1
|
Shagufta, Ahmad I. Therapeutic significance of molecular hybrids for breast cancer research and treatment. RSC Med Chem 2023; 14:218-238. [PMID: 36846377 PMCID: PMC9945856 DOI: 10.1039/d2md00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Worldwide, breast cancer is still a leading cause of cancer death in women. Indeed, over the years, several anti-breast cancer drugs have been developed; however, the complex heterogeneous nature of breast cancer disease reduces the applicability of conventional targeted therapies with the upsurge in side effects and multi-drug resistance. Molecular hybrids generated by a combination of two or more active pharmacophores emerged as a promising approach in recent years for the design and synthesis of anti-breast cancer drugs. The hybrid anti-breast cancer molecules are well known for their several advantages compared to the parent moiety. These hybrid forms of anti-breast cancer molecules demonstrated remarkable effects in blocking different pathways contributing to the pathogenies of breast cancer and improved specificity. In addition, these hybrids are patient compliant with reduced side effects and multi-drug resistance. The literature revealed that molecular hybrids are applied to discover and develop novel hybrids for various complex diseases. This review article highlights the recent progress (∼2018-2022) in developing molecular hybrids, including linked, merged, and fused hybrids, as promising anti-breast cancer agents. Furthermore, their design principles, biological potential, and future perspective are discussed. The provided information will lead to the development of novel anti-breast cancer hybrids with excellent pharmacological profiles in the future.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Irshad Ahmad
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| |
Collapse
|
2
|
Kumar A, Bhattacherjee S, Ganesher A, Manda SLK, Banerjee A, Panda G. Use of Non‐Aromatic Hydrophobic α‐Amino Acids (α‐AA) and Non‐Amino Acid Derived Synthons: Comparative Studies Towards Total Syntheses of Selected Bioactive Natural Alkaloids. ChemistrySelect 2022. [DOI: 10.1002/slct.202104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amit Kumar
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Jankipuram Extension Lucknow 226031 UP India
| | - Sandeep Bhattacherjee
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Jankipuram Extension Lucknow 226031 UP India
| | - Asha Ganesher
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Jankipuram Extension Lucknow 226031 UP India
| | - Srinivas Lavanya Kumar Manda
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Jankipuram Extension Lucknow 226031 UP India
| | - Arpita Banerjee
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Jankipuram Extension Lucknow 226031 UP India
| | - Gautam Panda
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Jankipuram Extension Lucknow 226031 UP India
| |
Collapse
|
3
|
Shagufta, Ahmad I. An Update on Pharmacological Relevance and Chemical Synthesis of Natural Products and Derivatives with Anti SARS-CoV-2 Activity. ChemistrySelect 2021; 6:11502-11527. [PMID: 34909460 PMCID: PMC8661826 DOI: 10.1002/slct.202103301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
Natural products recognized traditionally as a vital source of active constituents in pharmacotherapy. The COVID-19 infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible, pathogenic, and considered an ongoing global health emergency. The emergence of COVID-19 globally and the lack of adequate treatment brought attention towards herbal medicines, and scientists across the globe instigated the search for novel drugs from medicinal plants and natural products to tackle this deadly virus. The natural products rich in scaffold diversity and structural complexity are an excellent source for antiviral drug discovery. Recently the investigation of several natural products and their synthetic derivatives resulted in the identification of promising anti SARS-CoV-2 agents. This review article will highlight the pharmacological relevance and chemical synthesis of the recently discovered natural product and their synthetic analogs as SARS-CoV-2 inhibitors. The summarized information will pave the path for the natural product-based drug discovery of safe and potent antiviral agents, particularly against SARS-CoV-2.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural SciencesSchool of Arts and SciencesAmerican University of Ras Al KhaimahRas Al Khaimah Road, P. O. Box10021Ras Al Khaimah, UAE
| | - Irshad Ahmad
- Department of Mathematics and Natural SciencesSchool of Arts and SciencesAmerican University of Ras Al KhaimahRas Al Khaimah Road, P. O. Box10021Ras Al Khaimah, UAE
| |
Collapse
|
4
|
Parulava MJ, Kotovshchikov YN, Latyshev GV, Sokolova DV, Beletskaya IP, Lukashev NV. Synthesis of novel cytotoxic 3-azolylsteroids via Cu-catalyzed C–N coupling. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Parulava MJ, Kotovshchikov YN, Latyshev GV, Sokolova DV, Beletskaya IP, Lukashev NV. Synthesis of novel cytotoxic 3-azolylsteroids via Cu-catalyzed C–N coupling. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Design and synthesis of diosgenin derivatives as apoptosis inducers through mitochondria-related pathways. Eur J Med Chem 2021; 217:113361. [PMID: 33740546 DOI: 10.1016/j.ejmech.2021.113361] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022]
Abstract
Diosgenin (DSG) has attracted attention recently as a potential anticancer therapeutic agent due to its profound antitumor activity. To better utilize DSG as an antitumor compound, two series of DSG-amino acid ester derivatives (3a-3g and 7a-7g) were designed and synthesized, and their cytotoxic activities against six human cancer cell lines (K562, T24, MNK45, HepG2, A549, and MCF-7) were evaluated. The results obtained showed that a majority of derivatives exhibited cytotoxic activities against these six human tumor cells. Structure-activity relationship analysis revealed that the introduction of l-tryptophan to the C-3 position of DSG and the C-26 position of derivative 5 was the preferred option for these compounds to display significant cytotoxic activities. Among them, compound 7g exhibited significant cytotoxicity against the K562 cell line (IC50 = 4.41 μM) and was 6.8-fold more potent than diosgenin (IC50 = 30.04 μM). Further cellular mechanism studies in K562 cells elucidated that compound 7g triggered mitochondrial-related apoptosis by increasing the generation of intracellular reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), which was associated with upregulation of the gene and protein expression levels of Bax, downregulation of the gene and protein expression levels of Bcl-2 and activation of the caspase cascade. The above results suggested that compound 7g might be considered a promising scaffold for further modification of more potent anticancer agents.
Collapse
|
7
|
Shagufta, Ahmad I. The race to treat COVID-19: Potential therapeutic agents for the prevention and treatment of SARS-CoV-2. Eur J Med Chem 2021; 213:113157. [PMID: 33486200 PMCID: PMC7802596 DOI: 10.1016/j.ejmech.2021.113157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022]
Abstract
The unforeseen emergence of coronavirus disease 2019 (COVID-19), a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the Wuhan province of China in December 2019, subsequently its abrupt spread across the world has severely affected human life. In a short span of time, COVID-19 has sacked more than one million human lives and marked as a severe global pandemic, which is drastically accountable for the adverse effect directly to the human society, particularly the health care system and the economy. The unavailability of approved and effective drugs or vaccines against COVID-19 further created conditions more adverse and terrifying. To win the war against this pandemic within time there is a desperate need for the most adequate therapeutic treatment, which can be achieved by the collaborative research work among scientists worldwide. In continuation of our efforts to support the scientific community, a review has been presented which discusses the structure and the activity of numerous molecules exhibiting promising SARS-CoV-2 and other CoVs inhibition activities. Furthermore, this review offers an overview of the structure, a plausible mechanism of action of SARS-CoV-2, and crucial structural features substantial to inhibit the primary virus-based and host-based targets involved in SARS-CoV-2 treatment. We anticipate optimistically that this perspective will provide the reader and researcher’s better understanding regarding COVID-19 and pave the path in the direction of COVID-19 drug discovery and development paradigm.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| | - Irshad Ahmad
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
8
|
Novel d-Annulated Pentacyclic Steroids: Regioselective Synthesis and Biological Evaluation in Breast Cancer Cells. Molecules 2020; 25:molecules25153499. [PMID: 32752019 PMCID: PMC7435891 DOI: 10.3390/molecules25153499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
The acid-catalyzed cyclization of benzylidenes based on 16-dehydropregnenolone acetate (16-DPA) was studied. It was found that these compounds readily undergo regioselective interrupted Nazarov cyclization with trapping chloride ion and an efficient method of the synthesis of d-annulated pentacyclic steroids based on this reaction was proposed. The structures of the synthesized pentacyclic steroids were determined by NMR and X-ray diffraction. It was found that the reaction affords a single diastereomer, but the latter can crystallize as two conformers depending on the structure. Antiproliferative activity of synthesized compounds was evaluated against two breast cancer cell lines: MCF-7 and MDA-MB-231. All tested compounds showed relatively high antiproliferative activity. The synthetic potential of the protocol developed was illustrated by the gram-scale experiment.
Collapse
|
9
|
Shagufta, Ahmad I, Mathew S, Rahman S. Recent progress in selective estrogen receptor downregulators (SERDs) for the treatment of breast cancer. RSC Med Chem 2020; 11:438-454. [PMID: 33479648 PMCID: PMC7580774 DOI: 10.1039/c9md00570f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Selective estrogen receptor downregulators (SERDs) are a novel class of compounds capable of reducing the ERα protein level and blocking ER activity. Therefore, SERDs are considered as a significant therapeutic approach to treat ER+ breast cancer in both early stage and more advanced drug-resistant cases. After the FDA approval of a steroidal drug, fulvestrant, as a SERD for the treatment of breast cancer in patients who have progressed on antihormonal agents, several molecules with diverse chemical structures have been rapidly developed, studied and evaluated for selective estrogen receptor downregulation activity. Here we compile the promising SERDs reported in recent years and discuss the chemical structure and pharmacological profile of the most potent compound of the considered series. Because of the availability of only a limited number of effective drugs for the treatment of breast cancer, the quest for a potent SERD with respectable activity and bioavailability is still ongoing. The goal of this article is to make available to the reader an overview of the current progress in SERDs and provide clues for the future discovery and development of novel pharmacological potent SERDs for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural Sciences , School of Arts and Sciences , American University of Ras Al Khaimah , P. O. Box 10021 , Ras Al Khaimah , United Arab Emirates . ;
| | - Irshad Ahmad
- Department of Mathematics and Natural Sciences , School of Arts and Sciences , American University of Ras Al Khaimah , P. O. Box 10021 , Ras Al Khaimah , United Arab Emirates . ;
| | - Shimy Mathew
- Department of Biotechnology , School of Arts and Sciences , American University of Ras Al Khaimah , P. O. Box 10021 , Ras Al Khaimah , United Arab Emirates
| | - Sofia Rahman
- Department of Biotechnology , School of Arts and Sciences , American University of Ras Al Khaimah , P. O. Box 10021 , Ras Al Khaimah , United Arab Emirates
| |
Collapse
|
10
|
Singla P, Salunke DB. Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. Eur J Med Chem 2020; 187:111909. [PMID: 31830636 DOI: 10.1016/j.ejmech.2019.111909] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
|
11
|
Palchykov VA, Gaponov AA. 1,3-Amino alcohols and their phenol analogs in heterocyclization reactions. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Deng G, Zhou B, Wang J, Chen Z, Gong L, Gong Y, Wu D, Li Y, Zhang H, Yang X. Synthesis and antitumor activity of novel steroidal imidazolium salt derivatives. Eur J Med Chem 2019; 168:232-252. [DOI: 10.1016/j.ejmech.2019.02.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 12/30/2022]
|
13
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Lopes SMM, Gomes CSB, Pinho E Melo TMVD. Reactivity of Steroidal 1-Azadienes toward Carbonyl Compounds under Enamine Catalysis: Chiral Penta- and Hexacyclic Steroids. Org Lett 2018; 20:4332-4336. [PMID: 29984581 DOI: 10.1021/acs.orglett.8b01783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synthesis and reactivity of a steroidal N-sulfonyl-1-azadiene, derived from 16-dehydropregnenolone acetate, toward carbonyl compounds under enamine catalysis is disclosed. An unexpected annulation reaction was observed involving an initial stereoselective conjugate addition of the in situ generated enamine to the steroidal 1-azadiene. The developed diastereoselective synthetic methodology is a novel approach to a new class of chiral pentacyclic and hexacyclic steroids.
Collapse
Affiliation(s)
- Susana M M Lopes
- CQC and Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Clara S B Gomes
- Centro de Química Estrutural, Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais , 1049-001 Lisboa , Portugal
| | | |
Collapse
|
15
|
Singh J, Singh R, Gupta P, Rai S, Ganesher A, Badrinarayan P, Sastry GN, Konwar R, Panda G. Targeting progesterone metabolism in breast cancer with l-proline derived new 14-azasteroids. Bioorg Med Chem 2017; 25:4452-4463. [PMID: 28693914 DOI: 10.1016/j.bmc.2017.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/05/2017] [Accepted: 06/17/2017] [Indexed: 02/08/2023]
Abstract
Breast cancer cell proliferation is promoted by a variety of mitogenic signals. Classically estrogen is considered as most predominant mitogenic signal in hormone-dependent breast cancer and progesterone is primarily considered to have protective effect. However, it is suggested that some progesterone metabolite may promote breast cancer and progesterone metabolites like 5α-pregnane and 4-pregnene could serve as regulators of estrogen-responsiveness of breast cancer cells. Here, we estimated the potential of alternate targeting of breast cancer via progesterone signalling. l-Proline derived novel 14-azasteroid compounds were screened against MCF-7 and MDA-MB-231 cell lines using MTT assay. In silico studies, cell cycle, Annexin-V-FITC/PI, JC-1 mitochondrial assay, ROS analysis were performed to analyse the impact of hit compound 3b on breast cancer cells. Further, we analysed the impact of hit 3b on the progesterone, its metabolites and enzymes responsible for the conversion of progesterone and its metabolites using ELISA. Data suggests that compound 3b binds and down regulates of 5α-reductase by specifically inhibiting production of progesterone metabolites that are capable of promoting breast cancer proliferation, epithelial mesenchymal transition and migration. This study establishes the proof of concept and generation of new leads for additional targeting of breast cancer.
Collapse
Affiliation(s)
- Jyotsana Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritesh Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Preeti Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Smita Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Asha Ganesher
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Preethi Badrinarayan
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - G Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Rituraj Konwar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Chennai 600 113, India.
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Chennai 600 113, India.
| |
Collapse
|