1
|
Wu H, Wang LS, Li P, Yu J, Cheng S, Yu G, Ahmad M, Meng XL, Luo H, Xu BX. Discovery of novel N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives as the inhibitors of tubulin polymerization in leukemia cells. Eur J Med Chem 2023; 256:115470. [PMID: 37201429 DOI: 10.1016/j.ejmech.2023.115470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
A series of new N-aryl-2-trifluoromethylquinazoline-4-amine analogs were designed and synthesized based on structure optimization of quinazoline by introducing a trifluoromethyl group into 2-position. The structures of the twenty-four newly synthesized compounds were confirmed by 1H NMR, 13C NMR and ESI-MS. The in vitro anti-cancer activity against chronic myeloid leukemia cells (K562), erythroleukemia cells (HEL), human prostate cancer cells (LNCaP), and cervical cancer cells (HeLa) of the target compounds was evaluated. Among them, compounds 15d, 15f, 15h, and 15i showed the significantly (P < 0.01) stronger growth inhibitory activity on K562 than those of the positive controls of paclitaxel and colchicine, while compounds 15a, 15d, 15e, and 15h displayed significantly stronger growth inhibitory activity on HEL than those of the positive controls. However, all the target compounds exhibited weaker growth inhibition activity against K562 and HeLa than those of the positive controls. The selectivity ratio of compounds 15h, 15d, and 15i were significantly higher than those of other active compounds, indicating that these three compounds had the lower hepatotoxicity. Several compounds displayed strong inhibition against leukemia cells. They inhibited tubulin polymerization, disrupted cellular microtubule networks by targeting the colchicine site, and promoted cell cycle arrest of leukemia cells at G2/M phase and cell apoptosis, as well as inhibiting angiogenesis. In summary, our research provided that novel synthesized N-aryl-2-trifluoromethyl-quinazoline-4-amine active derivatives as the inhibitors of tubulin polymerization in leukemia cells, which might be a valuable lead compounds for anti-leukemia agents.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Long-Shan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Pei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Mashaal Ahmad
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Xue-Ling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China.
| | - Bi-Xue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China.
| |
Collapse
|
2
|
Mahesh P, Akshinthala P, Ankireddy AR, Katari NK, Gupta LK, Srivastava D, Jonnalagadda SB, Gundla R. Convenient synthesis, characterization and biological evaluation of novel 1-phenylcyclopropane carboxamide derivatives. Heliyon 2023; 9:e13111. [PMID: 36747540 PMCID: PMC9898299 DOI: 10.1016/j.heliyon.2023.e13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Small, strained ring molecules of phenylcyclopropane carboxamide have rigid, defined conformations and unique electronic properties. For these reasons many groups, seek to use these subunits to form biologically active compounds. Herein we report a generally applicable approach for preparing a small cyclopropane ring containing 1-phenylcyclopropane carboxamide derivatives to a wide range of the different aromatic compounds by α-alkylation of 2-phenyl acetonitrile derivatives with 1, 2-dibromo ethane in good yields followed by the conversion of cyano group to acid group by the reaction with concentrated hydrochloric acid. This obtained acid derivative undergoes acid amine coupling with various Methyl 2-(aminophenoxy)acetate to form 1-Phenylcyclopropane Carboxamide. These compounds possess distinct effective inhibition on the proliferation of U937, pro-monocytic, human myeloid leukaemia cell line while these compounds did not show cytotoxic activity on these cells. The structure-activity relationships of these compounds are discussed.
Collapse
Affiliation(s)
- Panasa Mahesh
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India
| | - Parameswari Akshinthala
- Department of Science and Humanities, MLR Institute of Technology, Dundigal, Medchal, Hyderabad, 500 043, India
| | - Ashok Reddy Ankireddy
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India
| | - Naresh Kumar Katari
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India,School of Chemistry & Physics, College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Westville Campus, P Bag X 54001, Durban, 4000, South Africa,Corresponding author. Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India
| | - Lavleen Kumar Gupta
- Drug Discovery Division, IgYImmunologix India Pvt Ltd, Hyderabad, Telangana, 500089 India
| | - Deepali Srivastava
- Drug Discovery Division, IgYImmunologix India Pvt Ltd, Hyderabad, Telangana, 500089 India
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Westville Campus, P Bag X 54001, Durban, 4000, South Africa,Corresponding author.
| | - Rambabu Gundla
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India,Corresponding author.
| |
Collapse
|
3
|
The Anti-Cancer Effect of Mangifera indica L. Peel Extract is Associated to γH2AX-mediated Apoptosis in Colon Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8100422. [PMID: 31546694 PMCID: PMC6826946 DOI: 10.3390/antiox8100422] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Ethanolic extracts from Mangifera indica L. have been proved to possess anti-tumor properties in many cancer systems. However, although most effects have been demonstrated with fruit pulp extract, the underlying molecular mechanisms of mango peel are still unclear. This study was designed to explore the effects of mango peel extract (MPE) on colon cancer cell lines. MPE affected cell viability and inhibited the colony formation trend of tumor cells, while no effects were observed in human dermal fibroblasts used as a non-cancerous cell line model. These events were a consequence of the induction of apoptosis associated to reactive oxygen species (ROS) production, activation of players of the oxidative response such as JNK and ERK1/2, and the increase in Nrf2 and manganese superoxide dismutase (MnSOD). Significantly, mango peel-activated stress triggered a DNA damage response evidenced by the precocious phosphorylation of histone 2AX (γH2AX), as well as phosphorylated Ataxia telangiectasia-mutated (ATM) kinase and p53 upregulation. Mango peel extract was also characterized, and HPLC/MS (High Performance Liquid Chromatography/Mass Spectrometry) analysis unveiled the presence of some phenolic compounds that could be responsible for the anti-cancer effects. Collectively, these findings point out the importance of the genotoxic stress signaling pathway mediated by γH2AX in targeting colon tumor cells to apoptosis.
Collapse
|
5
|
Raffa D, D'Anneo A, Plescia F, Daidone G, Lauricella M, Maggio B. Novel 4-(3-phenylpropionamido), 4-(2-phenoxyacetamido) and 4-(cinnamamido) substituted benzamides bearing the pyrazole or indazole nucleus: synthesis, biological evaluation and mechanism of action. Bioorg Chem 2018; 83:367-379. [PMID: 30408649 DOI: 10.1016/j.bioorg.2018.10.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/03/2018] [Accepted: 10/27/2018] [Indexed: 01/20/2023]
Abstract
Based on some common structural features of known compounds interfering with p53 pathways and our previously synthesized benzamides, we synthesized new ethyl 5-(4-substituted benzamido)-1-phenyl-1H-pyrazole-4-carboxylates 26a-c, ethyl 5-(4-substituted benzamido)-1-(pyridin-2-yl)-1H-pyrazole-4-carboxylates 27a-c and N-(1H-indazol-6-yl)-4-substituted benzamides 31a,b bearing in the 4 position of the benzamido moiety the 2-phenylpropanamido or 2-phenoxyacetamido or cinnamamido groups. A preliminary test to evaluate the antiproliferative activity against human lung carcinoma H292 cells highlighted how compound 26c showed the best activity. This last was therefore selected for further studies with the aim to find the mechanism of action. Compound 26c induces intrinsic apoptotic pathway by activating p53 and is also able to activate TRAIL-inducing death pathway by promoting increase of DR4 and DR5 death receptors, downregulation of c-FLIPL and caspase-8 activation.
Collapse
Affiliation(s)
- Demetrio Raffa
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Medicinal Chemistry and Pharmaceutical Technologies, Via Archirafi 32, 90123 Palermo, Italy.
| | - Antonella D'Anneo
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, Via del Vespro 129, 90127 Palermo, Italy
| | - Fabiana Plescia
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Medicinal Chemistry and Pharmaceutical Technologies, Via Archirafi 32, 90123 Palermo, Italy.
| | - Giuseppe Daidone
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Medicinal Chemistry and Pharmaceutical Technologies, Via Archirafi 32, 90123 Palermo, Italy
| | - Marianna Lauricella
- University of Palermo, Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, Via del Vespro 129, 90127 Palermo, Italy
| | - Benedetta Maggio
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Medicinal Chemistry and Pharmaceutical Technologies, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
6
|
Emanuele S, D'Anneo A, Calvaruso G, Cernigliaro C, Giuliano M, Lauricella M. The Double-Edged Sword Profile of Redox Signaling: Oxidative Events As Molecular Switches in the Balance between Cell Physiology and Cancer. Chem Res Toxicol 2018. [PMID: 29513521 DOI: 10.1021/acs.chemrestox.7b00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular redox state in the cell depends on the balance between the level of reactive oxygen species (ROS) and the activity of defensive systems including antioxidant enzymes. This balance is a dynamic process that can change in relation to many factors and/or stimuli induced within the cell. ROS production is derived from physiological metabolic events. For instance, mitochondria represent the major ROS sources during oxidative phosphorylation, but other systems, such as NADPH oxidase or specific enzymes in certain metabolisms, may account for ROS production as well. Whereas high levels of ROS perturb the cell environment, causing oxidative damage to biological macromolecules, low levels of ROS can exert a functional role in the cell, influencing the activity of specific enzymes or modulating some intracellular signaling cascades. Of particular interest appears to be the role of ROS in tumor systems not only because ROS are known to be tumorigenic but also because tumor cells are able to modify their redox state, regulating ROS production to sustain tumor growth and proliferation. Overall, the scope of this review was to critically discuss the most recent findings pertaining to ROS physiological roles as well as to highlight the controversial involvement of ROS in tumor systems.
Collapse
|