1
|
Carvalho LL, Bittencourt Pena R, Correia Romeiro N, Nepomuceno‐Silva JL. A Concise Synthesis of Triazole Analogues of Lavendustin A via Click Chemistry Approach and Preliminary Evaluation of Their Antiparasitic Activity Against
Trypanosoma cruzi. ChemistrySelect 2022. [DOI: 10.1002/slct.202200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Leandro Lara Carvalho
- Laboratory of Catalysis and Synthesis of Bioactive Substances (LACASB) Federal University of Rio de Janeiro (UFRJ) – Campus Macaé Imburo Road, No Number, Ajuda de Baixo 27979-000 Macaé RJ Brazil
| | - Raynná Bittencourt Pena
- Laboratory of Catalysis and Synthesis of Bioactive Substances (LACASB) Federal University of Rio de Janeiro (UFRJ) – Campus Macaé Imburo Road, No Number, Ajuda de Baixo 27979-000 Macaé RJ Brazil
- Integrated Laboratory of Scientific Computing (LICC) Federal University of Rio de Janeiro (UFRJ) – Campus Macaé Aluizio da Silva Gomes Avenue, 50, Granja dos Cavaleiros 27930-560 Macaé RJ Brazil
| | - Nelilma Correia Romeiro
- Integrated Laboratory of Scientific Computing (LICC) Federal University of Rio de Janeiro (UFRJ) – Campus Macaé Aluizio da Silva Gomes Avenue, 50, Granja dos Cavaleiros 27930-560 Macaé RJ Brazil
| | - José Luciano Nepomuceno‐Silva
- Hatisaburo Masuda Integrated Laboratory of Biochemistry (LIBHM) Institute of Biodiversity and Sustainability (NUPEM) Federal University of Rio de Janeiro (UFRJ) São José do Barreto Avenue, 764, Barreto 27965-550 Macaé RJ Brazil
| |
Collapse
|
2
|
Targeting the Integrated Stress Response Kinase GCN2 to Modulate Retroviral Integration. Molecules 2021; 26:molecules26175423. [PMID: 34500856 PMCID: PMC8434491 DOI: 10.3390/molecules26175423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple viral targets are now available in the clinic to fight HIV infection. Even if this targeted therapy is highly effective at suppressing viral replication, caregivers are facing growing therapeutic failures in patients due to resistance, with or without treatment-adherence glitches. Accordingly, it is important to better understand how HIV and other retroviruses replicate in order to propose alternative antiviral strategies. Recent studies have shown that multiple cellular factors are implicated during the integration step and, more specifically, that integrase can be regulated through post-translational modifications. We have shown that integrase is phosphorylated by GCN2, a cellular protein kinase of the integrated stress response, leading to a restriction of HIV replication. In addition, we found that this mechanism is conserved among other retroviruses. Accordingly, we developed an in vitro interaction assay, based on the AlphaLISA technology, to monitor the integrase-GCN2 interaction. From an initial library of 133 FDA-approved molecules, we identified nine compounds that either inhibited or stimulated the interaction between GCN2 and HIV integrase. In vitro characterization of these nine hits validated this pilot screen and demonstrated that the GCN2-integrase interaction could be a viable solution for targeting integrase out of its active site.
Collapse
|
3
|
Kumar D, Sharma P, Shabu, Kaur R, Lobe MMM, Gupta GK, Ntie-Kang F. In search of therapeutic candidates for HIV/AIDS: rational approaches, design strategies, structure-activity relationship and mechanistic insights. RSC Adv 2021; 11:17936-17964. [PMID: 35480193 PMCID: PMC9033207 DOI: 10.1039/d0ra10655k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
The HIV/AIDS pandemic is a serious threat to the health and development of mankind, which has affected about 37.9 million people worldwide. The increasing negative health, economic and social impacts of this disease have led to the search for new therapeutic candidates for the mitigation of AIDS/HIV. However, to date, there is still no treatment that can cure this disease. Furthermore, the clinically available drugs have numerous severe side effects. Hence, the synthesis of novel agents from natural leads is one of the rational approaches to obtain new drugs in modern medicinal chemistry. This review article is an effort to summarize recent developments with regards to the discovery of novel analogs with promising biological potential against HIV/AIDS. Herein, we also aim to discuss prospective directions on the progress of more credible and specific analogues. Besides presenting design strategies, the present communication also highlights the structure-activity relationship together with the structural features of the most promising molecules, their IC50 values, mechanistic insights and some interesting key findings revealed during their biological evaluation. The interactions with the amino acid residues of the enzymes responsible for HIV-1 inhibition are also discussed. This collection will be of great interest for researchers working in this area.
Collapse
Affiliation(s)
- Dinesh Kumar
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
| | - Pooja Sharma
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala India
| | - Shabu
- Indian Institute of Integrative Medicine (CSIR-IIIM) Canal Road Jammu 180001 India
| | - Ramandeep Kaur
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
| | - Maloba M M Lobe
- Department of Chemistry, Faculty of Science, University of Buea P. O. Box 63 Buea Cameroon +237 685625811
| | - Girish K Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy Badhani Pathankot-145001 Punjab India
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea P. O. Box 63 Buea Cameroon +237 685625811
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Str. 3 06120 Halle (Saale) Germany +49 3455525043
- Institute of Botany, Technical University of Dresden Zellescher Weg 20b 01062 Dresden Germany
| |
Collapse
|
4
|
Xie Y, Xie L, Chen A, Wu S, Mo Y, Guo X, Zeng C, Huang X, He J. Anti-HIV/SIV activity of icariin and its metabolite anhydroicaritin mainly involve reverse transcriptase. Eur J Pharmacol 2020; 884:173327. [PMID: 32726656 DOI: 10.1016/j.ejphar.2020.173327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022]
Abstract
AIDS, a serious fatal disease caused by the human immunodeficiency virus (HIV), is an epidemic disease for which no effective vaccine has been established. The current therapeutic interventions for AIDS have limited efficacy because they are unable to clear HIV infections and the continuous occurrence of resistant HIV strains. Therefore, the exploitation of new drugs to prevent the spread of AIDS remains a high priority. In this study, the effects of icariin and its metabolite anhydroicaritin on SIV/HIV replication were investigated. In CEM × 174 cells and PBMC cells, both icariin and anhydroicaritin can significantly inhibit HIV-1 or SIVmac251 replication. Furthermore, molecular docking studies revealed that icariin and anhydroicaritin can act on both HIV reverse transcriptase and protease but could not bind to integrase. Reverse transcriptase and protease inhibition biological assays showed that both icariin and anhydroicaritin could significantly inhibit only HIV reverse transcriptase. In summary, the two compounds can significantly inhibit HIV/SIV in vitro and their targets may be mainly involved with HIV reverse transcriptase.
Collapse
Affiliation(s)
- Yanzheng Xie
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Xie
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ailan Chen
- Guangzhou Women and Children' Medical Centre, Guangzhou, China
| | - Shengnan Wu
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuxiao Mo
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqiang Guo
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changchun Zeng
- School of Biomedical Technology, Guilin Medical University, Guilin, China
| | - Xinan Huang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyang He
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Shinde PB, Bhowmick S, Alfantoukh E, Patil PC, Wabaidur SM, Chikhale RV, Islam MA. De novo design based identification of potential HIV-1 integrase inhibitors: A pharmacoinformatics study. Comput Biol Chem 2020; 88:107319. [PMID: 32801062 DOI: 10.1016/j.compbiolchem.2020.107319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
In the present study, pharmacoinformatics paradigms include receptor-based de novo design, virtual screening through molecular docking and molecular dynamics (MD) simulation are implemented to identify novel and promising HIV-1 integrase inhibitors. The de novodrug/ligand/molecule design is a powerful and effective approach to design a large number of novel and structurally diverse compounds with the required pharmacological profiles. A crystal structure of HIV-1 integrase bound with standard inhibitor BI-224436 is used and a set of 80,000 compounds through the de novo approach in LigBuilder is designed. Initially, a number of criteria including molecular docking, in-silico toxicity and pharmacokinetics profile assessments are implied to reduce the chemical space. Finally, four de novo designed molecules are proposed as potential HIV-1 integrase inhibitors based on comparative analyses. Notably, strong binding interactions have been identified between a few newly identified catalytic amino acid residues and proposed HIV-1 integrase inhibitors. For evaluation of the dynamic stability of the protein-ligand complexes, a number of parameters are explored from the 100 ns MD simulation study. The MD simulation study suggested that proposed molecules efficiently retained their molecular interaction and structural integrity inside the HIV-1 integrase. The binding free energy is calculated through the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach for all complexes and it also explains their thermodynamic stability. Hence, proposed molecules through de novo design might be critical to inhibiting the HIV-1 integrase.
Collapse
Affiliation(s)
- Pooja Balasaheb Shinde
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Etidal Alfantoukh
- Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Saikh Mohammad Wabaidur
- Department of Chemistry P.O. Box 2455, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom; School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa; Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
6
|
Kalathiya U, Padariya M, Baginski M. Extracting functional groups of ALLINI to design derivatives of FDA-approved drugs: Inhibition of HIV-1 integrase. Biotechnol Appl Biochem 2018; 65:594-607. [DOI: 10.1002/bab.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/23/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Umesh Kalathiya
- Department of Pharmaceutical Technology and Biochemistry; Faculty of Chemistry; Gdansk University of Technology; Gdansk Poland
| | - Monikaben Padariya
- Department of Pharmaceutical Technology and Biochemistry; Faculty of Chemistry; Gdansk University of Technology; Gdansk Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry; Faculty of Chemistry; Gdansk University of Technology; Gdansk Poland
| |
Collapse
|
7
|
De Luca L, Mancuso F, Ferro S, Buemi MR, Angeli A, Del Prete S, Capasso C, Supuran CT, Gitto R. Inhibitory effects and structural insights for a novel series of coumarin-based compounds that selectively target human CA IX and CA XII carbonic anhydrases. Eur J Med Chem 2018; 143:276-282. [DOI: 10.1016/j.ejmech.2017.11.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/13/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
|
8
|
Alimi Livani Z, Safakish M, Hajimahdi Z, Soleymani S, Zabihollahi R, Aghasadeghi MR, Alipour E, Zarghi A. Design, Synthesis, Molecular Modeling, In Silico ADME Studies and Anti-HIV-1 Assay of New Diazocoumarin Derivatives. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:65-77. [PMID: 31011343 PMCID: PMC6447871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Some new diazo incorporated coumarin compounds were designed and synthesized to evaluate their anti-HIV activity. Overall, compounds were active against HIV at 100 μM. Additionally, no cytotoxic effect was observed at this concentration. The compound with 4-chlorobenzyl group indicated the best anti-HIV activity (52%). Docking studies using the later crystallographic data available for PFV integrase showed similar binding modes to HIV-1 integrase inhibitors. On the basis of these data, nitrogen atoms of 1,3,4-oxadiazole ring have been involved in the Mg2+ chelation and 4-chlorobenzyl group occupies the same position as 4-flourobenzyl group of raltegravir in the active site. In addition, in silico ADME assay demonstrated favorable physicochemical properties for the new designed compounds. Thus, synthesized structures could be introduced as a novel template for designing safe anti-HIV compounds with integrase inhibitory potential.
Collapse
Affiliation(s)
- Zeynab Alimi Livani
- Department of Organic Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Safakish
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sepehr Soleymani
- Hepatitis and AIDS department, Pasteur institute of Iran, Tehran, Iran.
| | | | | | - Eskandanr Alipour
- Department of Organic Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail:
| |
Collapse
|
9
|
Wang Y, Yan F, Jia Q, Dai Y, Wang Q. Quantitative structure-activity relationship of anti-HIV integrase and reverse transcriptase inhibitors using norm indexes. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:1025-1044. [PMID: 29157005 DOI: 10.1080/1062936x.2017.1397055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The development of new and safe anti-human immunodeficiency virus (anti-HIV) drugs has been an urgent task for medical research recently. Herein, based on the norm-index descriptors proposed in this work and previous works, a couple of models were developed for investigating the quantitative structure-activity/toxicity relationship (QSAR/QSTR) of dual-target anti-HIV integrase (IN) and reverse transcriptase (RT) inhibitors. The validation results proved that the developed models were stable and reliable, both in statistical quality and predictive capacity. Moreover, potential dual-target inhibitors with high activity and low toxicity were deduced from the developed models; molecular docking results indicated that these inhibitors could interact with some important residues of HIV IN and RT through H-bonding. Accordingly, the norm indexes descriptors proposed by this work might be helpful for the research and development of dual-target anti-HIV drugs.
Collapse
Affiliation(s)
- Y Wang
- a School of Chemical Engineering and Material Science , Tianjin University of Science and Technology , Tianjin , PR China
| | - F Yan
- a School of Chemical Engineering and Material Science , Tianjin University of Science and Technology , Tianjin , PR China
| | - Q Jia
- b School of Marine and Environmental Science , Tianjin University of Science and Technology , Tianjin , PR China
| | - Y Dai
- c School of Bioengineering , Tianjin University of Science and Technology , Tianjin , PR China
| | - Q Wang
- a School of Chemical Engineering and Material Science , Tianjin University of Science and Technology , Tianjin , PR China
| |
Collapse
|