1
|
Chen H, Abe T, Chai R, Hiraoka S. Selection of self-assembled configurational isomers from a dynamic library via a multivariant optimization process. Nat Commun 2025; 16:4387. [PMID: 40404621 DOI: 10.1038/s41467-025-59181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/11/2025] [Indexed: 05/24/2025] Open
Abstract
Selection of a suitable species from a dynamic library in response to external stimuli is a key event in evolution, adaptation, and switching. The desymmetrization of building blocks enables the generation of configurational isomers for self-assembly, which is a rational approach to creating a complicated dynamic library without increasing the variety of components. However, because of their structural similarity, the selection of isomers from such a dynamic library is challenging. Here we show an artificial molecular system in which two types of self-assemblies are separately selected from a dynamic library consisting of 16 configurational isomers of hexameric cube-shaped entities assembled from CS-symmetric gear-shaped amphiphiles upon binding two or three guest molecules. The two types of isomers were selected not only by the induced-fit selection caused by the guest molecules but also by the induction of the spatial arrangements of the guest molecules in the cluster by the assemblies. These results indicate that mutual multivariant optimization is a hidden strategy to create order from chaos in complicated systems.
Collapse
Affiliation(s)
- Hongye Chen
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Abe
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Runyu Chai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Wang H, Song P, Wang Y, Xu H, Shen L, Qi Z, Chen L, Ma L, Wang Z, Hu X, Wang W, Li N, Yu Y, Gao Y, Xia M, Zhao D, Wang J, Cheng M. Design, Synthesis, and Biological Evaluation of Selective PAK4 Degrader for the Treatment of Lung Tumor Metastasis. J Med Chem 2025. [PMID: 40404481 DOI: 10.1021/acs.jmedchem.5c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
PAK4, the most studied member of group II PAK, plays crucial roles in multiple cancer cell signaling pathways. To date , only PAK4 inhibitor KPT9274 is under clinical development with no detailed binding mechanism. The PROTAC technology offers a new chance to study PAK4 by selective protein degradation. Here, we report the development of CPS-021, a selective PAK4 degrader derived from our previously reported compound CPL-042 conjugated to pomalidomide. CPS-021 induced selective degradation of PAK4 with DC50 = 50 nM and exhibited significant antimigratory and invasive activity. The A549-luc lung metastasis in vivo model demonstrated that CPS-021 effectively inhibited the invasion and metastasis of tumor cells in nude mice. Our findings provide evidence that the selective PAK4 degrader exhibits significant pharmacological effects in suppressing cancer cell migration and invasion. These results support the further development of CPS-021 as a valuable tool compound for conducting in-depth biological investigations of group II PAKs.
Collapse
Affiliation(s)
- Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Peilu Song
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 100098, People's Republic of China
| | - Yujie Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hanqing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lanlan Shen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhuo Qi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lanyan Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhijian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xingqi Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wanqing Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Na Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yage Yu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yinli Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingyu Xia
- School of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
3
|
Zhang X, Zhang M, Li Y, Deng P. Identification of Potential Selective PAK4 Inhibitors Through Shape and Protein Conformation Ensemble Screening and Electrostatic-Surface-Matching Optimization. Curr Issues Mol Biol 2025; 47:29. [PMID: 39852144 PMCID: PMC11764389 DOI: 10.3390/cimb47010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
P21-activated kinase 4 (PAK4) plays a crucial role in the proliferation and metastasis of various cancers. However, developing selective PAK4 inhibitors remains challenging due to the high homology within the PAK family. Therefore, developing highly selective PAK4 inhibitors is critical to overcoming the limitations of existing inhibitors. We analyzed the structural differences in the binding pockets of PAK1 and PAK4 by combining cross-docking and molecular dynamics simulations to identify key binding regions and unique structural features of PAK4. We then performed screening using shape and protein conformation ensembles, followed by a re-evaluation of the docking results with deep-learning-driven GNINA to identify the candidate molecule, STOCK7S-56165. Based on this, we applied a fragment-replacement strategy under electrostatic-surface-matching conditions to obtain Compd 26. This optimization significantly improved electrostatic interactions and reduced binding energy, highlighting its potential for selectivity. Our findings provide a novel approach for developing selective PAK4 inhibitors and lay the theoretical foundation for future anticancer drug design.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
| | - Meile Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
| | - Yihao Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
| | - Ping Deng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing 400016, China
| |
Collapse
|
4
|
Hao S, Hou L, Wang JH, Yan JH, Niu YF, Cai ZH, Li F, Meng FH. Design, synthesis and biological evaluation of novel benzimidazole-derived p21-activited kinase 4 (PAK4) inhibitors bearing a 4-(4-methylpiperazin-1-yl)phenyl scaffold as potential antitumor agents. Eur J Med Chem 2024; 280:116971. [PMID: 39427518 DOI: 10.1016/j.ejmech.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A series of novel 6-(4-(4-methylpiperazin-1-yl)phenyl)-1H-benzo[d]imidazole-based p21-activited kinase 4 (PAK4) inhibitors were designed and synthesized based on the structure of lead compound GNE-2861 and that of anticancer inhibitors reported in our previous studies. All target compounds so designed were preliminarily screened in vitro for anti-tumor potency through kinase inhibitory assays and MTT assays, which revealed that most compounds exhibited significant inhibitory effects on PAK4 enzyme as well as prominent antiproliferative activities against four cancer cell models (A549, NCI-H1975, MDA-MB-231 and SK-BR-3) and low damage to healthy cells. In particular, the hit compound 12i was identified as the most effective and rather selective compound both at the enzyme and cellular level. Meanwhile, molecular docking and dynamic studies disclosed that compound 12i could bind to PAK4 stably via multiple interactions applied between the compound and the enzyme. Further mechanism studies indicated that compound 12i could inhibit the proliferation and suppress the migratory potential of MDA-MB-231 cells by inhibiting the phosphorylation of PAK4 and LIMK1, arresting cell cycle in the G0/G1 phase, inducing apoptosis and promoting ROS production. Notably, compound 12i could effectively inhibit triple-negative breast cancer (TNBC) growth with little toxicity in the MDA-MB-231 cell xenograft model. Taken together, in vitro and in vivo results demonstrated that compound 12i possessed high drug potential as an inhibitor of PAK4 to inhibit the growth and metastasis of TNBC.
Collapse
Affiliation(s)
- Shuang Hao
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Liang Hou
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Jia-Hui Wang
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Jing-Han Yan
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Yi-Fan Niu
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Zheng-Hao Cai
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, PR China.
| | - Fan-Hao Meng
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
5
|
Mozibullah M, Junaid M. Biological Role of the PAK4 Signaling Pathway: A Prospective Therapeutic Target for Multivarious Cancers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Li Y, Lu Q, Xie C, Yu Y, Zhang A. Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents. Front Pharmacol 2022; 13:956220. [PMID: 36105226 PMCID: PMC9465411 DOI: 10.3389/fphar.2022.956220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
The p21-activated kinase 4 (PAK4) is a member of the PAKs family. It is overexpressed in multiple tumor tissues. Pharmacological inhibition of PAK4 attenuates proliferation, migration, and invasion of cancer cells. Recent studies revealed that inhibition of PAK4 sensitizes immunotherapy which has been extensively exploited as a new strategy to treat cancer. In the past few years, a large number of PAK4 inhibitors have been reported. Of note, the allosteric inhibitor KPT-9274 has been tested in phase Ⅰ clinic trials. Herein, we provide an update on recent research progress on the PAK4 mediated signaling pathway and highlight the development of the PAK4 small molecular inhibitors in recent 5 years. Meanwhile, challenges, limitations, and future developmental directions will be discussed as well.
Collapse
Affiliation(s)
- Yang Li
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghu Xie
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Yu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Ao Zhang,
| |
Collapse
|
7
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
8
|
Song P, Zhao F, Li D, Qu J, Yao M, Su Y, Wang H, Zhou M, Wang Y, Gao Y, Li F, Zhao D, Zhang F, Rao Y, Xia M, Li H, Wang J, Cheng M. Synthesis of selective PAK4 inhibitors for lung metastasis of lung cancer and melanoma cells. Acta Pharm Sin B 2022; 12:2905-2922. [PMID: 35755272 PMCID: PMC9214071 DOI: 10.1016/j.apsb.2022.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The p21 activated kinase 4 (PAK4) is serine/threonine protein kinase that is critical for cancer progression. Guided by X-ray crystallography and structure-based optimization, we report a novel subseries of C-3-substituted 6-ethynyl-1H-indole derivatives that display high potential and specificity towards group II PAKs. Among these inhibitors, compound 55 exhibited excellent inhibitory activity and kinase selectivity, displayed superior anti-migratory and anti-invasive properties against the lung cancer cell line A549 and the melanoma cell line B16. Compound 55 exhibited potent in vivo antitumor metastatic efficacy, with over 80% and 90% inhibition of lung metastasis in A549 or B16-BL6 lung metastasis models, respectively. Further mechanistic studies demonstrated that compound 55 mitigated TGF-β1-induced epithelial-mesenchymal transition (EMT).
Collapse
|
9
|
Wang H, Song P, Gao Y, Shen L, Xu H, Wang J, Cheng M. Drug discovery targeting p21-activated kinase 4 (PAK4): a patent review. Expert Opin Ther Pat 2021; 31:977-987. [PMID: 34369844 DOI: 10.1080/13543776.2021.1944100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: The Ser/Thr protein kinase PAK4 is a downstream regulator of Cdc42, mediating cytoskeleton remodeling, and cell motility, and inhibiting apoptosis and transcriptional regulation. Nowadays, efforts in PAK4 inhibitor development are focusing on improving inhibitory selectivity, cellular potency, and in vivo pharmacokinetic properties, and identifying the feasibility of immunotherapy combination in oncology therapy.Areas covered: This review summarized the development of PAK4 inhibitors that reported on patents in the past two decades. According to their binding features, these inhibitors were classified into type I, type I 1/2, and PAMs. Their designing ideas and SAR were elucidated in this review. Moreover, synergistic therapy of PAK4 inhibitors with PD-1/PD-L1 or CAR-T were also summarized .Expert opinion: In the past years, preclinical and clinical studies of PAK4 inhibitors ended in failure due to poor selectivity, cellular activity, or pharmacokinetic issues. There are researchers questioning the reliability of PAK4 as a drug target, particularly PAK4-related therapy is concerned with the distinguishment of the non-kinase functions and catalytic functions triggered by PAK4 phosphorylation. Meanwhile, synergistic effects of PAK4 inhibitors with PD-1/PD-L1 and CAR-T immunotherapy shed light for the development of PAK4 inhibitors.
Collapse
Affiliation(s)
- Hanxun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Peilu Song
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinli Gao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Lanlan Shen
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanqin Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Guo H, Diao QP. 1,3,5-Triazine-azole Hybrids and their Anticancer Activity. Curr Top Med Chem 2020; 20:1481-1492. [DOI: 10.2174/1568026620666200310122741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
1,3,5-Triazine and azole can interact with various therapeutic targets, and their derivatives
possess promising in vitro and in vivo anticancer activity. Hybrid molecules have the potential to enhance
efficiency, overcome drug resistance and reduce side effects, and many hybrid molecules are under
different phases of clinical trials, so hybridization of 1,3,5-triazine with azole may provide valuable
therapeutic intervention for the treatment of cancer. Substantial efforts have been made to develop
azole-containing 1,3,5-triazine hybrids as novel anticancer agents, and some of them exhibited excellent
activity. This review emphasizes azole-containing 1,3,5-triazine hybrids with potential anticancer activity,
and the structure-activity relationships as well as the mechanisms of action are also discussed to
provide comprehensive and target-oriented information for the development of this kind of anticancer
drugs.
Collapse
Affiliation(s)
- Hua Guo
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| | - Quan-Ping Diao
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| |
Collapse
|
11
|
Wang H, Gao Z, Song P, Hu B, Wang J, Cheng M. Molecular dynamics simulation and QM/MM calculation reveal the selectivity mechanism of type I 1/2 kinase inhibitors: the effect of intramolecular H-bonds and conformational restriction for improved selectivity. Phys Chem Chem Phys 2019; 21:24147-24164. [PMID: 31657381 DOI: 10.1039/c9cp04353e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding the selectivity mechanisms of inhibitors towards highly similar proteins is extremely important work on the way to a new drug. Here, we aim to reveal the selectivity mechanisms of type I 1/2 kinase inhibitors towards p21-activated kinase (PAK4) and mitogen-activated protein kinase kinase kinase 14 (MAP3K14, NIK). PAK4, belonging to the serine/threonine protein kinases, is involved in cell signaling pathways and controls cellular functions and has received attention as an attractive drug target. The high sequence identity between PAK4 and NIK makes it challenging to design selective PAK4 inhibitors. In this work, computational methods including protein comparison, molecular docking, QM/MM, molecular dynamics simulations, and density functional theory (DFT) calculation were employed to explore the binding mechanisms of selective inhibitors against NIK and PAK4. The simulation results revealed the crucial factors accounting for selective inhibition of PAK4 over NIK, including different protein-ligand interactions, the positions and conformations of key residues, and the ligands flexibilities. This study will shed light on understanding the selectivity mechanisms of PAK4 and NIK inhibitors.
Collapse
Affiliation(s)
- Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Gao Y, Wang H, Wang J, Cheng M. In silico studies on p21-activated kinase 4 inhibitors: comprehensive application of 3D-QSAR analysis, molecular docking, molecular dynamics simulations, and MM-GBSA calculation. J Biomol Struct Dyn 2019; 38:4119-4133. [PMID: 31556340 DOI: 10.1080/07391102.2019.1673823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
P21-activated kinase 4 (PAK4) is a serine/threonine protein kinase, which is associated with many cancer diseases, and thus being considered as a potential drug target. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations were performed to explore the structure-activity relationship of a series of pyrropyrazole PAK4 inhibitors. The statistical parameters of comparative molecular field analysis (CoMFA, Q 2 = 0.837, R 2 = 0.990, and R 2 pred = 0.967) and comparative molecular similarity indices analysis (CoMSIA, Q 2 = 0.720, R 2 = 0.972, and R 2 pred = 0.946) were obtained from 3D-QSAR model, which exhibited good predictive ability and significant statistical reliability. The binding mode of PAK4 with its inhibitors was obtained through molecular docking study, which indicated that the residues of GLU396, LEU398, LYS350, and ASP458 were important for activity. Molecular mechanics generalized born surface area (MM-GBSA) method was performed to calculate the binding free energy, which indicated that the coulomb, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. Furthermore, through 100 ns MD simulations, we obtained the key amino acid residues and the types of interactions they participated in. Based on the constructed 3D-QSAR model, some novel pyrropyrazole derivatives targeting PAK4 were designed with improved predicted activities. Pharmacokinetic and toxicity predictions of the designed PAK4 inhibitors were obtained by the pkCSM, indicating these compounds had better absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. Above research provided a valuable insight for developing novel and effective pyrropyrazole compounds targeting PAK4.
Collapse
Affiliation(s)
- Yinli Gao
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang Liaoning Province, People's Republic of China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang Liaoning Province, People's Republic of China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang Liaoning Province, People's Republic of China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang Liaoning Province, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang Liaoning Province, People's Republic of China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang Liaoning Province, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang Liaoning Province, People's Republic of China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang Liaoning Province, People's Republic of China
| |
Collapse
|
13
|
Song PL, Wang G, Su Y, Wang HX, Wang J, Li F, Cheng MS. Strategy and validation of a structure-based method for the discovery of selective inhibitors of PAK isoforms and the evaluation of their anti-cancer activity. Bioorg Chem 2019; 91:103168. [DOI: 10.1016/j.bioorg.2019.103168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
|
14
|
Wang H, Gao Y, Wang J, Cheng M. Computational Strategy Revealing the Structural Determinant of Ligand Selectivity towards Highly Similar Protein Targets. Curr Drug Targets 2019; 21:76-88. [PMID: 31556854 DOI: 10.2174/1389450120666190926113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Poor selectivity of drug candidates may lead to toxicity and side effects accounting for as high as 60% failure rate, thus, the selectivity is consistently significant and challenging for drug discovery. OBJECTIVE To find highly specific small molecules towards very similar protein targets, multiple strategies are always employed, including (1) To make use of the diverse shape of binding pocket to avoid steric bump; (2) To increase binding affinities for favorite residues; (3) To achieve selectivity through allosteric regulation of target; (4) To stabalize the inactive conformation of protein target and (5) To occupy dual binding pockets of single target. CONCLUSION In this review, we summarize computational strategies along with examples of their successful applications in designing selective ligands, with the aim to provide insights into everdiversifying drug development practice and inspire medicinal chemists to utilize computational strategies to avoid potential side effects due to low selectivity of ligands.
Collapse
Affiliation(s)
- Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yinli Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| |
Collapse
|
15
|
Su Y, Song P, Wang H, Hu B, Wang J, Cheng MS. Precise design of highly isoform-selective p21-activated kinase 4 inhibitors: computational insights into the selectivity mechanism through molecular dynamics simulation and binding free energy calculation. J Biomol Struct Dyn 2019; 38:3825-3837. [DOI: 10.1080/07391102.2019.1664330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuan Su
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang PR China
| | - Peilu Song
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang PR China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang PR China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang PR China
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang PR China
| |
Collapse
|
16
|
Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem 2019; 170:55-72. [DOI: 10.1016/j.ejmech.2019.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
|
17
|
Activation of 2,4-Diaminoquinazoline in Mycobacterium tuberculosis by Rv3161c, a Putative Dioxygenase. Antimicrob Agents Chemother 2018; 63:AAC.01505-18. [PMID: 30323042 PMCID: PMC6325208 DOI: 10.1128/aac.01505-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 11/20/2022] Open
Abstract
The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.
Collapse
|
18
|
Hao C, Zhao F, Song H, Guo J, Li X, Jiang X, Huan R, Song S, Zhang Q, Wang R, Wang K, Pang Y, Liu T, Lu T, Huang W, Wang J, Lin B, He Z, Li H, Li F, Zhao D, Cheng M. Structure-Based Design of 6-Chloro-4-aminoquinazoline-2-carboxamide Derivatives as Potent and Selective p21-Activated Kinase 4 (PAK4) Inhibitors. J Med Chem 2017; 61:265-285. [PMID: 29190083 DOI: 10.1021/acs.jmedchem.7b01342] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report the discovery and characterization of a novel class of PAK4 inhibitors with a quinazoline scaffold. Based on the shape and chemical composition of the ATP-binding pocket of PAKs, we chose a 2,4-diaminoquinazoline series of inhibitors as a starting point. Guided by X-ray crystallography and a structure-based drug design (SBDD) approach, a series of novel 4-aminoquinazoline-2-carboxamide PAK4 inhibitors were designed and synthesized. The inhibitors' selectivity, therapeutic potency, and pharmaceutical properties were optimized. One of the best compounds, 31 (CZh226), showed remarkable PAK4 selectivity (346-fold vs PAK1) and favorable kinase selectivity profile. Moreover, this compound potently inhibited the migration and invasion of A549 tumor cells by regulating the PAK4-directed downstream signaling pathways in vitro. Taken together, these data support the further development of 31 as a lead compound for PAK4-targeted anticancer drug discovery and as a valuable research probe for the further biological investigation of group II PAKs.
Collapse
Affiliation(s)
- Chenzhou Hao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Fan Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084, China
| | - Hongyan Song
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jing Guo
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University , Shenyang 110001, China
| | - Xiaolin Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Ran Huan
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University , Shenyang 110001, China
| | - Shuai Song
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Qiaoling Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Kai Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Yu Pang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Tongchao Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Tianqi Lu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University , Shenyang 110001, China
| | - Wanxu Huang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Zhonggui He
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Haitao Li
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University , Shenyang 110001, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, China
| |
Collapse
|
19
|
Guo J, Zhu M, Wu T, Hao C, Wang K, Yan Z, Huang W, Wang J, Zhao D, Cheng M. Discovery of indolin-2-one derivatives as potent PAK4 inhibitors: Structure-activity relationship analysis, biological evaluation and molecular docking study. Bioorg Med Chem 2017; 25:3500-3511. [DOI: 10.1016/j.bmc.2017.04.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 01/05/2023]
|