1
|
Wusiman W, Zhang Z, Ding Q, Liu M. The pathophyiological role of aminoacyl-tRNA synthetases in digestive system diseases. Front Physiol 2022; 13:935576. [PMID: 36017335 PMCID: PMC9396140 DOI: 10.3389/fphys.2022.935576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs and are indispensable enzymes for protein biosynthesis in all the cells. Previously, ARSs were considered simply as housekeeping enzymes, however, they are now known to be involved in a variety of physiological and pathological processes, such as tumorigenesis, angiogenesis, and immune response. In this review, we summarize the role of ARSs in the digestive system, including the esophagus, stomach, small intestine, colon, as well as the auxiliary organs such as the pancreas, liver, and the gallbladder. Furthermore, we specifically focus on the diagnostic and prognostic value of ARSs in cancers, aiming to provide new insights into the pathophysiological implications of ARSs in tumorigenesis.
Collapse
Affiliation(s)
- Wugelanmu Wusiman
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Mei Liu,
| |
Collapse
|
2
|
Ahmed-Belkacem R, Hausdorff M, Delpal A, Sutto-Ortiz P, Colmant AMG, Touret F, Ogando NS, Snijder EJ, Canard B, Coutard B, Vasseur JJ, Decroly E, Debart F. Potent Inhibition of SARS-CoV-2 nsp14 N7-Methyltransferase by Sulfonamide-Based Bisubstrate Analogues. J Med Chem 2022; 65:6231-6249. [PMID: 35439007 PMCID: PMC9045040 DOI: 10.1021/acs.jmedchem.2c00120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 12/15/2022]
Abstract
Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.
Collapse
Affiliation(s)
| | - Marcel Hausdorff
- IBMM,
University of Montpellier, CNRS, ENSCM, 34293 Montpellier, cedex 5, France
| | - Adrien Delpal
- AFMB,
University of Aix-Marseille, CNRS, 13288 Marseille, cedex 9, France
| | | | - Agathe M. G. Colmant
- IHU
Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, IRD 190, INSERM 1207, 13005 Marseille, France
| | - Franck Touret
- IHU
Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, IRD 190, INSERM 1207, 13005 Marseille, France
| | - Natacha S. Ogando
- Department
of Medical Microbiology, Leiden University
Medical Center, 2333 ZA Leiden, The Netherlands
| | - Eric J. Snijder
- Department
of Medical Microbiology, Leiden University
Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bruno Canard
- AFMB,
University of Aix-Marseille, CNRS, 13288 Marseille, cedex 9, France
| | - Bruno Coutard
- IHU
Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, IRD 190, INSERM 1207, 13005 Marseille, France
| | - Jean-Jacques Vasseur
- IBMM,
University of Montpellier, CNRS, ENSCM, 34293 Montpellier, cedex 5, France
| | - Etienne Decroly
- AFMB,
University of Aix-Marseille, CNRS, 13288 Marseille, cedex 9, France
| | - Françoise Debart
- IBMM,
University of Montpellier, CNRS, ENSCM, 34293 Montpellier, cedex 5, France
| |
Collapse
|
3
|
Hughes CA, Gorabi V, Escamilla Y, Dean FB, Bullard JM. Two Forms of Tyrosyl-tRNA Synthetase from Pseudomonas aeruginosa: Characterization and Discovery of Inhibitory Compounds. SLAS DISCOVERY 2020; 25:1072-1086. [PMID: 32583746 DOI: 10.1177/2472555220934793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pseudomonas aeruginosa is a multidrug-resistant (MDR) pathogen and a causative agent of both nosocomial and community-acquired infections. The genes (tyrS and tyrZ) encoding both forms of P. aeruginosa tyrosyl-tRNA synthetase (TyrRS-S and TyrRS-Z) were cloned and the resulting proteins purified. TyrRS-S and TyrRS-Z were kinetically evaluated and the Km values for interaction with Tyr, ATP, and tRNATyr were 172, 204, and 1.5 μM and 29, 496, and 1.9 μM, respectively. The kcatobs values for interaction with Tyr, ATP, and tRNATyr were calculated to be 3.8, 1.0, and 0.2 s-1 and 3.1, 3.8, and 1.9 s-1, respectively. Using scintillation proximity assay (SPA) technology, a druglike 2000-compound library was screened to identify inhibitors of the enzymes. Four compounds (BCD37H06, BCD38C11, BCD49D09, and BCD54B04) were identified with inhibitory activity against TyrRS-S. BCD38C11 also inhibited TyrRS-Z. The IC50 values for BCD37H06, BCD38C11, BCD49D09, and BCD54B04 against TyrRS-S were 24, 71, 65, and 50 μM, respectively, while the IC50 value for BCD38C11 against TyrRS-Z was 241 μM. Minimum inhibitory concentrations (MICs) were determined against a panel of clinically important pathogens. All four compounds were observed to inhibit the growth of cultures of both Gram-positive and Gram-negative bacteria organisms with a bacteriostatic mode of action. When tested against human cell cultures, none of the compounds were toxic at concentrations up to 400 μg/mL. In mechanism of inhibition studies, BCD38C11 and BCD49D09 selectively inhibited TyrRS activity by competing with ATP for binding. BCD37H06 and BCD54B04 inhibited TyrRS activity by a mechanism other than substrate competition.
Collapse
Affiliation(s)
- Casey A Hughes
- The University of Texas-RGV, Edinburg, TX, USA.,Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | | | | | | | | |
Collapse
|
4
|
Singh H, Kaur B, Kaur H, Singh P. A bisubstrate reagent orchestrating adenosine triphosphate and l-tyrosine and making tyrosyl adenylate: partial mimicking of tyrosyl-tRNA synthetase. Org Biomol Chem 2019; 16:9446-9453. [PMID: 30515504 DOI: 10.1039/c8ob02866d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report the development of a bisubstrate reagent that, similar to tyrosyl t-RNA synthetase (TyrTS), provides a surface for ATP and l-Tyr to render a pseudo-intramolecular reaction forming 5'-tyrosyl adenylate (tyrAd). The presence of the reagent in solution with TyrTS marred the enzymatic reaction and, noticeably, tyrAd formed under the catalytic mode of the biomodel reagent was not picked up by TyrTS and hence was not transferred to tRNA. A potential application of this reagent, which doesn't allow the formation of tyrosyl tRNA, may lie in an emerging therapeutic targeting the translation machinery of cells without inhibiting the normal workings of enzymes.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Chemistry and Centre for Advanced Studies, University with Potential for Excellence - Guru Nanak Dev University, Amritsar-143005, India.
| | | | | | | |
Collapse
|
5
|
Wu H, Luo S, Cao L, Shi H, Wang B, Wang Z. DABCO‐Mediated C−O Bond Formation from C
sp2
‐Halogen Bond‐Containing Compounds and Alkyl Alcohols. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Han‐Qing Wu
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Shi‐He Luo
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| | - Liang Cao
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| | - Hao‐Nan Shi
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Bo‐Wen Wang
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Zhao‐Yang Wang
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| |
Collapse
|