1
|
Thongbamrer C, Kunkeaw N, Nguitragool W, Roobsoong W, Sattabongkot J, Pengnam S, Opanasopit P, Yingyongnarongkul BE. Enhancing Transfection Efficiency of Spermine-Based Cationic Lipids with a Lysine-Based Spacer. Chem Asian J 2025:e202401751. [PMID: 40229172 DOI: 10.1002/asia.202401751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
L-shape spermine-based cationic lipids with a lysine spacer and both identical and non-identical hydrophobic tails were successfully synthesized. Liposomes prepared from these lipids, either alone or in combination with DOPE, demonstrated DNA-binding capability, as confirmed by gel electrophoresis assays. The physicochemical properties, such as size, zeta-potential, and stability of the lipoplexes formed from the cationic lipids were investigated. The liposomes efficiently condensed DNA into compact structures at an N/P ratio of approximately 5-10. Interestingly, liposomes without DOPE exhibited higher transfection efficiency than those containing DOPE, with the cationic lipid featuring a spermine polar head bonded to a lysine spacer and C12-C16 hydrocarbon tails (Sper-Lys-C12,16) achieved the greatest transfection efficiency, as revealed by fluorescence microscopy and flow cytometry. Notably, this formulation maintained high transfection efficiencies even in serum concentrations up to 40%, outperforming the commercial standard Lipofectamine 3000. Additionally, these liposomes exhibited low cytotoxicity, highlighting their potential as safe and effective gene delivery agents.
Collapse
Affiliation(s)
- Chopaka Thongbamrer
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Nawapol Kunkeaw
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| |
Collapse
|
2
|
Ma W, Fu X, Zhao T, Qi Y, Zhang S, Zhao Y. Development and applications of lipid hydrophilic headgroups for nucleic acid therapy. Biotechnol Adv 2024; 74:108395. [PMID: 38906496 DOI: 10.1016/j.biotechadv.2024.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Nucleic acid therapy is currently the most promising method for treating tumors and genetic diseases and for preventing infectious diseases. However, the biggest obstacle to this therapy is delivery of the nucleic acids to the target site, which requires overcoming problems such as capture by the immune system, the need to penetrate biofilms, and degradation of nucleic acid performance. Designing suitable delivery vectors is key to solving these problems. Lipids-which consist of a hydrophilic headgroup, a linker, and a hydrophobic tail-are crucial components for the construction of vectors. The headgroup is particularly important because it affects the drug encapsulation rate, the vector cytotoxicity, and the transfection efficiency. Herein, we focus on various headgroup structures (tertiary amines, quaternary ammonium salts, peptides, piperazines, dendrimers, and several others), and we summarize and classify important lipid-based carriers that have been developed in recent years. We also discuss applications of cationic lipids with various headgroups for delivery of nucleic acid drugs, and we analyze how headgroup structure affects transport efficiency and carrier toxicity. Finally, we briefly describe the challenges of developing novel lipid carriers, as well as their prospects.
Collapse
Affiliation(s)
- Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Tianyi Zhao
- Key Laboratory of Intelligent Biofabrication of Ministry of Education, School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
3
|
Gattu R, Ramesh SS, Nadigar S, D CG, Ramesh S. Conjugation as a Tool in Therapeutics: Role of Amino Acids/Peptides-Bioactive (Including Heterocycles) Hybrid Molecules in Treating Infectious Diseases. Antibiotics (Basel) 2023; 12:532. [PMID: 36978399 PMCID: PMC10044335 DOI: 10.3390/antibiotics12030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Peptide-based drugs are gaining significant momentum in the modern drug discovery, which is witnessed by the approval of new drugs by the FDA in recent years. On the other hand, small molecules-based drugs are an integral part of drug development since the past several decades. Peptide-containing drugs are placed between small molecules and the biologics. Both the peptides as well as the small molecules (mainly heterocycles) pose several drawbacks as therapeutics despite their success in curing many diseases. This gap may be bridged by utilising the so called 'conjugation chemistry', in which both the partners are linked to one another through a stable chemical bond, and the resulting conjugates are found to possess attracting benefits, thus eliminating the stigma associated with the individual partners. Over the past decades, the field of molecular hybridisation has emerged to afford us new and efficient molecular architectures that have shown high promise in medicinal chemistry. Taking advantage of this and also considering our experience in this field, we present herein a review concerning the molecules obtained by the conjugation of peptides (amino acids) to small molecules (heterocycles as well as bioactive compounds). More than 125 examples of the conjugates citing nearly 100 references published during the period 2000 to 2022 having therapeutic applications in curing infectious diseases have been covered.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Sanjay S. Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Siddaram Nadigar
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Channe Gowda D
- Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru 570005, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| |
Collapse
|
4
|
Yuan YR, Liu Q, Wang D, Deng YD, Du TT, Yi WJ, Yang ST. GSH-Activatable Aggregation-Induced Emission Cationic Lipid for Efficient Gene Delivery. Molecules 2023; 28:molecules28041645. [PMID: 36838634 PMCID: PMC9963561 DOI: 10.3390/molecules28041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The key to gene therapy is the design of biocompatible and efficient delivery systems. In this work, a glutathione (GSH)-activated aggregation-induced-emission (AIE) cationic amphiphilic lipid, termed QM-SS-KK, was prepared for nonviral gene delivery. QM-SS-KK was composed of a hydrophilic biocompatible lysine tripeptide headgroup, a GSH-triggered disulfide linkage, and a hydrophobic AIE fluorophore QM-OH (QM: quinoline-malononitrile) tail. The peptide moiety could not only efficiently compact DNA but also well modulate the dispersion properties of QM-SS-KK, leading to the fluorescence-off state before GSH treatment. The cleavage of disulfide in QM-SS-KK by GSH generated AIE signals in situ with a tracking ability. The liposomes consisted of QM-SS-KK, and 1,2-dioleoylphosphatidylethanolamine (DOPE) (QM-SS-KK/DOPE) delivered plasmid DNAs (pDNAs) into cells with high efficiency. In particular, QM-SS-KK/DOPE had an enhanced transfection efficiency (TE) in the presence of 10% serum, which was two times higher than that of the commercial transfection agent PEI25K. These results highlighted the great potential of peptide and QM-based fluorescence AIE lipids for gene delivery applications.
Collapse
Affiliation(s)
- Yue-Rui Yuan
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Liu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Deyu Wang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yu-Dan Deng
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Ting-Ting Du
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Wen-Jing Yi
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (W.-J.Y.); (S.-T.Y.); Tel.: +86-8552-2315 (W.-J.Y.); +86-85570-9707 (S.-T.Y.)
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (W.-J.Y.); (S.-T.Y.); Tel.: +86-8552-2315 (W.-J.Y.); +86-85570-9707 (S.-T.Y.)
| |
Collapse
|
5
|
Chakraborty A, Dharmaraj S, Truong N, Pearson RM. Excipient-Free Ionizable Polyester Nanoparticles for Lung-Selective and Innate Immune Cell Plasmid DNA and mRNA Transfection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56440-56453. [PMID: 36525379 PMCID: PMC9872050 DOI: 10.1021/acsami.2c14424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extrahepatic nucleic acid delivery using polymers typically requires the synthesis and purification of custom monomers, post-synthetic modifications, and incorporation of additional excipients to augment their stability, endosomal escape, and in vivo effectiveness. Here, we report the development of a single-component and excipient-free, polyester-based nucleic acid delivery nanoparticle platform comprising ionizable N-methyldiethanolamine (MDET) and various hydrophobic alkyl diols (Cp) that achieves lung-selective nucleic acid transfection in vivo. PolyMDET and polyMDET-Cp polyplexes displayed high serum and enzymatic stability, while delivering pDNA or mRNA to "hard-to-transfect" innate immune cells. PolyMDET-C4 and polyMDET-C6 mediated high protein expression in lung alveolar macrophages and dendritic cells without inducing tissue damage or systemic inflammatory responses. Improved strategies using readily available starting materials to produce a simple, excipient-free, non-viral nucleic acid delivery platform with lung-selective and innate immune cell tropism has the potential to expedite clinical deployment of polymer-based genetic medicines.
Collapse
Affiliation(s)
- Atanu Chakraborty
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, Maryland21201, United States
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, Maryland21201, United States
| |
Collapse
|
6
|
Wang J, Wang D, Du TT, Yi WJ, Liu Q. Reducible amino acid based cationic lipids with a naphthalimide moiety as non-viral gene vehicles. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221145850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three basic amino acid–based cationic lipids bearing a fluorescent naphthalimide moiety and a reducible disulfide linkage are synthesized and applied as non-viral gene vehicles. Their DNA interactions are investigated by agarose-gel retardant and ethidium bromide replacement assays. The sizes and zeta potentials of the liposome/DNA complexes are measured by dynamic light scattering. The cytotoxicities of the liposome/DNA complexes are examined using HeLa and 7702 cell lines by MTT assays. The glutathione-responsive DNA release process is studied through time-dependent fluorescence assays. Luciferase gene expression showed the transfection efficiency of the liposome is dramatically increased in the presence of 10% serum. Confocal laser scanning microscopy studies corroborated that the liposome/DNA complexes are successfully uptaken into HeLa cells. These results demonstrate the promising use of amino acids and naphthalimide-containing lipids for safe and efficient gene delivery.
Collapse
Affiliation(s)
- Jian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, P.R. China
| | - Deyu Wang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, P.R. China
| | - Ting-Ting Du
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, P.R. China
| | - Wen-Jing Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, P.R. China
| | - Qiang Liu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, P.R. China
| |
Collapse
|
7
|
Hooshmand SE, Sabet MJ, Hasanzadeh A, Mousavi SMK, Moghadam NH, Hooshmand SA, Rabiee N, Liu Y, Hamblin MR, Karimi M. Histidine‐enhanced gene delivery systems: The state of the art. J Gene Med 2022; 24:e3415. [DOI: 10.1002/jgm.3415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seyyed Emad Hooshmand
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Makkieh Jahanpeimay Sabet
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyede Mahtab Kamrani Mousavi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Niloofar Haeri Moghadam
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyed Aghil Hooshmand
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics University of Tehran Tehran Iran
| | - Navid Rabiee
- Department of Physics Sharif University of Technology Tehran Iran
- School of Engineering Macquarie University Sydney New South Wales Australia
| | - Yong Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu China
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science University of Johannesburg South Africa
| | - Mahdi Karimi
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences Tehran Iran
- Research Center for Science and Technology in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
8
|
Maiti B, Bhattacharya S. Liposomal nanoparticles based on steroids and isoprenoids for nonviral gene delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1759. [PMID: 34729941 DOI: 10.1002/wnan.1759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/24/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022]
Abstract
Natural lipid molecules are an essential part of life as they constitute the membrane of cells and organelle. In most of these cases, the hydrophobicity of natural lipids is contributed by alkyl chains. Although natural lipids with a nonfatty acid hydrophobic backbone are quite rare, steroids and isoprenoids have been strong candidates as part of a lipid. Over the years, these natural molecules (steroid and isoprenoids) have been used to make either lipid-based nanoparticle or functionalize in such a way that it could form nano assembly alone for therapeutic delivery. Here we mainly focus on the synthetic functionalized version of these natural molecules which forms cationic liposomal nanoparticles (LipoNPs). These cationic LipoNPs were further used to deliver various negatively charged genetic materials in the form of pDNA, siRNA, mRNA (nucleic acids), and so on. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Bappa Maiti
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, India
| | - Santanu Bhattacharya
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, India.,School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Ravula V, Lo YL, Wu YT, Chang CW, Patri SV, Wang LF. Arginine-tocopherol bioconjugated lipid vesicles for selective pTRAIL delivery and subsequent apoptosis induction in glioblastoma cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112189. [PMID: 34082988 DOI: 10.1016/j.msec.2021.112189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
The incorporation of specific therapeutic gene into glioblastoma offers potent therapeutic strategy to treat the disease. Non-viral gene delivery vectors are of particular interest due to their tuneable transfection efficiency and easy scale-up. Herein, we demonstrate successful delivery of plasmid encoding tumor necrosis factor (TNF)-related apoptosis-inducing ligand (pTRAIL) using arginine-conjugated tocopherol lipid (AT) nanovesicles into glioblastoma cell lines. Another cationic lipid, glycine-conjugated tocopherol lipid (GT) having glycine in the head group region is also synthesized as a control lipid. Both lipid-derived liposomes effectively condensed the pDNA and the corresponding biomacromolecular assemblies (lipoplexes) are efficiently transfected into different cell lines. AT-based liposomes exhibit higher transfection efficacy in various cell lines, particularly selective in glioma cell lines. At an optimized N/P ratio, both the liposomal formulations show low cytotoxicity. AT-based lipoplexes have superior cellular uptake in U87 than the control lipid GT. The expression of TRAIL protein regulated death receptor and apoptosis signaling pathway is assayed by western blot using transfection of AT-based/pTRAIL into U87 cell lines. Induction of apoptosis in U87 cells exposed to AT-based/pTRAIL plasmid is evaluated by MTT assay as well as Annexin V-propidium iodide dual-staining assay. All results indicate that the developed AT-based/pTRAIL system offers a potentially safe and efficient therapeutic strategy for glioblastoma gene therapy.
Collapse
Affiliation(s)
- Venkatesh Ravula
- Department of Chemistry, National Institute of Technology, Warangal 506004, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Lun Lo
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ting Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Srilakshmi V Patri
- Department of Chemistry, National Institute of Technology, Warangal 506004, India.
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
10
|
Progress of cationic gene delivery reagents for non-viral vector. Appl Microbiol Biotechnol 2021; 105:525-538. [PMID: 33394152 DOI: 10.1007/s00253-020-11028-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022]
Abstract
Gene delivery systems play a vital role in gene therapy and recombinant protein production. The advantages of using gene delivery reagents for non-viral vector include the capacity to accommodate a large packaging load and their low or absent immunogenicity. Furthermore, they are easy to produce at a large scale and preserve. Gene delivery reagents for non-viral vector are commonly used for transfecting a variety of cells and tissues. It is mainly composed of liposomes and non-liposome cationic polymers. According to the different head structures used, the non-viral cationic transfection reagents include a quaternary ammonium salt, amine, amino acid or polypeptide, guanidine salt, and a heterocyclic ring. This article summarizes these approaches and developments of types and components of transfection reagents and optimization of gene delivery. The optimization of mammalian cell transient recombinant protein expression system and cationic reagents for clinical or clinical trials are also discussed.
Collapse
|
11
|
Misra SK, Moitra P, Kondaiah P, Bhattacharya S. Breaking the Barrier of Polynucleotide Size, Type, and Topology in Smad2 Antisense Therapy Using a Cationic Cholesterol Dimer with Flexible Spacer. ACS APPLIED BIO MATERIALS 2020; 3:7712-7721. [DOI: 10.1021/acsabm.0c00924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Santosh K. Misra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Parikshit Moitra
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, School of Medicine, Health Sciences Facility III, University of Maryland Baltimore, 670 W Baltimore St, Baltimore, Maryland 21201, United States
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Das R, Gayakvad B, Shinde SD, Rani J, Jain A, Sahu B. Ultrashort Peptides—A Glimpse into the Structural Modifications and Their Applications as Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5474-5499. [DOI: 10.1021/acsabm.0c00544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bhavinkumar Gayakvad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Jyoti Rani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|
13
|
Sánchez-Arribas N, Martínez-Negro M, Villar EM, Pérez L, Aicart E, Taboada P, Guerrero-Martínez A, Junquera E. Biocompatible Nanovector of siRNA Consisting of Arginine-Based Cationic Lipid for Gene Knockdown in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34536-34547. [PMID: 32657573 DOI: 10.1021/acsami.0c06273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the use of small interfering RNAs (siRNAs) as therapeutic agents through the knockdown expression of pathogenic proteins, transportation and delivery of such siRNAs into cells continue to be under investigation. Within nonviral vectors, cationic lipids that include amino acid residues in their structures, and that have already demonstrated their suitability as plasmid DNA nanocarriers, may be also considered as potential siRNA vehicles. A double-chain cationic lipid based on the amino acid arginine mixed with a helper lipid has been the object of this biophysical study. First, ζ-potential measurements and agarose gel electrophoresis experiments confirmed the siRNA compaction, while small-angle X-ray scattering analysis (SAXS) revealed the structural pattern of the lipoplexes. Two bicontinuous cubic phases were found to coexist: the double-gyroid phase (QIIG) and the double-diamond phase (QIID), with Pn3m and Ia3d as crystallographic space groups, respectively; the siRNA is known to be located inside their bicontinuous aqueous channels. Second, in vitro studies in HeLa-green fluorescent protein (GFP) and T731-GFP cell lines (modified for GFP overexpression) showed moderate to high gene knockdown levels (determined by flow cytometry and epifluorescence microscopy) with remarkable cell viabilities (CCK-8 assay). Finally, nano-liquid chromatography/mass spectrometry (nanoLC-MS/MS) was used to identify the nature of the proteins adhered to the surface of the lipoplexes after incubation with human serum, simulating their behavior in biological fluids. The abundant presence of lipoproteins and serum albumin in such protein corona, together with the coexistence of the bicontinuous cubic phases, may be behind the remarkable silencing activity of these lipoplexes. The results reported herein show that the use of amino-acid-based cationic lipids mixed with a suitable helper lipid, which have already provided good results as DNA plasmid nanocarriers in cellular transfection processes, may also be a biocompatible option, and so far little investigated, in gene silencing in vitro strategies.
Collapse
Affiliation(s)
- Natalia Sánchez-Arribas
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Martínez-Negro
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eva M Villar
- Departamento de Fı́sica de Partı́culas, Facultad de Fı́sicas e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Lourdes Pérez
- Departamento de Tecnologı́a Quı́mica y Tensioactivos, IQAC-CSIC, 08034 Barcelona, Spain
| | - Emilio Aicart
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo Taboada
- Departamento de Fı́sica de Partı́culas, Facultad de Fı́sicas e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Andrés Guerrero-Martínez
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Junquera
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Puchkov PA, Shmendel EV, Luneva AS, Zenkova MA, Maslov MA. Position of Disulfide Bond Determines the Properties of Novel Stimuli‐Responsive Cationic Lipids. ChemistrySelect 2020. [DOI: 10.1002/slct.201904879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pavel A. Puchkov
- Lomonosov Institute of Fine Chemical TechnologiesMIREA-Russian Technological University Vernadsky ave. 86 119571 Moscow Russia
| | - Elena V. Shmendel
- Lomonosov Institute of Fine Chemical TechnologiesMIREA-Russian Technological University Vernadsky ave. 86 119571 Moscow Russia
| | - Anastasia S. Luneva
- Lomonosov Institute of Fine Chemical TechnologiesMIREA-Russian Technological University Vernadsky ave. 86 119571 Moscow Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS Lavrentiev ave. 8 630090 Novosibirsk Russia
| | - Michael A. Maslov
- Lomonosov Institute of Fine Chemical TechnologiesMIREA-Russian Technological University Vernadsky ave. 86 119571 Moscow Russia
| |
Collapse
|
15
|
Radchatawedchakoon W, Thongbamrer C, Konbamrung W, Khattawee P, Sakee U, Roobsoong W, Sattabongkot J, Opanasopit P, Yingyongnarongkul BE. The effect of polar headgroups and spacer length on the DNA transfection of cholesterol-based cationic lipids. RSC Med Chem 2020; 11:212-224. [PMID: 33479628 PMCID: PMC7484938 DOI: 10.1039/c9md00459a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/11/2019] [Indexed: 01/31/2023] Open
Abstract
This article is related to the effects of the headgroups and spacer length of cationic lipids on transfection efficiency. To develop highly potent cationic lipids, a series of divalent lysine-diamine conjugated cholesterol-based cationic lipids with three different headgroups (ammonium, trimethyl ammonium, and guanidinium) were synthesized. The newly synthesized cationic lipids (1-6)A formed cationic liposomes in the presence and absence of a zwitterionic helper lipid, DOPE (dioleoylphosphatidylethanolamine). A gel retardation assay showed that most of the prepared lipoplexes could retard DNA migration in the presence of DOPE. We attempted to modify the diverse cationic headgroups to improve the transfection efficiency. However, the lysine-1,3-diaminopropane-conjugated cholesterol-based lipid 4A, having divalent ammonium of unmodified lysine headgroup, exhibited high relative transfection efficiency in HEK293. When the transfection efficiency of 4A was formulated with DOPE (1 : 1 weight ratio), it produced the same range in comparison with that of a commercially available transfection agent, Lipofectamine™ 2000 (L2k). The lipid 4A was studied to optimize the conditions with respect to the lipid/DOPE and DNA/lipid ratios and the amount of DNA. The transfection efficiency of the highly potent lipid 4A was also studied to determine the transfection efficiency of HeLa, PC3, and HC-04 cell lines. This lipid also protected the DNA from a serum and had low toxicity. Lipoplexes 4A with DOPE had the particle size of around 300-600 nm and the zeta potential of around 0-45 mV. In summary, cationic liposomes 4A demonstrated a high performance as DNA carriers.
Collapse
Affiliation(s)
- Widchaya Radchatawedchakoon
- Creative Chemistry and Innovation Research Unit , Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Mahasarakham University , Maha Sarakham , 44150 , Thailand . ; ; ; Tel: +66 43 754246
| | - Chopaka Thongbamrer
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Ramkhamhaeng University , Bangkok , 10240 , Thailand
| | - Wuttiphong Konbamrung
- Creative Chemistry and Innovation Research Unit , Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Mahasarakham University , Maha Sarakham , 44150 , Thailand . ; ; ; Tel: +66 43 754246
| | - Phakamas Khattawee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Ramkhamhaeng University , Bangkok , 10240 , Thailand
| | - Uthai Sakee
- Creative Chemistry and Innovation Research Unit , Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Mahasarakham University , Maha Sarakham , 44150 , Thailand . ; ; ; Tel: +66 43 754246
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit , Faculty of Tropical Medicine , Mahidol University , Bangkok , 10400 , Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit , Faculty of Tropical Medicine , Mahidol University , Bangkok , 10400 , Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG) , Faculty of Pharmacy , Silpakorn University , Nakhon Pathom , 73000 , Thailand
| | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Ramkhamhaeng University , Bangkok , 10240 , Thailand
| |
Collapse
|
16
|
Peng S, Wang Q, Xiao X, Wang R, Lin J, Zhou Q, Wu L. Redox‐responsive polyethyleneimine‐coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging. POLYM INT 2019. [DOI: 10.1002/pi.5943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Si Peng
- College of Chemical and Environment ProtectionSouthwest Minzu University Chengdu Sichuan China
| | - Qiu‐yue Wang
- College of Chemical and Environment ProtectionSouthwest Minzu University Chengdu Sichuan China
| | - Xue Xiao
- College of Chemical and Environment ProtectionSouthwest Minzu University Chengdu Sichuan China
| | - Rui Wang
- College of Chemical and Environment ProtectionSouthwest Minzu University Chengdu Sichuan China
| | - Juan Lin
- School of Biomedical Sciences and TechnologyChengdu Medical College Chengdu China
| | - Qing‐han Zhou
- College of Chemical and Environment ProtectionSouthwest Minzu University Chengdu Sichuan China
| | - Li‐na Wu
- Department of Anatomy and Histology and EmbryologyDevelopment and Regeneration Key Lab of Sichuan Province, Chengdu Medical College Chengdu China
| |
Collapse
|
17
|
Martínez-Negro M, Sánchez-Arribas N, Guerrero-Martínez A, Moyá ML, Tros de Ilarduya C, Mendicuti F, Aicart E, Junquera E. A Non-Viral Plasmid DNA Delivery System Consisting on a Lysine-Derived Cationic Lipid Mixed with a Fusogenic Lipid. Pharmaceutics 2019; 11:E632. [PMID: 31783620 PMCID: PMC6956073 DOI: 10.3390/pharmaceutics11120632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
The insertion of biocompatible amino acid moieties in non-viral gene nanocarriers is an attractive approach that has been recently gaining interest. In this work, a cationic lipid, consisting of a lysine-derived moiety linked to a C12 chain (LYCl) was combined with a common fusogenic helper lipid (DOPE) and evaluated as a potential vehicle to transfect two plasmid DNAs (encoding green fluorescent protein GFP and luciferase) into COS-7 cells. A multidisciplinary approach has been followed: (i) biophysical characterization based on zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), and cryo-transmission electronic microscopy (cryo-TEM); (ii) biological studies by fluorescence assisted cell sorting (FACS), luminometry, and cytotoxicity experiments; and (iii) a computational study of the formation of lipid bilayers and their subsequent stabilization with DNA. The results indicate that LYCl/DOPE nanocarriers are capable of compacting the pDNAs and protecting them efficiently against DNase I degradation, by forming Lα lyotropic liquid crystal phases, with an average size of ~200 nm and low polydispersity that facilitate the cellular uptake process. The computational results confirmed that the LYCl/DOPE lipid bilayers are stable and also capable of stabilizing DNA fragments via lipoplex formation, with dimensions consistent with experimental values. The optimum formulations (found at 20% of LYCl content) were able to complete the transfection process efficiently and with high cell viabilities, even improving the outcomes of the positive control Lipo2000*.
Collapse
Affiliation(s)
- María Martínez-Negro
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - Natalia Sánchez-Arribas
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - María Luisa Moyá
- Grupo de Química Coloidal y Catálisis Micelar, Departamento de Química Física, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Conchita Tros de Ilarduya
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31080 Pamplona, Spain;
| | - Francisco Mendicuti
- Departmento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Quimica Andrés M. del Rio, Universidad de Alcalá, 28871 Alcalá de Henares, Spain;
| | - Emilio Aicart
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| |
Collapse
|
18
|
Abstract
Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic CRISPR/Cas9 delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives. Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives.
Collapse
|
19
|
Zhang J, Ye CZ, Liu ZY, Yang Q, Ye Y. Preparation And Antibacterial Effects Of Carboxymethyl Chitosan-Modified Photo-Responsive Camellia Sapogenin Derivative Cationic Liposomes. Int J Nanomedicine 2019; 14:8611-8626. [PMID: 31802873 PMCID: PMC6830381 DOI: 10.2147/ijn.s218101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bacterial resistance to antibiotics is a persistent and intractable problem. The sapogenin isolated from the seeds of Camellia oleifera can inhibit antibiotic-resistant bacteria after structural modification. PURPOSE This study aims to improve sapogenin's antibacterial activity and avoid bacterial resistance based on nano-preparation with photo responsiveness. METHODS The liposome shell material of carboxymethyl chitosan-phosphatidyl ethanolamine (CMC-PE) was prepared using amidation reaction, and photo-responsive cationic (PCC) liposomes containing Camellia sapogenin derivative (CSD) and photosensitizer pheophorbide-a were prepared by film dispersion method. Encapsulation efficiency, drug loading, zeta potential, particle size distribution, morphology and stability of the PCC liposomes were determined by HPLC, particle size analyzer, transmission electron microscopy (TEM) and fluorescence microscopy. Photo-responsive release of CSD in the PCC liposomes was determined by laser (0.5 mW/cm2) at 665 nm. Antibacterial activity of the PCC liposomes with or without irradiation was analyzed by MIC50, MBC, MBIC50, and bacterial morphology to evaluate the antibacterial effects on amoxicillin resistant Escherichia coli and Staphylococcus aureus. RESULTS Size distribution, zeta potential, encapsulation efficiency and drug loading of the PCC liposomes were 189.23 ± 2.12 nm, 18.80 ± 1.57 mV, 83.52 ± 1.53% and 2.83 ± 0.05%, respectively. The PCC liposomes had higher storage stability and gastrointestinal stability, and no obvious hemolytic toxicity to rabbit red blood cells and no cytotoxicity after incubation with Hela cells. The photosensitizer pheophorbide-a was uniformly dispersed in the phospholipid layer of the PCC liposomes and increased the CSD release after irradiation. The PCC liposomes could bind to bacteria and impaired their morphology and structure, and had significant bactericidal effect on amoxicillin resistant E. coli and S. aureus. CONCLUSION The photo-responsive PCC liposomes are efficient antibacterial agents for avoidance of bacterial resistance against antibiotics.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Chuan-Zhen Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Ze-Yu Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Qian Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Yong Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| |
Collapse
|
20
|
Li K, Dong W, Qiu L, Liu Q, Lv G, Peng Y, Xie M, Lin J. A new GSH-responsive prodrug of 5-aminolevulinic acid for photodiagnosis and photodynamic therapy of tumors. Eur J Med Chem 2019; 181:111582. [PMID: 31398615 DOI: 10.1016/j.ejmech.2019.111582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
5-Aminolevulinic acid (5-ALA) and its two ester derivatives (5-ALA-OMe and 5-ALA-OHex) have been approved for photodiagnosis and photodynamic therapy (PDT) of tumors in the clinical. However, their pharmacological activities are limited by their instability under physiological conditions and lack of tumor selectivity. With the aim to overcome these shortcomings, a glutathione-responsive 5-ALA derivative (SA) was designed based on the fact that many types of tumor cells have higher intracellular glutathione level than normal cells. SA was synthesized by masking the 5-amion group of 5-ALA methyl ester (5-ALA-OMe) with a self-immolative disulfide linker. Compared with 5-ALA and 5-ALA-OMe, SA exhibited higher stability under physiological conditions, and it can efficiently release the parent compound 5-ALA-OMe in response to glutathione. In tumor cells, SA displayed excellent protoporphyrin IX (PpIX) production activity at low concentrations while 5-ALA and 5-ALA-OMe were ineffective at the same concentration. The SA-induced PpIX production was positively correlated with the intracellular glutathione level, and SA exhibited enhanced phototoxicity due to its excellent PpIX generation activity. This study indicates that modification of the amino group in 5-ALA derivatives with a self-immolative disulfide linker is an effective strategy to improve their chemical stability and pharmacological activities, and SA is a potential photosensitizer for photodiagnosis and PDT of tumors.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China; The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, PR China
| | - Wenyi Dong
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Ling Qiu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China
| | - Qingzhu Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China
| | - Gaochao Lv
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China
| | - Ying Peng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China; The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China.
| |
Collapse
|
21
|
A simple protocol for transfecting human mesenchymal stem cells. Biotechnol Lett 2018; 40:617-622. [DOI: 10.1007/s10529-018-2505-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|