1
|
Koštrun S, Fajdetić A, Pešić D, Brajša K, Bencetić Mihaljević V, Jelić D, Petrinić Grba A, Elenkov I, Rupčić R, Kapić S, Ozimec Landek I, Butković K, Grgičević A, Žiher D, Čikoš A, Padovan J, Saxty G, Dack K, Bladh H, Skak-Nielsen T, Feldbaek Nielsen S, Lambert M, Stahlhut M. Macrolide Inspired Macrocycles as Modulators of the IL-17A/IL-17RA Interaction. J Med Chem 2021; 64:8354-8383. [PMID: 34100601 DOI: 10.1021/acs.jmedchem.1c00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin 17 (IL-17) cytokines promote inflammatory pathophysiology in many autoimmune diseases, including psoriasis, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Such broad involvement of IL-17 in various autoimmune diseases makes it an ideal target for drug discovery. Psoriasis is a chronic inflammatory disease characterized by numerous defective components of the immune system. Significantly higher levels of IL-17A have been noticed in lesions of psoriatic patients, if compared to non-lesion parts. Therefore, this paper is focused on the macrolide inspired macrocycles as potential IL-17A/IL-17RA modulators and covers the molecular design, synthesis, and in vitro profiling. Macrocycles are designed to diversify and enrich chemical space through different ring sizes and a variety of three-dimensional shapes. Inhibitors in the nM range were identified in both target-based and phenotypic assays. In vitro ADME as well as in vivo PK properties are reported.
Collapse
Affiliation(s)
- Sanja Koštrun
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Andrea Fajdetić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Dijana Pešić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Karmen Brajša
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | | | - Dubravko Jelić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | | | - Ivaylo Elenkov
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Renata Rupčić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Samra Kapić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | | | | | - Ana Grgičević
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Dinko Žiher
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Ana Čikoš
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Jasna Padovan
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Gordon Saxty
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Kevin Dack
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Haakan Bladh
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | | | | | - Maja Lambert
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | | |
Collapse
|
2
|
Jednačak T, Mikulandra I, Novak P. Advanced Methods for Studying Structure and Interactions of Macrolide Antibiotics. Int J Mol Sci 2020; 21:E7799. [PMID: 33096889 PMCID: PMC7589898 DOI: 10.3390/ijms21207799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Macrolide antibiotics are macrocyclic compounds that are clinically used and prescribed for the treatment of upper and lower respiratory tract infections. They inhibit the synthesis of bacterial proteins by reversible binding to the 23S rRNA at or near the peptidyl transferase center. However, their excellent antibacterial profile was largely compromised by the emergence of bacterial resistance. Today, fighting resistance to antibiotics is one of the greatest challenges in medicinal chemistry. Considering various physicochemical properties of macrolides, understanding their structure and interactions with macromolecular targets is crucial for the design of new antibiotics efficient against resistant pathogens. The solid-state structures of some macrolide-ribosome complexes have recently been solved, throwing new light on the macrolide binding mechanisms. On the other hand, a combination of NMR spectroscopy and molecular modeling calculations can be applied to study free and bound conformations in solution. In this article, a description of advanced physicochemical methods for elucidating the structure and interactions of macrolide antibiotics in solid state and solution will be provided, and their principal advantages and drawbacks will be discussed.
Collapse
Affiliation(s)
- Tomislav Jednačak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia;
| | | | - Predrag Novak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Norinder U, Munic Kos V. QSAR Models for Predicting Five Levels of Cellular Accumulation of Lysosomotropic Macrocycles. Int J Mol Sci 2019; 20:ijms20235938. [PMID: 31779113 PMCID: PMC6928787 DOI: 10.3390/ijms20235938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 01/22/2023] Open
Abstract
Drugs that accumulate in lysosomes reach very high tissue concentrations, which is evident in the high volume of distribution and often lower clearance of these compounds. Such a pharmacokinetic profile is beneficial for indications where high tissue penetration and a less frequent dosing regime is required. Here, we show how the level of lysosomotropic accumulation in cells can be predicted solely from molecular structure. To develop quantitative structure–activity relationship (QSAR) models, we used cellular accumulation data for 69 lysosomotropic macrocycles, the pharmaceutical class for which this type of prediction model is extremely valuable due to the importance of cellular accumulation for their anti-infective and anti-inflammatory applications as well as due to the fact that they are extremely difficult to model by computational methods because of their large size (Mw > 500). For the first time, we show that five levels of intracellular lysosomotropic accumulation (as measured by liquid chromatography coupled to tandem mass spectrometry—LC-MS/MS), from low/no to extremely high, can be predicted with 60% balanced accuracy solely from the compound’s structure. Although largely built on macrocycles, the eight non-macrocyclic compounds that were added to the set were found to be well incorporated by the models, indicating their possible broader application. By uncovering the link between the molecular structure and cellular accumulation as the key process in tissue distribution of lysosomotropic compounds, these models are applicable for directing the drug discovery process and prioritizing the compounds for synthesis with fine-tuned accumulation properties, according to the desired pharmacokinetic profile.
Collapse
Affiliation(s)
- Ulf Norinder
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden;
- Department of Computer and Systems Sciences, Stockholm University, Box 7003, SE-164 07 Kista, Sweden
| | - Vesna Munic Kos
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden;
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
4
|
Janas A, Przybylski P. 14- and 15-membered lactone macrolides and their analogues and hybrids: structure, molecular mechanism of action and biological activity. Eur J Med Chem 2019; 182:111662. [DOI: 10.1016/j.ejmech.2019.111662] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 11/15/2022]
|
5
|
Easwaranathan A, Inci B, Ulrich S, Brunken L, Nikiforova V, Norinder U, Swanson S, Munic Kos V. Quantification of Intracellular Accumulation and Retention of Lysosomotropic Macrocyclic Compounds by High-Throughput Imaging of Lysosomal Changes. J Pharm Sci 2018; 108:652-660. [PMID: 30419273 DOI: 10.1016/j.xphs.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/26/2022]
Abstract
Many marketed pharmaceuticals reach extremely high tissue concentrations due to accumulation in lysosomes (lysosomotropism). Quantitative prediction of intracellular concentrations of accumulating drugs is challenging, especially for macrocyclic compounds that mainly do not fit in current in silico models. We tested a unique library of 47 compounds (containing 39 macrocycles) specifically designed to cover the entire range of accumulation intensities observed with pharmaceuticals so far. For the first time, we show that intracellular concentration of compounds measured by liquid chromatography with tandem mass spectrometry correlates with the induction of phospholipidosis and inhibition of autophagy, but the highest correlation was observed with the increase of lysosomal volume (R = 0.95), all measured by high-throughput imaging assays. Based only on imaging data, we developed a 5-class in vitro model for the prediction of compound accumulation with the accuracy of 81%. The measured change of total lysosomal volume can thus be used in high-throughput screening for determination of the actual intensity of intracellular accumulation of new macrocyclic compounds. The models are largely based on macrocycles, greatly improving the screening and prediction of intracellular accumulation of this challenging class. However, all tested nonmacrocyclic compounds fitted well in the models, indicating potential use of the models in broader chemical space.
Collapse
Affiliation(s)
- Arrabi Easwaranathan
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Beril Inci
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Sam Ulrich
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Lars Brunken
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Violetta Nikiforova
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Ulf Norinder
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Stephen Swanson
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Vesna Munic Kos
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden.
| |
Collapse
|
6
|
Mercier C, Hodin S, He Z, Perek N, Delavenne X. Pharmacological Characterization of the RPMI 2650 Model as a Relevant Tool for Assessing the Permeability of Intranasal Drugs. Mol Pharm 2018; 15:2246-2256. [PMID: 29709196 DOI: 10.1021/acs.molpharmaceut.8b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The RPMI 2650 cell line has been described as a potent model of the human nasal mucosa. Nevertheless, pharmacological data are still insufficient, and the role of drug efflux transporters has not been fully elucidated. We therefore pursued the pharmacological characterization of this model, initially investigating the expression of four well-known adenosine triphosphate [ATP]-binding cassette (ABC) transporters (P-glycoprotein (P-gp), multidrug resistance associated protein (MRP)1, MRP2, and breast cancer resistance protein (BCRP)) by means of ELISA and immunofluorescence staining. The functional activity of the selected transporters was assessed by accumulation studies based on specific substrates and inhibitors. We then performed standardized bidirectional transport experiments under air-liquid interface (ALI) culture conditions, using four therapeutic compounds of local intranasal relevance in upper airway diseases. Protein expression of P-gp, MRP1, MRP2, and BCRP was detected at the membrane of the RPMI 2650 cells. In addition, all four transporters exhibited functional activity at the cellular level. In the bidirectional transport experiments, the RPMI 2650 model was able to accurately discriminate the four therapeutic compounds according to their physicochemical properties. The ABC transporters tested did not play a major role in the efflux of these compounds at the barrier level. In conclusion, the RPMI 2650 model represents a promising tool for assessing the nasal absorption of drugs on the basis of preclinical pharmacological data.
Collapse
Affiliation(s)
- Clément Mercier
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France
| | - Sophie Hodin
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France
| | - Zhiguo He
- Université de Lyon , Saint-Etienne F-42023 , France.,Laboratoire de Biologie, d'Ingénierie et d'Imagerie de la Greffe de Cornée , BiiGC , EA2521 Saint-Etienne , France
| | - Nathalie Perek
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France
| | - Xavier Delavenne
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang , CHU de Saint-Etienne , Saint-Etienne CS 82301 , France
| |
Collapse
|
7
|
Alihodžić S, Bukvić M, Elenkov IJ, Hutinec A, Koštrun S, Pešić D, Saxty G, Tomašković L, Žiher D. Current Trends in Macrocyclic Drug Discovery and beyond -Ro5. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:113-233. [DOI: 10.1016/bs.pmch.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|