1
|
Abdollahzadeh Hamzekalayi MR, Hooshyari Ardakani M, Moeini Z, Rezaei R, Hamidi N, Rezaei Somee L, Zolfaghar M, Darzi R, Kamalipourazad M, Riazi G, Meknatkhah S. A systematic review of novel cannabinoids and their targets: Insights into the significance of structure in activity. Eur J Pharmacol 2024; 976:176679. [PMID: 38821167 DOI: 10.1016/j.ejphar.2024.176679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
To provide a comprehensive framework of the current information on the potency and efficacy of interaction between phyto- and synthetic cannabinoids and their respective receptors, an electronic search of the PubMed, Scopus, and EMBASE literature was performed. Experimental studies included reports of mechanistic data providing affinity, efficacy, and half-maximal effective concentration (EC50). Among the 108 included studies, 174 structures, and 16 targets were extracted. The most frequent ligands belonged to the miscellaneous category with 40.2% followed by phytocannabinoid-similar, indole-similar, and pyrrole-similar structures with an abundance of 17.8%, 16.6%, and 12% respectively. 64.8% of structures acted as agonists, 17.1 % appeared as inverse agonists, 10.8% as antagonists, and 7.2% of structures were reported with antagonist/inverse agonist properties. Our outcomes identify the affinity, EC50, and efficacy of the interactions between cannabinoids and their corresponding receptors and the subsequent response, evaluated in the available evidence. Considering structures' significance and very important effects of on the activities, the obtained results also provide clues to drug repurposing.
Collapse
Affiliation(s)
| | | | - Zahra Moeini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Rezaei
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Negin Hamidi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Leila Rezaei Somee
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdis Zolfaghar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Raheleh Darzi
- Department of Plant Science, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Kamalipourazad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sogol Meknatkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Liu H, Shi L, Tan X, Kang B, Luo G, Jiang H, Qi C. Et 2 Zn-Mediated Gem-Dicarboxylation of Cyclopropanols with CO 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307633. [PMID: 38126667 PMCID: PMC10916615 DOI: 10.1002/advs.202307633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 12/23/2023]
Abstract
An unprecedented Et2 Zn-mediated gem-dicarboxylation of C─C/C─H single bond of cyclopropanols with CO2 is disclosed, which provides a straightforward and efficient methodology for the synthesis of a variety of structurally diverse and useful malonic acids in moderate to excellent yields. The protocol features mild reaction conditions, excellent functional group compatibility, broad substrate scope, and facile derivatization of the products. DFT calculations confirm that the transition-metal-free transformation proceeds through a novel ring-opening/α-functionalization/ring-closing/ring-opening/β-functionalization (ROFCOF) process, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) plays dual important roles in the transformation.
Collapse
Affiliation(s)
- Hongjian Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Lei Shi
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Xiaobin Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Gen Luo
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
3
|
Graziano G, Delre P, Carofiglio F, Brea J, Ligresti A, Kostrzewa M, Riganti C, Gioè-Gallo C, Majellaro M, Nicolotti O, Colabufo NA, Abate C, Loza MI, Sotelo E, Mangiatordi GF, Contino M, Stefanachi A, Leonetti F. N-adamantyl-anthranil amide derivatives: New selective ligands for the cannabinoid receptor subtype 2 (CB2R). Eur J Med Chem 2023; 248:115109. [PMID: 36657299 DOI: 10.1016/j.ejmech.2023.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands are emerging as a novel therapeutic approach. The design of selective ligands is however hampered by the high sequence homology of transmembrane domains of CB1R and CB2R. Based on a recent three-arm pharmacophore hypothesis and latest CB2R crystal structures, we designed, synthesized, and evaluated a series of new N-adamantyl-anthranil amide derivatives as CB2R selective ligands. Interestingly, this new class of compounds displayed a high affinity for human CB2R along with an excellent selectivity respect to CB1R. In this respect, compounds exhibiting the best pharmacodynamic profile in terms of CB2R affinity were also evaluated for the functional behavior and molecular docking simulations provided a sound rationale by highlighting the relevance of the arm 1 substitution to prompt CB2R action. Moreover, the modulation of the pro- and anti-inflammatory cytokines production was also investigated to exert the ability of the best compounds to modulate the inflammatory cascade.
Collapse
Affiliation(s)
- Giovanni Graziano
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Pietro Delre
- CNR - Institute of Crystallography, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Francesca Carofiglio
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Josè Brea
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Claudia Gioè-Gallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Carmen Abate
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy; CNR - Institute of Crystallography, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Maria Isabel Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | | - Marialessandra Contino
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy.
| | - Angela Stefanachi
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy.
| | - Francesco Leonetti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| |
Collapse
|
4
|
Kumar A, Gupta O, Bhatia R, Monga V. Impact of Cannabinoid Receptors in the Design of Therapeutic Agents against Human Ailments. Curr Top Med Chem 2023; 23:1807-1834. [PMID: 37132103 DOI: 10.2174/1568026623666230502120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/04/2023]
Abstract
The Cannabinoid (CB) signalling cascade is widely located in the human body and is associated with several pathophysiological processes. The endocannabinoid system comprises cannabinoid receptors CB1 and CB2, which belong to G-protein Coupled Receptors (GPCRs). CB1 receptors are primarily located on nerve terminals, prohibiting neurotransmitter release, whereas CB2 are present predominantly on immune cells, causing cytokine release. The activation of CB system contributes to the development of several diseases which might have lethal consequences, such as CNS disorders, cancer, obesity, and psychotic disorders on human health. Clinical evidence revealed that CB1 receptors are associated with CNS ailments such as Alzheimer's disease, Huntington's disease, and multiple sclerosis, whereas CB2 receptors are primarily connected with immune disorders, pain, inflammation, etc. Therefore, cannabinoid receptors have been proved to be promising targets in therapeutics and drug discovery. Experimental and clinical outcomes have disclosed the success story of CB antagonists, and several research groups have framed newer compounds with the binding potential to these receptors. In the presented review, we have summarized variously reported heterocycles with CB receptor agonistic/antagonistic properties against CNS disorders, cancer, obesity, and other complications. The structural activity relationship aspects have been keenly described along with enzymatic assay data. The specific outcomes of molecular docking studies have also been highlighted to get insights into the binding patterns of the molecules to CB receptors.
Collapse
Affiliation(s)
- Ankush Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Ojasvi Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - VikramDeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
5
|
Wu YR, Tang JQ, Zhang WN, Zhuang CL, Shi Y. Rational drug design of CB2 receptor ligands: from 2012 to 2021. RSC Adv 2022; 12:35242-35259. [PMID: 36540233 PMCID: PMC9730932 DOI: 10.1039/d2ra05661e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 08/29/2023] Open
Abstract
Cannabinoid receptors belong to the large family of G-protein-coupled receptors, which can be divided into two receptor types, cannabinoid receptor type-1 (CB1) and cannabinoid receptor type-2 (CB2). Marinol, Cesamet and Sativex are marketed CB1 drugs which are still in use and work well, but the central nervous system side effects caused by activation CB1, which limited the development of CB1 ligands. So far, no selective CB2 ligand has been approved for marketing, but lots of its ligands in the clinical stage and pre-clinical stage have positive effects on the treatment of some disease models and have great potential for development. Most selective CB2 agonists are designed and synthesized based on non-selective CB2 agonists through the classical med-chem strategies, e.g. molecular hybridization, scaffold hopping, bioisosterism, etc. During these processes, the balance between selectivity, activity, and pharmacokinetic properties needs to be achieved. Hence, we summarized some reported ligands on the basis of the optimization strategies in recent 10 years, and the limitations and future directions.
Collapse
Affiliation(s)
- Yan-Ran Wu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Jia-Qin Tang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Wan-Nian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| | - Chun-Lin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| | - Ying Shi
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| |
Collapse
|
6
|
Asahara H, Bonkohara A, Takagi M, Iwai K, Ito A, Yoshioka K, Tani S, Umezu K, Nishiwaki N. Development of a synthetic equivalent of α,α-dicationic acetic acid leading to unnatural amino acid derivatives via tetrafunctionalized methanes. Org Biomol Chem 2022; 20:2282-2292. [PMID: 35234775 DOI: 10.1039/d1ob02482e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diethyl mesoxalate (DEMO) exhibits high electrophilicity and accepts the nucleophilic addition of a less nucleophilic acid amide to afford N,O-hemiacetal. However, our research showed that elimination of the amide moiety proceeded more easily than dehydration upon treatment with a base. This problem was overcome by reacting DEMO with an acid amide in the presence of acetic anhydride to efficiently obtain N,O-acetal. Acetic acid was eliminated leading to the formation of N-acylimine in situ upon treatment with the base. N-Acylimine is also electrophilic, accepting the second nucleophilic addition by pyrrole or indole to form α,α-disubstituted malonates. Subsequent hydrolysis followed by decarboxylation resulted in (α-indolyl-α-acylamino)acetic acid formation; homologs of tryptophan. Through this process, DEMO serves as a synthetic equivalent of α,α-dicationic acetic acid to facilitate nucleophilic introduction of the two substituents.
Collapse
Affiliation(s)
- Haruyasu Asahara
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Atsushi Bonkohara
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan.
| | - Masaya Takagi
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan.
| | - Kento Iwai
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Kotaro Yoshioka
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Shinki Tani
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Kazuto Umezu
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| |
Collapse
|
7
|
Addition of malonic esters to azoalkenes generated in situ from α-bromo- and α-chlorohydrazones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Electrocatalytic Activation of Donor-Acceptor Cyclopropanes and Cyclobutanes: An Alternative C(sp 3 )-C(sp 3 ) Cleavage Mode. Angew Chem Int Ed Engl 2021; 60:15928-15934. [PMID: 33890714 PMCID: PMC8362004 DOI: 10.1002/anie.202101477] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Indexed: 12/03/2022]
Abstract
We describe the first electrochemical activation of D-A cyclopropanes and D-A cyclobutanes leading after C(sp3 )-C(sp3 ) cleavage to the formation of highly reactive radical cations. This concept is utilized to formally insert molecular oxygen after direct or DDQ-assisted anodic oxidation of the strained carbocycles, delivering β- and γ-hydroxy ketones and 1,2-dioxanes electrocatalytically. Furthermore, insights into the mechanism of the oxidative process, obtained experimentally and by additional quantum-chemical calculations are presented. The synthetic potential of the reaction products is demonstrated by diverse derivatizations.
Collapse
Affiliation(s)
- Simon Kolb
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Martin Petzold
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Felix Brandt
- Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaußstraße 1738106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Christoph R. Jacob
- Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaußstraße 1738106BraunschweigGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
9
|
Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Electrocatalytic Activation of Donor–Acceptor Cyclopropanes and Cyclobutanes: An Alternative C(sp
3
)−C(sp
3
) Cleavage Mode. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Martin Petzold
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Felix Brandt
- Technische Universität Braunschweig Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Christoph R. Jacob
- Technische Universität Braunschweig Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
10
|
Synthesis, biological evaluation, molecular docking and in silico ADMET screening studies of novel isoxazoline derivatives from acridone. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Design, synthesis and bioevaluation of 3-oxo-6-aryl-2,3-dihydropyridazine-4-carbohydrazide derivatives as novel xanthine oxidase inhibitors. Bioorg Med Chem 2019; 27:1818-1823. [DOI: 10.1016/j.bmc.2019.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
|
12
|
Ragusa G, Bencivenni S, Morales P, Callaway T, Hurst DP, Asproni B, Merighi S, Loriga G, Pinna GA, Reggio PH, Gessi S, Murineddu G. Synthesis, Pharmacological Evaluation, and Docking Studies of Novel Pyridazinone-Based Cannabinoid Receptor Type 2 Ligands. ChemMedChem 2018; 13:1102-1114. [PMID: 29575721 DOI: 10.1002/cmdc.201800152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 11/12/2022]
Abstract
In recent years, cannabinoid type 2 receptors (CB2 R) have emerged as promising therapeutic targets in a wide variety of diseases. Selective ligands of CB2 R are devoid of the psychoactive effects typically observed for CB1 R ligands. Based on our recent studies on a class of pyridazinone 4-carboxamides, further structural modifications of the pyridazinone core were made to better investigate the structure-activity relationships for this promising scaffold with the aim to develop potent CB2 R ligands. In binding assays, two of the new synthesized compounds [6-(3,4-dichlorophenyl)-2-(4-fluorobenzyl)-cis-N-(4-methylcyclohexyl)-3-oxo-2,3-dihydropyridazine-4-carboxamide (2) and 6-(4-chloro-3-methylphenyl)-cis-N-(4-methylcyclohexyl)-3-oxo-2-pentyl-2,3-dihydropyridazine-4-carboxamide (22)] showed high CB2 R affinity, with Ki values of 2.1 and 1.6 nm, respectively. In addition, functional assays of these compounds and other new active related derivatives revealed their pharmacological profiles as CB2 R inverse agonists. Compound 22 displayed the highest CB2 R selectivity and potency, presenting a favorable in silico pharmacokinetic profile. Furthermore, a molecular modeling study revealed how 22 produces inverse agonism through blocking the movement of the toggle-switch residue, W6.48.
Collapse
Affiliation(s)
- Giulio Ragusa
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100, Sassari, Italy
| | - Serena Bencivenni
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Paula Morales
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Tyra Callaway
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Dow P Hurst
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Battistina Asproni
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100, Sassari, Italy
| | - Stefania Merighi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Giovanni Loriga
- Institute of Translational Pharmacology, National Research Council, 09010 Pula, Cagliari, Italy
| | - Gerard A Pinna
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100, Sassari, Italy
| | - Patricia H Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Stefania Gessi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Gabriele Murineddu
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100, Sassari, Italy
| |
Collapse
|
13
|
Cooper AG, MacDonald C, Glass M, Hook S, Tyndall JD, Vernall AJ. Alkyl indole-based cannabinoid type 2 receptor tools: Exploration of linker and fluorophore attachment. Eur J Med Chem 2018; 145:770-789. [DOI: 10.1016/j.ejmech.2017.11.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 01/03/2023]
|
14
|
Murineddu G, Deligia F, Ragusa G, García-Toscano L, Gómez-Cañas M, Asproni B, Satta V, Cichero E, Pazos R, Fossa P, Loriga G, Fernández-Ruiz J, Pinna GA. Novel sulfenamides and sulfonamides based on pyridazinone and pyridazine scaffolds as CB 1 receptor ligand antagonists. Bioorg Med Chem 2018; 26:295-307. [DOI: 10.1016/j.bmc.2017.11.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023]
|
15
|
Asproni B, Manca I, Pinna G, Cichero E, Fossa P, Murineddu G, Lazzari P, Loriga G, Pinna GA. Novel pyrrolocycloalkylpyrazole analogues as CB 1 ligands. Chem Biol Drug Des 2017; 91:181-193. [PMID: 28675787 DOI: 10.1111/cbdd.13069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/16/2017] [Accepted: 06/24/2017] [Indexed: 12/16/2022]
Abstract
Novel 1,4-dihydropyrazolo[3,4-a]pyrrolizine-, 4,5-dihydro-1H-pyrazolo[4,3-g]indolizine- and 1,4,5,6-tetrahydropyrazolo[3,4-c]pyrrolo[1,2-a]azepine-3-carboxamide-based compounds were designed and synthesized for cannabinoid CB1 and CB2 receptor interactions. Any of the new synthesized compounds showed high affinity for CB2 receptor with Ki values superior to 314 nm, whereas some of them showed moderate affinity for CB1 receptor with Ki values inferior to 400 nm. 7-Chloro-1-(2,4-dichlorophenyl)-N-(homopiperidin-1-yl)-4,5-dihydro-1H-pyrazolo[4,3-g]indolizine-3-carboxamide (2j) exhibited good affinity for CB1 receptor (Ki CB1 = 81 nm) and the highest CB2 /CB1 selectively ratio (>12). Docking studies carried out on such compounds were performed using the hCB1 X-ray in complex with the close pyrazole analogue AM6538 and disclosed specific pattern of interactions related to the tricyclic pyrrolopyrazole scaffolds as CB1 ligands.
Collapse
Affiliation(s)
- Battistina Asproni
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | | | - Giansalvo Pinna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Genova, Italy
| | - Paola Fossa
- Dipartimento di Farmacia, Università di Genova, Genova, Italy
| | - Gabriele Murineddu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | | | - Giovanni Loriga
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale, UOS Cagliari, Pula, CA, Italy
| | - Gérard A Pinna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|