1
|
Rohira H, Arora A, Kaur P, Chugh A. Peptide cargo administration: current state and applications. Appl Microbiol Biotechnol 2023; 107:3153-3181. [PMID: 37052636 PMCID: PMC10099029 DOI: 10.1007/s00253-023-12512-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Effective delivery of drug molecules to the target site is a challenging task. In the last decade, several innovations in the drug delivery system (DDS) have tremendously improved the therapeutic efficacy of drug molecules. Among various DDS, cell-penetrating peptides (CPPs) based DDS have gathered notable attention owing to their safety, efficacy, selectivity, specificity, and ease of synthesis. CPPs are emerging as an efficient and effective pharmaceutical nanocarriers-based platforms for successful management of various important human health disorders. Failure of several current chemotherapeutic strategies is attributed to low solubility, reduced bioavailability, and off-target delivery of several anti-cancer drugs. Similarly, development of therapeutics for vision-threatening disorders is challenged by the anatomical as well as physiological complexity of the eye. Such therapeutic challenges in cancer and ocular disease management can be overcome by developing cell-penetrating peptide (CPP) based peptide drug conjugates (PDCs). CPPs can be used to deliver various types of cargo molecules including nucleic acids, small molecules, and peptides/proteinaceous agents. In this review, we have briefly introduced CPPs and the linker strategies employed for the development of PDCs. Furthermore, recent studies employing CPP-based PDCs for cancer and ocular disease management have been discussed in detail highlighting their significance over conventional DDS. Later sections of the review are focused on the current status of clinical trials and future implications of CPP-based PDCs in vaccine development. KEY POINTS: • Cell-penetrating peptides (CPPs) can deliver a variety of cargo macromolecules via covalent and non-covalent conjugation. • CPP-based peptide drug conjugates (PDCs) can overcome drawbacks of conventional drug delivery methods such as biocompatibility, solubility, stability, and specificity. • Various PDCs are in clinical trial phase for cancer and ocular therapeutics.
Collapse
Affiliation(s)
- Harsha Rohira
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Genohelex Care Pvt. Ltd, ASPIRE BioNEST, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Aditi Arora
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Prasanjeet Kaur
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
2
|
Zhou X, Wang X, Li N, Guo Y, Yang X, Lei Y. Therapy resistance in neuroblastoma: Mechanisms and reversal strategies. Front Pharmacol 2023; 14:1114295. [PMID: 36874032 PMCID: PMC9978534 DOI: 10.3389/fphar.2023.1114295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Neuroblastoma is one of the most common pediatric solid tumors that threaten the health of children, accounting for about 15% of childhood cancer-related mortality in the United States. Currently, multiple therapies have been developed and applied in clinic to treat neuroblastoma including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, the resistance to therapies is inevitable following long-term treatment, leading to treatment failure and cancer relapse. Hence, to understand the mechanisms of therapy resistance and discover reversal strategies have become an urgent task. Recent studies have demonstrated numerous genetic alterations and dysfunctional pathways related to neuroblastoma resistance. These molecular signatures may be potential targets to combat refractory neuroblastoma. A number of novel interventions for neuroblastoma patients have been developed based on these targets. In this review, we focus on the complicated mechanisms of therapy resistance and the potential targets such as ATP-binding cassette transporters, long non-coding RNAs, microRNAs, autophagy, cancer stem cells, and extracellular vesicles. On this basis, we summarized recent studies on the reversal strategies to overcome therapy resistance of neuroblastoma such as targeting ATP-binding cassette transporters, MYCN gene, cancer stem cells, hypoxia, and autophagy. This review aims to provide novel insight in how to improve the therapy efficacy against resistant neuroblastoma, which may shed light on the future directions that would enhance the treatment outcomes and prolong the survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Xia Zhou
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China.,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaolin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
3
|
Ying N, Lin X, Xie M, Zeng D. Effect of surface ligand modification on the properties of anti-tumor nanocarrier. Colloids Surf B Biointerfaces 2022; 220:112944. [DOI: 10.1016/j.colsurfb.2022.112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
4
|
Multifunctional bovine serum albumin-based nanocarriers with endosomal escaping and NIR light-controlled release to overcome multidrug resistance of breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
The application progress of peptides in drug delivery systems in the past decade. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021; 16:6593-6644. [PMID: 34611400 PMCID: PMC8487283 DOI: 10.2147/ijn.s323831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotherapy is a part of nanomedicine that involves nanoparticles as carriers to deliver drugs to target locations. This novel targeting approach has been found to resolve various problems, especially those associated with cancer treatment. In nanotherapy, the carrier plays a crucial role in handling many of the existing challenges, including drug protection before early-stage degradations of active substances, allowing them to reach targeted cells and overcome cell resistance mechanisms. The present review comprises the following sections: the first part presents the introduction of pharmacoeconomics as a branch of healthcare economics, the second part covers various beneficial aspects of the use of nanocarriers for in vitro, in vivo, and pre- and clinical studies, as well as discussion on drug resistance problem and present solutions to overcome it. In the third part, progress in drug manufacturing and optimization of the process of nanoparticle synthesis were discussed. Finally, pharmacokinetic and toxicological properties of nanoformulations due to up-to-date studies were summarized. In this review, the most recent developments in the field of nanotechnology's economic impact, particularly beneficial applications in medicine were presented. Primarily focus on cancer treatment, but also discussion on other fields of application, which are strongly associated with cancer epidemiology and treatment, was made. In addition, the current limitations of nanomedicine and its huge potential to improve and develop the health care system were presented.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | | | - Piotr Nowicki
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| |
Collapse
|
7
|
Gayraud F, Klußmann M, Neundorf I. Recent Advances and Trends in Chemical CPP-Drug Conjugation Techniques. Molecules 2021; 26:molecules26061591. [PMID: 33805680 PMCID: PMC7998868 DOI: 10.3390/molecules26061591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
This review summarizes recent developments in conjugation techniques for the synthesis of cell-penetrating peptide (CPP)–drug conjugates targeting cancer cells. We will focus on small organic molecules as well as metal complexes that were used as cytostatic payloads. Moreover, two principle ways of coupling chemistry will be discussed direct conjugation as well as the use of bifunctional linkers. While direct conjugation of the drug to the CPP is still popular, the use of bifunctional linkers seems to gain increasing attention as it offers more advantages related to the linker chemistry. Thus, three main categories of linkers will be highlighted, forming either disulfide acid-sensitive or stimuli-sensitive bonds. All techniques will be thoroughly discussed by their pros and cons with the aim to help the reader in the choice of the optimal conjugation technique that might be used for the synthesis of a given CPP–drug conjugate
Collapse
|
8
|
Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer. J Control Release 2020; 330:1220-1228. [PMID: 33248708 DOI: 10.1016/j.jconrel.2020.11.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
Biological barriers hamper the efficient delivery of drugs and genes to targeted sites. Cell penetrating peptides (CPP) have the ability to rapidly internalize across biological membranes. CPP have been effective for delivery of various chemotherapeutic agents used to combat cancer. CPP can enhance delivery of drugs to a targeted site when combined with tumor targeting peptides. CPP can be linked with various cargos like nanoparticles, micelles and liposomes to deliver drugs and genes to the cancer cell. Here, we focus on CPP mediated delivery of drugs to the tumor sites, delivery of genes (siRNA,pDNA) and co-delivery of drugs and genes to combat drug resistance.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Department of Pharmacy, The Islamia University of Bahawalpur, Pakistan.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Departments of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Department of Oncology, Radiotherapy and Plastic Surgery I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
9
|
Li Y, Xu X. Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance. J Control Release 2020; 323:483-501. [DOI: 10.1016/j.jconrel.2020.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023]
|
10
|
Harvey EP, Hauseman ZJ, Cohen DT, Rettenmaier TJ, Lee S, Huhn AJ, Wales TE, Seo HS, Luccarelli J, Newman CE, Guerra RM, Bird GH, Dhe-Paganon S, Engen JR, Wells JA, Walensky LD. Identification of a Covalent Molecular Inhibitor of Anti-apoptotic BFL-1 by Disulfide Tethering. Cell Chem Biol 2020; 27:647-656.e6. [PMID: 32413285 DOI: 10.1016/j.chembiol.2020.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
The BCL-2 family is composed of anti- and pro-apoptotic members that respectively protect or disrupt mitochondrial integrity. Anti-apoptotic overexpression can promote oncogenesis by trapping the BCL-2 homology 3 (BH3) "killer domains" of pro-apoptotic proteins in a surface groove, blocking apoptosis. Groove inhibitors, such as the relatively large BCL-2 drug venetoclax (868 Da), have emerged as cancer therapies. BFL-1 remains an undrugged oncogenic protein and can cause venetoclax resistance. Having identified a unique C55 residue in the BFL-1 groove, we performed a disulfide tethering screen to determine if C55 reactivity could enable smaller molecules to block BFL-1's BH3-binding functionality. We found that a disulfide-bearing N-acetyltryptophan analog (304 Da adduct) effectively targeted BFL-1 C55 and reversed BFL-1-mediated suppression of mitochondrial apoptosis. Structural analyses implicated the conserved leucine-binding pocket of BFL-1 as the interaction site, resulting in conformational remodeling. Thus, therapeutic targeting of BFL-1 may be achievable through the design of small, cysteine-reactive drugs.
Collapse
Affiliation(s)
- Edward P Harvey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Zachary J Hauseman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Daniel T Cohen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - T Justin Rettenmaier
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, 1700 Fourth Street, San Francisco, CA 94143, USA
| | - Susan Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Annissa J Huhn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 412 The Fenway, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - James Luccarelli
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Catherine E Newman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Rachel M Guerra
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 412 The Fenway, Boston, MA 02115, USA
| | - James A Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, 1700 Fourth Street, San Francisco, CA 94143, USA
| | - Loren D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Shahabadi N, Razlansari M. In vitro spectroscopic investigation of groove binding interaction of Fe 3O 4@CaAl-LDH@L-Dopa with calf thymus DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1020-1035. [PMID: 32345148 DOI: 10.1080/15257770.2020.1740929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The principal goal of this study is to evaluate the interaction of Fe3O4@CaAl-LDH@L-Dopa and Fe3O4@CaAl-LDH nanoparticles with calf thymus DNA. The magnetic nanoparticles were previously prepared by a chemical co-precipitation method, and the surface of the Fe3O4 nanoparticles was coated with CaAl layered double hydroxides. The antiparkinsonian drug "L-Dopa" was carried by this core-shell nanostructure to achieve the drug delivery system with suitable properties for biological applications. Also, the interaction of Fe3O4@CaAl-LDH@L-Dopa and Fe3O4@CaAl-LDH nanoparticles with CT-DNA was studied using, UV-Visible spectroscopy, viscosity, circular dichroism (CD), and fluorescence spectroscopy techniques. The results of investigations demonstrated that Fe3O4@CaAl-LDH@L-Dopa and Fe3O4@CaAl-LDH nanoparticles have interacted via minor groove binding and intercalated to CT-DNA, respectively.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), University of Medical Sciences, Kermanshah, Iran
| | - Mahtab Razlansari
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
12
|
Palombarini F, Di Fabio E, Boffi A, Macone A, Bonamore A. Ferritin Nanocages for Protein Delivery to Tumor Cells. Molecules 2020; 25:E825. [PMID: 32070033 PMCID: PMC7070480 DOI: 10.3390/molecules25040825] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
The delivery of therapeutic proteins is one of the greatest challenges in the treatment of human diseases. In this frame, ferritins occupy a very special place. Thanks to their hollow spherical structure, they are used as modular nanocages for the delivery of anticancer drugs. More recently, the possibility of encapsulating even small proteins with enzymatic or cytotoxic activity is emerging. Among all ferritins, particular interest is paid to the Archaeoglobus fulgidus one, due to its peculiar ability to associate/dissociate in physiological conditions. This protein has also been engineered to allow recognition of human receptors and used in vitro for the delivery of cytotoxic proteins with extremely promising results.
Collapse
Affiliation(s)
| | | | | | - Alberto Macone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.P.); (E.D.F.); (A.B.)
| | - Alessandra Bonamore
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.P.); (E.D.F.); (A.B.)
| |
Collapse
|
13
|
Wadhawan A, Chatterjee M, Singh G. Present Scenario of Bioconjugates in Cancer Therapy: A Review. Int J Mol Sci 2019; 20:ijms20215243. [PMID: 31652668 PMCID: PMC6862033 DOI: 10.3390/ijms20215243] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/24/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the deadliest diseases and poses a risk to people all over the world. Surgery, chemo, and radiation therapy have been the only options available until today to combat this major problem. Chemotherapeutic drugs have been used for treatment for more than 50 years. Unfortunately, these drugs have inherent cytotoxicities and tumor cells have started inducing resistance against these drugs. Other common techniques such as surgery and radiotherapy have their own drawbacks. Therefore, such techniques are incompetent tools to alleviate the disease efficiently without any adverse effects. This scenario has inspired researchers to develop alternative techniques with enhanced therapeutic effects and minimal side effects. Such techniques include targeted therapy, liposomal therapy, hormonal therapy, and immunotherapy, etc. However, these therapies are expensive and not effective enough. Furthermore, researchers have conjugated therapeutic agents or drugs with different molecules, delivery vectors, and/or imaging modalities to combat such problems and enhance the therapeutic effect. This conjugation technique has led to the development of bioconjugation therapy, in which at least one molecule is of biological origin. These bioconjugates are the new therapeutic strategies, having prospective synergistic antitumor effects and have potency to overcome the complications being produced by chemo drugs. Herein, we provide an overview of various bioconjugates developed so far, as well as their classification, characteristics, and targeting approach for cancer. Additionally, the most popular nanostructures based on their organic or inorganic origin (metallic, magnetic, polymeric nanoparticles, dendrimers, and silica nanoparticles) characterized as nanocarriers are also discussed. Moreover, we hope that this review will provide inspiration for researchers to develop better bioconjugates as therapeutic agents.
Collapse
Affiliation(s)
- Aishani Wadhawan
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh Pin code-160014, India.
| | - Mary Chatterjee
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh Pin code-160014, India.
| | - Gurpal Singh
- Department of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh Pin code-160014, India.
| |
Collapse
|
14
|
Omran DM, Ghaly MA, El-Messery SM, Badria FA, Abdel-Latif E, Shehata IA. Targeting hepatocellular carcinoma: Synthesis of new pyrazole-based derivatives, biological evaluation, DNA binding, and molecular modeling studies. Bioorg Chem 2019; 88:102917. [DOI: 10.1016/j.bioorg.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/22/2019] [Accepted: 04/06/2019] [Indexed: 01/03/2023]
|
15
|
Mei L, He S, Liu Z, Xu K, Zhong W. Co-assembled supramolecular hydrogels of doxorubicin and indomethacin-derived peptide conjugates for synergistic inhibition of cancer cell growth. Chem Commun (Camb) 2019; 55:4411-4414. [DOI: 10.1039/c9cc00590k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co-assembly of doxorubicin and a NSAID-based self-assembling peptide conjugate promotes synergistic inhibition of cancer cell growth.
Collapse
Affiliation(s)
- Leixia Mei
- Department of Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Suyun He
- Department of Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Ziqi Liu
- Department of Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Keming Xu
- Department of Chemistry
- China Pharmaceutical University
- Nanjing
- China
- Key Laboratory of Biomedical Functional Materials
| | - Wenying Zhong
- Department of Chemistry
- China Pharmaceutical University
- Nanjing
- China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
16
|
|
17
|
Zhao N, Woodle MC, Mixson AJ. Advances in delivery systems for doxorubicin. JOURNAL OF NANOMEDICINE & NANOTECHNOLOGY 2018; 9:519. [PMID: 30613436 PMCID: PMC6319900 DOI: 10.4172/2157-7439.1000519] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Doxorubicin is a widely used chemotherapy agent. Despite its utility, several adverse side effects, especially its irreversible cardiotoxicity and reversible nephrotoxicity, have prompted the development of liposomal carriers, many of which are FDA approved. Antitumor efficacies of approved liposome-Dox preparations can equal or exceed that of conventional doxorubicin. Because these liposomes carriers accumulate in solid tumor tissues via an enhanced permeation and retention (EPR) effect, these carriers have an improved safety profile. Nevertheless, a significant problem with the current drug delivery preparations of doxorubicin is a lack of efficacy toward tumors that exhibit multidrug resistance. In this review, we consider the development of drug delivery systems for doxorubicin, which improve the therapeutic window (efficacy and safety) and which address limitations of the current FDA-approved doxorubicin formulations.
Collapse
Affiliation(s)
- Na Zhao
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Martin C Woodle
- Aparna Biosciences Corp, 9119 Gaither Rd., Gaithersburg, MD 20877, United States
| | - A James Mixson
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
18
|
Li J, Ge X, Cui C, Zhang Y, Wang Y, Wang X, Sun Q. Preparation and Characterization of Functionalized Graphene Oxide Carrier for siRNA Delivery. Int J Mol Sci 2018; 19:ijms19103202. [PMID: 30336549 PMCID: PMC6214041 DOI: 10.3390/ijms19103202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 01/11/2023] Open
Abstract
A successful siRNA delivery system is dependent on the development of a good siRNA carrier. Graphene oxide (GO) has gained great attention as a promising nanocarrier in recent years. It has been reported that GO could be used to deliver a series of drugs including synthetic compounds, proteins, antibodies, and genes. Our previous research indicated that functionalized GO could deliver siRNA into tumor cells and induce a gene silencing effect, to follow up the research, in this research, GO-R8/cRGDfV(GRcR) was designed and prepared for VEGF-siRNA delivery as a novel carrier. The Zeta potential and particle size of the new designed GRcR carrier was measured at (29.46 ± 5.32) mV and (135.7 ± 3.3) nm respectively, and after transfection, the VEGF mRNA level and protein expression level were down-regulated by 48.22% (p < 0.01) and 38.3% (p < 0.01) in HeLa cells, respectively. The fluorescent images of the treated BALB/c nude mice revealed that GRcR/VEGF-siRNA could conduct targeted delivery of VEGF-siRNA into tumor tissues and showed a gene silencing effect as well as a tumor growth inhibitory effect (p < 0.01) in vivo. Further studies showed that GRcR/VEGF-siRNA could effectively inhibit angiogenesis by suppressing VEGF expression. Histology and immunohistochemistry studies demonstrated that GRcR/VEGF-siRNA could inhibit tumor tissue growth effectively and have anti-angiogenesis activity, which was the result of VEGF protein downregulation. Both in vitro and in vivo results demonstrated that GRcR/VEGF-siRNA could be used as an ideal nonviral tumor-targeting vector for VEGF-siRNA delivery in gene therapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China.
| | - Xu Ge
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China.
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China.
| | - Yifan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China.
| | - Yifan Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China.
| | - Xiaoli Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China.
| | - Qi Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China.
| |
Collapse
|
19
|
Li J, Liu P. pH/Reduction Dual-Triggered Degradable Poly(doxorubicin) Prodrug Nanoparticles for Leakage-Free Tumor-Specific Self-Delivery. Macromol Rapid Commun 2018; 39:e1800381. [DOI: 10.1002/marc.201800381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jiagen Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| |
Collapse
|
20
|
Abstract
AbstractSelenium is a biocompatible element and participates in several biochemical reactions occurring in the human body. Its biocompatibility and minimal toxicity has attracted researchers to develop selenium-based drugs. Hence, recent developments on biomedical applications of selenium-based compounds have been discussed. A structure activity relationship has also been interpreted.
Collapse
Affiliation(s)
- Amna Kamal
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture, Faisalabad 38040, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
21
|
Hormann J, Malina J, Lemke O, Hülsey MJ, Wedepohl S, Potthoff J, Schmidt C, Ott I, Keller BG, Brabec V, Kulak N. Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA Synthesis Inhibitors. Inorg Chem 2018; 57:5004-5012. [DOI: 10.1021/acs.inorgchem.8b00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan Hormann
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Jaroslav Malina
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno, Czech Republic
| | - Oliver Lemke
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Max J. Hülsey
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Stefanie Wedepohl
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jan Potthoff
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Claudia Schmidt
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany
| | - Ingo Ott
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany
| | - Bettina G. Keller
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno, Czech Republic
| | - Nora Kulak
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| |
Collapse
|
22
|
Scherbakov AM, Borunov AM, Buravchenko GI, Andreeva OE, Kudryavtsev IA, Dezhenkova LG, Shchekotikhin AE. Novel Quinoxaline-2-Carbonitrile-1,4-Dioxide Derivatives Suppress HIF1α Activity and Circumvent MDR in Cancer Cells. Cancer Invest 2018; 36:199-209. [PMID: 29624460 DOI: 10.1080/07357907.2018.1453072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of 3-aryl/hetarylquinoxaline-2-carbonitrile-1,4-dioxides was synthesized and evaluated against breast cancer cell lines in normoxia and hypoxia. Selected compounds in this series demonstrated better cytotoxicity and comparable hypoxia selectivity than tirapazamine. In contrast to Dox, quinoxaline-1,4-dioxides showed potent cytotoxicity against different MDR cells. Compound 2g inhibits of cancer cell growth through p53-independent mechanisms. Our results showed that compound 2g sensitized MCF-7 cells to metformin in hypoxia. Treatment with 2g results in the increase of ROS accumulation in cancer cells. Compound 2g can be considered as the lead compound for further anticancer drug design, evaluation, and development of new potent antitumor agents.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- a Department of Experimental Tumor Biology , Blokhin N.N. National Medical Research Center of Oncology , Moscow , Russia
| | - Alexander M Borunov
- b Laboratory of Chemical Transformations of Antibiotics , Gause Institute of New Antibiotics , Moscow , Russia.,c Organic Chemistry Department , Mendeleyev University of Chemical Technology of Russia , Moscow , Russia
| | - Galina I Buravchenko
- b Laboratory of Chemical Transformations of Antibiotics , Gause Institute of New Antibiotics , Moscow , Russia.,c Organic Chemistry Department , Mendeleyev University of Chemical Technology of Russia , Moscow , Russia
| | - Olga E Andreeva
- a Department of Experimental Tumor Biology , Blokhin N.N. National Medical Research Center of Oncology , Moscow , Russia
| | - Igor A Kudryavtsev
- a Department of Experimental Tumor Biology , Blokhin N.N. National Medical Research Center of Oncology , Moscow , Russia
| | - Lyubov G Dezhenkova
- b Laboratory of Chemical Transformations of Antibiotics , Gause Institute of New Antibiotics , Moscow , Russia
| | - Andrey E Shchekotikhin
- b Laboratory of Chemical Transformations of Antibiotics , Gause Institute of New Antibiotics , Moscow , Russia.,c Organic Chemistry Department , Mendeleyev University of Chemical Technology of Russia , Moscow , Russia
| |
Collapse
|
23
|
Kebebe D, Liu Y, Wu Y, Vilakhamxay M, Liu Z, Li J. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. Int J Nanomedicine 2018; 13:1425-1442. [PMID: 29563797 PMCID: PMC5849936 DOI: 10.2147/ijn.s156616] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer has become one of the leading causes of mortality globally. The major challenges of conventional cancer therapy are the failure of most chemotherapeutic agents to accumulate selectively in tumor cells and their severe systemic side effects. In the past three decades, a number of drug delivery approaches have been discovered to overwhelm the obstacles. Among these, nanocarriers have gained much attention for their excellent and efficient drug delivery systems to improve specific tissue/organ/cell targeting. In order to enhance targeting efficiency further and reduce limitations of nanocarriers, nanoparticle surfaces are functionalized with different ligands. Several kinds of ligand-modified nanomedicines have been reported. Cell-penetrating peptides (CPPs) are promising ligands, attracting the attention of researchers due to their efficiency to transport bioactive molecules intracellularly. However, their lack of specificity and in vivo degradation led to the development of newer types of CPP. Currently, activable CPP and tumor-targeting peptide (TTP)-modified nanocarriers have shown dramatically superior cellular specific uptake, cytotoxicity, and tumor growth inhibition. In this review, we discuss recent advances in tumor-targeting strategies using CPPs and their limitations in tumor delivery systems. Special emphasis is given to activable CPPs and TTPs. Finally, we address the application of CPPs and/or TTPs in the delivery of plant-derived chemotherapeutic agents.
Collapse
Affiliation(s)
- Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Yuanyuan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yumei Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maikhone Vilakhamxay
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Lelle M, Freidel C, Kaloyanova S, Müllen K, Peneva K. Multivalency: Key Feature in Overcoming Drug Resistance with a Cleavable Cell-Penetrating Peptide-Doxorubicin Conjugate. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer. J Control Release 2017; 261:287-296. [PMID: 28700899 DOI: 10.1016/j.jconrel.2017.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Success of cancer treatment is often hampered by the emergence of multidrug resistance (MDR) mediated by P-glycoprotein (ABCB1/Pgp). Doxorubicin (DOX) is recognized by Pgp and therefore it can induce therapy resistance in breast cancer patients. In this study our aim was to evaluate the susceptibility of the pegylated liposomal formulation of doxorubicin (PLD/Doxil®/Caelyx®) to MDR. We show that cells selected to be resistant to DOX are cross-resistant to PLD and PLD is also ineffective in an allograft model of doxorubicin-resistant mouse B-cell leukemia. In contrast, PLD was far more efficient than DOX as reflected by a significant increase of both relapse-free and overall survival of Brca1-/-;p53-/- mammary tumor bearing mice. Increased survival could be explained by the delayed onset of drug resistance. Consistent with the higher Pgp levels needed to confer resistance, PLD administration was able to overcome doxorubicin insensitivity of the mouse mammary tumors. Our results indicate that the favorable pharmacokinetics achieved with PLD can effectively overcome Pgp-mediated resistance, suggesting that PLD therapy could be a promising strategy for the treatment of therapy-resistant breast cancer patients.
Collapse
|