1
|
Asfour AAR, Evren AE, Sağlık Özkan BN, Yurttaş L. Investigating the potential of novel thiazole derivatives in treating Alzheimer's and Parkinson's diseases. J Biomol Struct Dyn 2024:1-17. [PMID: 39672098 DOI: 10.1080/07391102.2024.2437521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/17/2024] [Indexed: 12/15/2024]
Abstract
The study aimed to investigate 12 novel thiazole compounds in the treatment of neurodegenerative disorders. The compounds produced were evaluated for their inhibitory efficacy against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidases (MAOs). Among the compounds, 5d, 5e, and 5j showed the highest AChE inhibitory activity. The IC50 values for compounds are 0.223 ± 0.010 µM, 0.092 ± 0.003 µM, and 0.054 ± 0.002 µM, respectively. In addition, molecular docking analyses and molecular dynamic simulation were used to examine the interactions of these compounds with protein sites. The results suggest that thiazole-ring compounds could serve as a promising basis for the development of drugs aimed at treating neurodegenerative diseases (NDD), caused by Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Abd Al Rahman Asfour
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
- Institute of Graduate Education, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Asaf Evrim Evren
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
- Department of Pharmacy Services, Bilecik Seyh Edebali University, Vocational School of Health Services, Bilecik
| | | | - Leyla Yurttaş
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
2
|
Akash S, Bayıl I, Mahmood S, Mukerjee N, Mili TA, Dhama K, Rahman MA, Maitra S, Mohany M, Al-Rejaie SS, Ali N, Semwal P, Sharma R. Mechanistic inhibition of gastric cancer-associated bacteria Helicobacter pylori by selected phytocompounds: A new cutting-edge computational approach. Heliyon 2023; 9:e20670. [PMID: 37876433 PMCID: PMC10590806 DOI: 10.1016/j.heliyon.2023.e20670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/09/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) is a persistent bacterial inhabitant in the stomachs of approximately half the global populace. This bacterium is directly linked to chronic gastritis, leading to a heightened risk of duodenal and gastric ulcer diseases, and is the predominant risk factor for gastric cancer - the second most common cause of cancer-related deaths globally. The increasing prevalence of antibiotic resistance necessitates the exploration of innovative treatment alternatives to mitigate the H. pylori menace. Methods Initiating our study, we curated a list of thirty phytochemicals based on previous literature and subjected them to molecular docking studies. Subsequently, eight phytocompounds-Glabridin, Isoliquiritin, Sanguinarine, Liquiritin, Glycyrrhetic acid, Beta-carotin, Diosgenin, and Sarsasapogenin-were meticulously chosen based on superior binding scores. These were further subjected to an extensive computational analysis encompassing ADMET profiling, drug-likeness evaluation, principal component analysis (PCA), and molecular dynamic simulations (MDs) in comparison with the conventional drug, Mitomycin. Results The natural compounds investigated demonstrated superior docking affinities to H. pylori targets compared to the standard Mitomycin. Notably, the phytocompounds Diosgenin and Sarsasapogenin stood out due to their exceptional binding affinities and pharmacokinetic properties, including favorable ADMET profiles. Conclusion Our comprehensive and technologically-advanced approach showcases the potential of identified phytocompounds as pioneering therapeutic agents against H. pylori-induced gastric malignancies. In light of our promising in silico results, we recommend these natural compounds as potential candidates for advancing H. pylori-targeted drug development. Given their potential, we strongly advocate for subsequent in vitro and in vivo studies to validate their therapeutic efficacy against this formidable gastrointestinal bacterium.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, 1216, Ashulia, Dhaka, Bangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Turkey
| | - Sajjat Mahmood
- Department of Microbiology, Jagannath University, Chittaranjan Avenue in Sadarghat, Dhaka, 1100, Bangladesh
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute Of Medical and Technical Sciences, Chennai, India
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata, 700126, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Tamanna Akter Mili
- Department of Pharmacy, University of Asia Pacific, 74/A Green Rd, Dhaka, 1205, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | | | - Swastika Maitra
- Department of Microbiology, Adamas University, West Bengal, Kolkata, 700126, India
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, 248002, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
3
|
Liu Z, Cao Y, Guo X, Chen Z. The Potential Role of Timosaponin-AIII in Cancer Prevention and Treatment. Molecules 2023; 28:5500. [PMID: 37513375 PMCID: PMC10386027 DOI: 10.3390/molecules28145500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer, as one of the leading causes of death worldwide, has challenged current chemotherapy drugs. Considering that treatments are expensive, alongside the resistance of tumor cells to anticancer drugs, the development of alternative medicines is necessary. Anemarrhena asphodeloides Bunge, a recognized and well-known medicinal plant for more than two thousand years, has demonstrated its effectiveness against cancer. Timosaponin-AIII (TSAIII), as a bioactive steroid saponin isolated from A. asphodeloides, has shown multiple pharmacological activities and has been developed as an anticancer agent. However, the molecular mechanisms of TSAIII in protecting against cancer development are still unclear. In this review article, we provide a comprehensive discussion on the anticancer effects of TSAIII, including proliferation inhibition, cell cycle arrest, apoptosis induction, autophagy mediation, migration and invasion suppression, anti-angiogenesis, anti-inflammation, and antioxidant effects. The pharmacokinetic profiles of TSAII are also discussed. TSAIII exhibits efficacy against cancer development. However, hydrophobicity and low bioavailability may limit the application of TSAIII. Effective delivery systems, particularly those with tissue/cell-targeted properties, can also significantly improve the anticancer effects of TSAIII.
Collapse
Affiliation(s)
- Zhaowen Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yifan Cao
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Xiaohua Guo
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
4
|
Liu C, Cong Z, Wang S, Zhang X, Song H, Xu T, Kong H, Gao P, Liu X. A review of the botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality of Anemarrhena asphodeloides Bunge. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115857. [PMID: 36330891 DOI: 10.1016/j.jep.2022.115857] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizomes of Anemarrhena asphodeloides Bunge., belonging to the family Liliaceae, are named 'Zhi-mu' according to traditional Chinese medicine theory. It is a medicinal plant that has long been used as a tonic agent in various ethnomedicinal systems in East Asia, especially in China, and also for treating arthralgia, hematochezia, tidal fever, night sweats, cough, dry mouth and tongue, hemoptysis, etc. THE ARM OF THE REVIEW: The review aims to provide a systematic overview of botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality control of Anemarrhena asphodeloides and to explore the future therapeutic potential and scientific potential of this plant. MATERIALS AND METHODS A comprehensive literature search was performed on Anemarrhena asphodeloides using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier, SpringerLink, ACS publications, ancient books, Doctoral and master's Theses. Collected data from different sources was comprehensively summarised for botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality control of Anemarrhena asphodeloides. RESULTS A comprehensive analysis of the literature as mentioned above confirmed that the ethnomedical uses of Anemarrhena asphodeloides had a history of thousands of years in eastern Asian countries. Two hundred sixty-nine compounds have been identified from Anemarrhena asphodeloides, including steroidal saponins, flavonoids, phenylpropanoids, alkaloids, steroids, organic acids, polysaccharides, benzophenones and other ingredients. Studies have shown that the extracts and compounds from Anemarrhena asphodeloides have extensive pharmacological activities, such as nervous system activity, antitumour, anti-inflammatory, antidiabetic, antiosteoporotic, antiallergic, antiplatelet aggregation, antimicrobial, antiviral, anti-ageing, hair growth promoting, preventing cell damage, etc. Evaluating the quality and toxicity of Anemarrhena asphodeloides is essential to confirm its safe use in humans. CONCLUSION Anemarrhena asphodeloides is widely used in traditional medicine and have diverse chemical constituents with obvious biological activities. Nevertheless, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity and confirm its safe use.
Collapse
Affiliation(s)
- Congying Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute, Shandong Cancer Hospital and Institute, Jinan, 250117, China
| | - Shengguang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huaying Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tianren Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongwei Kong
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Peng Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaonan Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Ragab MS, Soliman MH, Shehata MR, Shoukry MM, Ragheb MA. Design, synthesis, spectral characterization, photo‐cleavage and
in vitro
evaluation of anticancer activities of new transition metal complexes of piperazine based Schiff base‐oxime ligand. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mona S. Ragab
- Department of Chemistry, Faculty of Science Cairo University Giza Egypt
| | - Marwa H. Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science Cairo University Giza Egypt
| | | | | | - Mohamed A. Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science Cairo University Giza Egypt
| |
Collapse
|
6
|
Dharani S, Kalaiarasi G, Ravi M, Sathan Raj N, Lynch VM, Prabhakaran R. Diosgenin derivatives developed from Pd(II) catalysed dehydrogenative coupling exert an effect on breast cancer cells by abrogating their growth and facilitating apoptosis via regulating the AKT1 pathway. Dalton Trans 2022; 51:6766-6777. [PMID: 35420095 DOI: 10.1039/d2dt00514j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Palladium metallates containing 4-oxo-4H-chromene-3-carbaldehyde derived ONS donor Schiff bases were synthesized and their efficacy was tested in the direct amination of diosgenin - a phyto steroid. Based on the pharmacological importance of diosgenin, the obtained derivatives were exposed to study their effect on breast cancer cells where they significantly reduced the growth of cancer cells and left non-malignant breast epithelial cells unaffected. Among the derivatives, D3, D4 and D6 showed a better anti-proliferative effect and further analysis revealed that the D3, D4 and D6 derivatives markedly promoted cell cycle arrest and apoptosis by attenuation of the AKT1 signalling pathway.
Collapse
Affiliation(s)
- S Dharani
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - G Kalaiarasi
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - M Ravi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - N Sathan Raj
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - Vincent M Lynch
- Department of Chemistry, University of Texas, Austin, TX 78712-1224, USA
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
7
|
Docking, synthesis and biological evaluation of pyridine ring containing Diaryl urea derivatives as anticancer agents. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns3.6200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel series of pyridine ring containing diaryl urea derivatives (R1-R9) were synthesized in four chemical steps using pyridine-2-carboxylic acid as starting material. The synthesized compounds were design by using Autodock vina in the crystal structure of the Kinase domain of Human B-raf (PDB ID: 4DBN) to get insights into structural requirements for anticancer activity. In vitro anticancer activity against cell line (MCF-7) showed that compounds R3, R6 and R9 were found to be the most potent (Docking score: > -12, IC50 = 17.39 µM) among the synthesized molecules.
Collapse
|
8
|
More NA, Jadhao NL, Meshram RJ, Tambe P, Salve RA, Sabane JK, Sawant SN, Gajbhiye V, Gajbhiye JM. Novel 3-fluoro-4-morpholinoaniline derivatives: Synthesis and assessment of anti-cancer activity in breast cancer cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Mustafa NH, Sekar M, Fuloria S, Begum MY, Gan SH, Rani NNIM, Ravi S, Chidambaram K, Subramaniyan V, Sathasivam KV, Jeyabalan S, Uthirapathy S, Ponnusankar S, Lum PT, Bhalla V, Fuloria NK. Chemistry, Biosynthesis and Pharmacology of Sarsasapogenin: A Potential Natural Steroid Molecule for New Drug Design, Development and Therapy. Molecules 2022; 27:2032. [PMID: 35335393 PMCID: PMC8955086 DOI: 10.3390/molecules27062032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Sarsasapogenin is a natural steroidal sapogenin molecule obtained mainly from Anemarrhena asphodeloides Bunge. Among the various phytosteroids present, sarsasapogenin has emerged as a promising molecule due to the fact of its diverse pharmacological activities. In this review, the chemistry, biosynthesis and pharmacological potentials of sarsasapogenin are summarised. Between 1996 and the present, the relevant literature regarding sarsasapogenin was obtained from scientific databases including PubMed, ScienceDirect, Scopus, and Google Scholar. Overall, sarsasapogenin is a potent molecule with anti-inflammatory, anticancer, antidiabetic, anti-osteoclastogenic and neuroprotective activities. It is also a potential molecule in the treatment for precocious puberty. This review also discusses the metabolism, pharmacokinetics and possible structural modifications as well as obstacles and opportunities for sarsasapogenin to become a drug molecule in the near future. More comprehensive preclinical studies, clinical trials, drug delivery, formulations of effective doses in pharmacokinetics studies, evaluation of adverse effects and potential synergistic effects with other drugs need to be thoroughly investigated to make sarsasapogenin a potential molecule for future drug development.
Collapse
Affiliation(s)
- Nur Hanisah Mustafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (N.H.M.); (P.T.L.)
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (N.H.M.); (P.T.L.)
| | | | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Kuala Lumpur 47500, Malaysia;
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia;
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Malaysia;
| | | | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, Tamil Nadu, India;
| | - Subasini Uthirapathy
- Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq;
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Tamil Nadu, India;
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (N.H.M.); (P.T.L.)
| | - Vijay Bhalla
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
10
|
An R, Zhang W, Huang X. Developments in the Antitumor Activity, Mechanisms of Action, Structural Modifications, and Structure-Activity Relationships of Steroidal Saponins. Mini Rev Med Chem 2022; 22:2188-2212. [PMID: 35176980 DOI: 10.2174/1389557522666220217113719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Steroidal saponins, a class of natural products formed by the combination of spirosteranes with sugars, are widely distributed in plants and have various biological activities, such as anti-tumor, anti-inflammatory, anti-bacterial, anti-Alzheimer's, anti-oxidation, etc. Particularly, extensive researches on the antitumor property of steroidal saponins have been received. Steroidal sapogenins, the aglycones of steroidal saponins, also have attracted much attention due to a vast range of pharmacological activities similar to steroidal saponins. In the past few years, structural modifications on the aglycones and sugar chains of steroidal saponins have been carried out and some achievements have been made. In this mini-review, the antitumor activity, action mechanisms, and structural modifications along with the structure-activity relationships of steroidal saponins and their derivatives are summarized.
Collapse
Affiliation(s)
- Renfeng An
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| | - Wenjin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| | - Xuefeng Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| |
Collapse
|
11
|
Gu YQ, Zhong YJ, Hu MQ, Li HQ, Yang K, Dong Q, Liang H, Chen ZF. Terpyridine copper(II) complexes as potential anticancer agents by inhibiting cell proliferation, blocking the cell cycle and inducing apoptosis in BEL-7402 cells. Dalton Trans 2022; 51:1968-1978. [PMID: 35023532 DOI: 10.1039/d1dt02988f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Four mononuclear terpyridine complexes [Cu(H-La)Cl2]·CH3OH (1), [Cu(H-La)Cl]ClO4 (2), [Cu(H-Lb)Cl2]·CH3OH (3), and [Cu(H-Lb)(CH3OH)(DMSO)](ClO4)2 (4) were prepared and fully characterized. Complexes 1-4 exhibited higher cytotoxic activity against several tested cancer cell lines especially BEL-7402 cells compared to cisplatin, and they showed low toxicity towards normal human liver cells. ICP-MS detection indicated that the copper complexes were accumulated in mitochondria. Mechanistic studies demonstrated that the copper complexes induced G0/G1 arrest and altered the expression of the related proteins of the cell cycle. All copper complexes reduced the mitochondrial membrane potential while increasing the intracellular ROS levels and the release of Ca2+. They also up-regulated Bax and down-regulated Bcl-2 expression levels, caused cytochrome c release and the activation of the caspase cascade, and induced mitochondrion-mediated apoptosis. Animal studies demonstrated that complex 1 suppressed tumor growth in a mouse xenograft model bearing BEL-7402 tumor cells.
Collapse
Affiliation(s)
- Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China. .,School of Environment and Life Science, Nanning Normal University, Nanning, 530001, P. R China
| | - Yu-Jun Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Mei-Qi Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Huan-Qing Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Kun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Qi Dong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
12
|
Zhang RH, Guo HY, Deng H, Li J, Quan ZS. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem 2021; 36:1165-1197. [PMID: 34080510 PMCID: PMC8183565 DOI: 10.1080/14756366.2021.1931861] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Piperazine moiety is a cyclic molecule containing two nitrogen atoms in positions 1 and 4, as well as four carbon atoms. Piperazine is one of the most sought heterocyclics for the development of new drug candidates with a wide range of applications. Over 100 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antioxidant, and other activities, were reviewed. This article reviewed investigations regarding piperazine groups for the modification of natural product derivatives in the last decade, highlighting parameters that affect their biological activity.
Collapse
Affiliation(s)
- Run-Hui Zhang
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hao Deng
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jinzi Li
- Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
13
|
Belkadi A, Kenouche S, Melkemi N, Daoud I, Djebaili R. K-means clustering analysis, ADME/pharmacokinetic prediction, MEP, and molecular docking studies of potential cytotoxic agents. Struct Chem 2021. [DOI: 10.1007/s11224-021-01796-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Yin H, Zhang MJ, An RF, Zhou J, Liu W, Morris-Natschke SL, Cheng YY, Lee KH, Huang XF. Diosgenin Derivatives as Potential Antitumor Agents: Synthesis, Cytotoxicity, and Mechanism of Action. JOURNAL OF NATURAL PRODUCTS 2021; 84:616-629. [PMID: 33381964 DOI: 10.1021/acs.jnatprod.0c00698] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thirty-two new diosgenin derivatives were designed, synthesized, and evaluated for their cytotoxic activities in three human cancer cell lines (A549, MCF-7, and HepG2) and normal human liver cells (L02) using an MTT assay in vitro. Most compounds, especially 8, 18, 26, and 30, were more potent when compared with diosgenin. The structure-activity relationship results suggested that the presence of a succinic acid or glutaric acid linker, a piperazinyl amide terminus, and lipophilic cations are all beneficial for promoting cytotoxic activity. Notably, compound 8 displayed excellent cytotoxic activity against HepG2 cells (IC50 = 1.9 μM) and showed relatively low toxicity against L02 cells (IC50 = 18.6 μM), showing some selectivity between normal and tumor cells. Studies on its cellular mechanism of action showed that compound 8 induces G0/G1 cell cycle arrest and apoptosis in HepG2 cells. Predictive studies indicated that p38α mitogen-activated protein kinase (MAPK) is the optimum target of 8 based on its 3D molecular similarity, and docking studies showed that compound 8 fits well into the active site of p38α-MAPK and forms relatively strong interactions with the surrounding amino acid residues. Accordingly, compound 8 may be used as a promising lead compound for the development of new antitumor agents.
Collapse
Affiliation(s)
- Hong Yin
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Min-Jie Zhang
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ren-Feng An
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jing Zhou
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| | - Xue-Feng Huang
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
15
|
Design and synthesis of diosgenin derivatives as apoptosis inducers through mitochondria-related pathways. Eur J Med Chem 2021; 217:113361. [PMID: 33740546 DOI: 10.1016/j.ejmech.2021.113361] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022]
Abstract
Diosgenin (DSG) has attracted attention recently as a potential anticancer therapeutic agent due to its profound antitumor activity. To better utilize DSG as an antitumor compound, two series of DSG-amino acid ester derivatives (3a-3g and 7a-7g) were designed and synthesized, and their cytotoxic activities against six human cancer cell lines (K562, T24, MNK45, HepG2, A549, and MCF-7) were evaluated. The results obtained showed that a majority of derivatives exhibited cytotoxic activities against these six human tumor cells. Structure-activity relationship analysis revealed that the introduction of l-tryptophan to the C-3 position of DSG and the C-26 position of derivative 5 was the preferred option for these compounds to display significant cytotoxic activities. Among them, compound 7g exhibited significant cytotoxicity against the K562 cell line (IC50 = 4.41 μM) and was 6.8-fold more potent than diosgenin (IC50 = 30.04 μM). Further cellular mechanism studies in K562 cells elucidated that compound 7g triggered mitochondrial-related apoptosis by increasing the generation of intracellular reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), which was associated with upregulation of the gene and protein expression levels of Bax, downregulation of the gene and protein expression levels of Bcl-2 and activation of the caspase cascade. The above results suggested that compound 7g might be considered a promising scaffold for further modification of more potent anticancer agents.
Collapse
|
16
|
Pei L, Ye Y, Zhao W, Ye Q, Ge S, Jiang ZW, Liang XQ, Gan HX, Ma L. A validated UPLC-MS/MS method for quantitative determination of a potent neuroprotective agent Sarsasapogenin-AA13 in rat plasma: Application to pharmacokinetic studies. Biomed Chromatogr 2020; 34:e4775. [PMID: 31845362 DOI: 10.1002/bmc.4775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 11/12/2022]
Abstract
Sarsasapogenin-AA13(AA13), a sarsasapogenin derivative, exhibited good neuroprotective and anti-inflammatory activities in vitro and therapeutic effects on learning and memory dysfunction in amyloid-β-injected mice. A sensitive UPLC-MS/MS method was developed and validated to quantitatively determine AA13 in rat plasma and was further applied to evaluate the pharmacokinetic behaviour of AA13 in rats that were administered AA13 intravenously and orally. This method was validated to exhibit excellent linearity in the concentration range of 1-1000 ng/mL. The lower limit of quantification was 1 ng/mL for AA13 in rat plasma. Intra-day accuracy for AA13 was in the range of 90-114%, and inter-day accuracy was in the range of 97-103 %. The relative standard deviation of intra-day and inter-day assay was less than 15%. After a single oral administration of AA13 at the dose of 25 mg/kg, Cmax of AA13 was 1266.4 ± 316.1 ng/mL. AUC0-48 h was 6928.5 ± 1990.1 h·ng/mL, and t1/2 was 10.2 ± 0.8 h. Under intravenous administration of AA13 at a dosage of 250 μg/kg, AUC0-48 h was 785.7 ± 103.3 h⋅ng/mL, and t1/2 was 20.8 ± 7.2 h. Based on the results, oral bioavailability (F %) of AA13 in rats at 25 mg/kg was 8.82 %.
Collapse
Affiliation(s)
- Lixia Pei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyi Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenshu Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qun Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songlan Ge
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Wei Jiang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Qiang Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Xian Gan
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lei Ma
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Novel diosgenin derivatives containing 1,3,4-oxadiazole/thiadiazole moieties as potential antitumor agents: Design, synthesis and cytotoxic evaluation. Eur J Med Chem 2020; 186:111897. [DOI: 10.1016/j.ejmech.2019.111897] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/16/2019] [Accepted: 11/16/2019] [Indexed: 12/24/2022]
|
18
|
Wang S, Liu M, Wang W, Li T, Cui M, Sun W, Yang X, Song S. Preparation and Evaluation of mPEG-PLGA Block Copolymer Micelles Loaded with a Sarsasapogenin Derivative. AAPS PharmSciTech 2019; 20:280. [PMID: 31399832 DOI: 10.1208/s12249-019-1491-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Sarsasapogenin derivative 5n (SGD 5n) is a new compound with potent antitumor efficacy, but the low solubility severely affects its absorption and bioavailability. Therefore, the SGD 5n-loaded mPEG-PLGA block copolymer micelles were developed to improve the value of SGD 5n in clinical application. The polymeric micelles were prepared by an organic solvent evaporation method, and the encapsulation efficiency (EE), drug loading (DL), critical micelle concentrations (CMC), morphology, particle size, and zeta potential were determined. The cytotoxicity was examined by the MTT assay, and the cellular uptake study was performed by confocal laser scanning microscopy. A model of tumor-bearing mouse was established to study the antitumor activity in vivo. The results demonstrated that the particle size of the prepared micelle was 124.6 ± 9.6 nm, the encapsulation efficiency was 82.0 ± 2.9%, and the drug loading was 8.3 ± 0.4%. The results of cytotoxicity and cellular uptake demonstrated that the SGD 5n-loaded micelles could efficiently enter tumor cells, and the cellular uptake of SGD 5n presented concentration and time dependence. This study demonstrated that the prepared SGD 5n-loaded polymeric micelles had significant antitumor activity and provided a basis for clinical development of new compound SGD 5n.
Collapse
|
19
|
Song XY, Han FY, Chen JJ, Wang W, Zhang Y, Yao GD, Song SJ. Timosaponin AIII, a steroidal saponin, exhibits anti-tumor effect on taxol-resistant cells in vitro and in vivo. Steroids 2019; 146:57-64. [PMID: 30951756 DOI: 10.1016/j.steroids.2019.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Timosaponin AIII (TAIII), a steroidal saponin isolated from the rhizome of Anemarrhena asphodeloides, exerted cytotoxic effect in many cancer cell lines. However, the effect of TAIII on resistant tumor cancer cells was unclear. In this study, MTT assay showed that TAIII exhibited significant cytotoxicity against A549/Taxol and A2780/Taxol cells in vitro. Annexin V-FITC/PI staining revealed that TAIII induced apoptosis in A549/T and A2780/T cells. Furthermore, Western blot analysis demonstrated that TAIII inhibited the expressions of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR) as well as Ras, Raf, mitogen-activated protein kinase (MEPK), extracellular regulated protein kinases (ERK) in two taxol-resistant cancer cell lines. Besides, in vivo studies demonstrated that TAIII inhibited tumor growth in a nude mouse xenograft model. Additionally, TAIII (2.5 and 5 mg/kg) also down-regulated the protein expressions of PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways in vivo. Taken together, these findings demonstrated that TAIII exhibited significant anti-tumor effect on taxol-resistant cells.
Collapse
Affiliation(s)
- Xiao-Yu Song
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China
| | - Feng-Ying Han
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China
| | - Jing-Jie Chen
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China
| | - Wei Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China
| | - Yan Zhang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China
| | - Guo-Dong Yao
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China.
| | - Shao-Jiang Song
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China.
| |
Collapse
|
20
|
Wu D, Zhao Y, Fu S, Zhang J, Wang W, Yan Z, Guo H, Liu A. Seleno-short-chain chitosan induces apoptosis in human breast cancer cells through mitochondrial apoptosis pathway in vitro. Cell Cycle 2018; 17:1579-1590. [PMID: 29895197 DOI: 10.1080/15384101.2018.1464845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and -3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway.
Collapse
Affiliation(s)
- Di Wu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Yana Zhao
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Shengnan Fu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Jianbo Zhang
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Wenhang Wang
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Zhexian Yan
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Heng Guo
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Anjun Liu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| |
Collapse
|
21
|
Pei L, Ge S, Ye Y, Jiang Z, Liang X, Zhao W, Ma L. Development and validation of a UPLC-MS/MS method for determination of Sarsasapogenin-AA22 in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2018; 32:e4295. [PMID: 29797524 DOI: 10.1002/bmc.4295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 11/12/2022]
Abstract
A sarsasapogenin derivative, sarsasapogenin-AA22 (AA22), with cyclobutylamine at the 3-hydroxyl position of sarsasapogenin, has great neuroprotective activity in PC12 cells and NO production inhibitory activity in RAW264.7 cell lines. A method was developed to determine AA22 in rat plasma which was further applied to evaluate the pharmacokinetics of AA22 after taking a single dose of AA22. Liquid chromatography tandem mass spectrometry was used in the method, while diosgenin was used as internal standard. A simple protein precipitation based on acetonitrile was utilized. A simple sample cleanup promoted the throughput of the method considerably. The method was validated over the range of 1-1000 ng/mL with a correlation coefficient > 0.99. The lower limit of quantification was 1 ng/mL for AA22 in plasma. Intra- and inter-day accuracies for AA22 were 92-111 and 100-103%, respectively, and the inter-day precision was <15%. After a single oral dose of 25 mg/kg of AA22, the mean peak plasma concentration of AA22 was 2114 ± 362 ng/mL at 6 h. The area under the plasma concentration-time curve was 196,098 ± 69,375 h ng/mL, and the elimination half-life was 8.7 ± 2.2 h.
Collapse
Affiliation(s)
- Lixia Pei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songlan Ge
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yiyi Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziwei Jiang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenshu Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Wang W, Wang W, Yao G, Ren Q, Wang D, Wang Z, Liu P, Gao P, Zhang Y, Wang S, Song S. Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer's agents: Design, synthesis and biological evaluation. Eur J Med Chem 2018; 151:351-362. [DOI: 10.1016/j.ejmech.2018.03.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 03/24/2018] [Accepted: 03/30/2018] [Indexed: 12/22/2022]
|
23
|
Wang W, Zhang Y, Yao G, Wang W, Shang X, Zhang Y, Wang X, Wang S, Song S. Synthesis of new sarsasapogenin derivatives with antiproliferative and apoptotic effects in MCF-7 cells. Steroids 2018; 131:23-31. [PMID: 29337037 DOI: 10.1016/j.steroids.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
Abstract
Sarsasapogenin, a kind of mainly effective component of Anemarrhena asphodeloides Bunge, possesses good antitumor properties. Two series of new sarsasapogenin derivatives were synthesized and evaluated for their cytotoxicities against three human cancer cell lines (HepG2, A549, MCF-7) using the MTT assay. The structure-activity relationship revealed that the N, N-dimethylamino, pyrrolidinyl, and imidazolyl substituted at the C26 position could increase the antitumor efficacy of the 3-oxo sarsasapogenin series of compounds. Compound 4c with pyrrolidinyl substituted at the C26 position exhibited the greatest cytotoxic activity against MCF-7 cell line (IC50 = 10.66 μM), which was 4.3-fold more potent than sarsasapogenin. Action mechanism investigations showed that 4c could inhibit the colony formation and induce the apoptosis of MCF-7 cells. Further researches showed that a decrease in mitochondrial membrane potential and increases in the expression level of cleaved-PARP and the ratio of Bax/Bcl-2 were observed in MCF-7 cells after treatment with 4c, suggesting that the mitochondrial pathway was involved in the 4c-mediated apoptosis. These results show that compound 4c may serve as a lead for further optimization.
Collapse
Affiliation(s)
- Wenbao Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yingying Zhang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guodong Yao
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wei Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinyue Shang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yan Zhang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaobo Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Chinese People's Liberation Army 210 Hospital, Dalian 116021, People's Republic of China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shaojiang Song
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
24
|
Wang ZD, Yao GD, Wang W, Wang WB, Wang SJ, Song SJ. Synthesis and evaluation of 26-amino acid methyl ester substituted sarsasapogenin derivatives as neuroprotective agents for Alzheimer's disease. Steroids 2017; 125:93-106. [PMID: 28687235 DOI: 10.1016/j.steroids.2017.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022]
Abstract
Sarsasapogenin, extracted from Anemarrhena asphodeloides Bunge., has been reported to protect neurons from H2O2-induced damage. In the current study, four series of 26-amino acid methyl ester substituted sarsasapogenin derivatives (5a-5e, 5f-5j, 6a-6e and 7a-7e) were synthesized and tested for neuroprotective activity by evaluating their neuroprotective ratio against SH-SHY5Y cell lines. Studies showed that most of the target compounds displayed better neuroprotective effects than that of sarsasapogenin. Structure-activity relationship analysis suggested that 3-methoxy derivatives (5f-5j) were more potent than other series and the phenylalanine methyl ester moiety at C-26 was important for exhibiting apparent neuroprotective activity. It was worth noting that compound 5h exhibited optimal neuroprotective activity (102.2%) compared with sarsasapogenin (27.3%) and trolox (40.5%), and this encouraged us to investigate the cellular mechanism of 5h further. Our investigation revealed that 5h could attenuate H2O2-induced cell damage by inhibiting the expression of cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspase-3 as well as rescuing the downregulation of brain-derived neurotrophic factor (BDNF) and its tyrosine receptor kinase B (TrkB). Taken together, these results suggest that the representative compound 5h is a profound lead compound for further investigation and the sarsasapogenin skeleton could be a promising structural template for the development of new anti-Alzheimer drug candidates.
Collapse
Affiliation(s)
- Ze-Dan Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wei Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wen-Bao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Jie Wang
- Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|