophagy modulators becomes most desirable. Here, we briefly review the regulation of autophagy and then summarize the recent development of small molecules targeting the core autophagic machinery. Finally, we put forward our viewpoints on the current problems, with the aim to provide reference for future drug discovery and potential therapeutic perspectives on novel, potent, selective autophagy modulators.
Collapse
Affiliation(s)
- Siyu He
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Qi Li
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Xueyang Jiang
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Xin Lu
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Wei Qu
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Yao Chen
- School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , 210023 , China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
13
|
Kurdi A, Cleenewerck M, Vangestel C, Lyssens S, Declercq W, Timmermans JP, Stroobants S, Augustyns K, De Meyer GRY, Van Der Veken P, Martinet W. ATG4B inhibitors with a benzotropolone core structure block autophagy and augment efficiency of chemotherapy in mice. Biochem Pharmacol 2017. [PMID: 28642033 DOI: 10.1016/j.bcp.2017.06.119] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Autophagy is a cell survival mechanism hijacked by advanced tumors to endure a rough microenvironment. Late autophagy inhibitors such as (hydroxy)chloroquine have been used clinically to halt tumor progression with modest success. However, given the toxic nature of these compounds and their lack of specificity, novel targets should be considered. We recently identified a benzotropolone derivative that significantly inhibited the essential autophagy protein ATG4B. Therefore, we synthesized and tested additional benzotropolone compounds to identify a promising ATG4B inhibitor that impairs autophagy both in vitro and in vivo. A compound library containing 27 molecules with a benzotropolone backbone was synthesized and screened for inhibition of recombinant ATG4B. Depending on the benzotropolone compound, inhibition of recombinant ATG4B ranged from 3 to 82%. Active compounds were evaluated in cellular assays to confirm inhibition of ATG4B and suppression of autophagy. Seven compounds inhibited processing of the autophagy protein LC3 and autophagosome formation. Compound UAMC-2526 was selected for further in vivo use because of its fair plasma stability. This compound abolished autophagy both in nutrient-deprived GFP-LC3 mice and in CD1-/- Foxn1nu mice bearing HT29 colorectal tumor xenografts. Moreover, addition of UAMC-2526 to the chemotherapy drug oxaliplatin significantly improved inhibition of tumor growth. Our data indicate that suppression of autophagy via ATG4B inhibition is a feasible strategy to augment existing chemotherapy efficacy and to halt tumor progression.
Collapse
Affiliation(s)
- Ammar Kurdi
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthias Cleenewerck
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
| | - Sophie Lyssens
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Declercq
- VIB Inflammation Research Center, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|