1
|
Perinbaraj S, Jayaraman M, Jeyaraman J, Girija KR. Designing novel potent oxindole derivatives as VEGFR2 inhibitors for cancer therapy: Computational insights from molecular docking, drug-likeness, DFT, and structural dynamics studies. J Mol Graph Model 2025; 138:109049. [PMID: 40239487 DOI: 10.1016/j.jmgm.2025.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/25/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Oxindole is a γ-lactam featuring a heterocyclic core, combining pyrrole and benzene rings with a carbonyl group at the second position. This scaffold is present in numerous bioactive compounds, both natural and synthetic, and has emerged as a privileged pharmacophore in medicinal chemistry due to its broad biological activity. Substitution at the 3-position of the 2-oxindole structure has been shown to enhance potency and selectivity, especially in anticancer drug development. Breast cancer, a prevalent and challenging disease affecting millions of women worldwide, underscores an urgent need for more effective treatments. Current therapies often exhibit limited efficacy, significant side effects, and resistance issues, highlighting the demand for novel drugs with improved safety profiles. This study focuses on vascular endothelial growth factor receptor-2 (VEGFR-2), an essential regulator of tumor angiogenesis, as a potential target for breast cancer therapy. Through molecular docking-based virtual screening of 360 designed oxindole derivatives, three compounds (BIATAM, CIHTAM, and IATAM) were identified as potential candidates, each demonstrating high docking scores (>7 kcal/mol) and favorable interactions, including hydrogen bonding, hydrophobic contacts, and stacking. Among these, BIATAM emerged as the lead compound due to its superior docking performance, favorable pharmacokinetic profiles, and compliance with Lipinski's Rule of Five. Density functional theory (DFT) calculations confirmed its chemical stability, while molecular dynamics simulations (MDS) revealed high structural stability. Principal component-based free energy landscape (FEL) analysis highlighted limited conformational flexibility, and MM/PBSA-based binding energy calculations reinforced its strong affinity within the VEGFR-2 binding pocket. These comprehensive computational findings suggest that BIATAM holds promising potential as a novel therapeutic option for treating breast cancer.
Collapse
Affiliation(s)
- Sowmiya Perinbaraj
- Department of Pharmaceutical Chemistry, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, (A Govt. of Puducherry Institution), Puducherry, 605 006, India
| | - Manikandan Jayaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Konda Reddy Girija
- Department of Pharmaceutical Chemistry, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, (A Govt. of Puducherry Institution), Puducherry, 605 006, India.
| |
Collapse
|
2
|
Prabhakaran M, Sanjana R, Parthasarathy K. Ruthenium-catalyzed Heck coupling of 3-arylidene-oxindoles with alkenes: a facile synthesis of 3-allylidene-2(3 H)-oxindoles. Org Biomol Chem 2024; 22:9348-9352. [PMID: 39469997 DOI: 10.1039/d4ob01072h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A simple and efficient Ru(II)-catalyzed olefination of 3-(arylbenzylidene)indolin-2-ones with alkenes is described. This is an atom and step-economical strategy with a wide substrate scope, good functional group tolerance, and suitability for gram scale synthesis. A plausible mechanism is also proposed for this synthetic transformation involving the formation of a 5-membered ruthenacycle and insertion of the alkene followed by β-hydride elimination to deliver the desired product.
Collapse
Affiliation(s)
- Mohan Prabhakaran
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India.
| | - Ramesh Sanjana
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India.
| | - Kanniyappan Parthasarathy
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India.
| |
Collapse
|
3
|
Ćurčić V, Olszewski M, Maciejewska N, Višnjevac A, Srdić-Rajić T, Dobričić V, García-Sosa AT, Kokanov SB, Araškov JB, Silvestri R, Schüle R, Jung M, Nikolić M, Filipović NR. Quinoline-based thiazolyl-hydrazones target cancer cells through autophagy inhibition. Arch Pharm (Weinheim) 2024; 357:e2300426. [PMID: 37991233 DOI: 10.1002/ardp.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
Heterocyclic pharmacophores such as thiazole and quinoline rings have a significant role in medicinal chemistry. They are considered privileged structures since they constitute several Food and Drug Administration (FDA)-approved drugs for cancer treatment. Herein, we report the synthesis, in silico evaluation of the ADMET profiles, and in vitro investigation of the anticancer activity of a series of novel thiazolyl-hydrazones based on the 8-quinoline (1a-c), 2-quinoline (2a-c), and 8-hydroxy-2-quinolyl moiety (3a-c). The panel of several human cancer cell lines and the nontumorigenic human embryonic kidney cell line HEK-293 were used to evaluate the compound-mediated in vitro anticancer activities, leading to [2-(2-(quinolyl-8-ol-2-ylmethylene)hydrazinyl)]-4-(4-methoxyphenyl)-1,3-thiazole (3c) as the most promising compound. The study revealed that 3c blocks the cell-cycle progression of a human colon cancer cell line (HCT-116) in the S phase and induces DNA double-strand breaks. Also, our findings demonstrate that 3c accumulates in lysosomes, ultimately leading to the cell death of the hepatocellular carcinoma cell line (Hep-G2) and HCT-116 cells, by the mechanism of autophagy inhibition.
Collapse
Affiliation(s)
- Vladimir Ćurčić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Sanja B Kokanov
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | - Romano Silvestri
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Manfred Jung
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Milan Nikolić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
4
|
Martínez M, Mariani ML, García C, Ceñal JP, Penissi AB. A one-pot and eco-friendly synthesis of novel β-substituted-α-halomethyl acrylates and the bioactivity of these compounds in an in vitro model of mast cell degranulation induced by pro-inflammatory stimuli. Biomed Pharmacother 2024; 170:116009. [PMID: 38134632 DOI: 10.1016/j.biopha.2023.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The goal of the present work was to develop novel β-substituted-α-halomethyl acrylates from a methodology in an aqueous phase and to evaluate their bioactivity as potential inhibitors of mast cell activation. Eleven β-substituted-α-halomethyl acrylates were synthesized through a modified Horner-Wadsworth-Emmons reaction. Compound 48/80 and the calcium ionophore A23187 stimulated the release of β-hexosaminidase from mast cells. The effect induced by compound 48/80 was inhibited by compound 5 (320 µM) and compound 9 (160 and 320 µM) without causing cytotoxic effects. The effect induced by A23187 was inhibited by compound 5 (40, 80, 160, and 320 µM) without affecting cell viability. The inhibitory effects exhibited by compounds 5 and 9 were more potent than those of the reference compound sodium cromoglycate at the same concentrations. The biochemical results were consistent with the morphological findings obtained by light and transmission electron microscopy. This study reports, for the first time, that the new synthetic compounds methyl (Z)- 2-bromo-3-(furan-3-yl)acrylate (compound 5) and methyl (E)- 2-bromo-3-(3-bromophenyl)acrylate (compound 9) strongly inhibit mast cell degranulation, without affecting cell viability. The implications of these results are relevant as a basis for developing new anti-inflammatory and mast cell stabilizing drugs.
Collapse
Affiliation(s)
- Maricel Martínez
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, San Luis, Argentina
| | - María Laura Mariani
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Celina García
- Instituto Universitario de Bio-Organica "Antonio Gonzalez", Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Juan Pedro Ceñal
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, San Luis, Argentina; Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
5
|
Somnarin T, Krawmanee P, Gleeson MP, Gleeson D. Computational investigation of the radical-mediated mechanism of formation of difluoro methyl oxindoles: Elucidation of the reaction selectivity and yields. J Comput Chem 2023; 44:670-676. [PMID: 36398747 DOI: 10.1002/jcc.27031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Oxindoles are an important class of heterocyclic alkaloids with demonstrated pharmacological activity at multiple biological targets. Preparation of new analogs through novel synthetic routes is therefore highly attractive. In this work, we report a computational study to investigate the synthesis of ethoxycarbonyldifluoromethylated oxindoles from N-arylmethacrylamides. The reaction tolerates a diverse range of acrylamides, shows yields ranging from approximately 38%-96%. We have applied density functional theory (DFT) to explore the reaction mechanism, kinetics and thermodynamics to gain further understanding. We demonstrate that a radical-based ring closure reaction is energetically more favorable than a heterolytic process, that the rate-determining step is the formation of the arylmethacrylamide radical, and that the product yields and selectivities are consistent with experiment. The results demonstrate that theoretical methods can prove useful to understand how such reaction and could be potentially employed to rapidly explore the reaction scope further.
Collapse
Affiliation(s)
- Thanachon Somnarin
- Applied Computational Chemistry Research Unit & Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pacharaporn Krawmanee
- Applied Computational Chemistry Research Unit & Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Matthew Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Duangkamol Gleeson
- Applied Computational Chemistry Research Unit & Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
6
|
Mehra A, Sharma V, Verma A, Venugopal S, Mittal A, Singh G, Kaur B. Indole Derived Anticancer Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202202361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Vikas Sharma
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Anil Verma
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Sneha Venugopal
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Gurdeep Singh
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Balwinder Kaur
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| |
Collapse
|
7
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Developments of Molecular Hybrids Targeting Tubulin Polymerization. Int J Mol Sci 2022; 23:4001. [PMID: 35409361 PMCID: PMC8999808 DOI: 10.3390/ijms23074001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Microtubules are cylindrical protein polymers formed from αβ-tubulin heterodimers in the cytoplasm of eukaryotic cells. Microtubule disturbance may cause cell cycle arrest in the G2/M phase, and anomalous mitotic spindles will form. Microtubules are an important target for cancer drug action because of their critical role in mitosis. Several microtubule-targeting agents with vast therapeutic advantages have been developed, but they often lead to multidrug resistance and adverse side effects. Thus, single-target therapy has drawbacks in the effective control of tubulin polymerization. Molecular hybridization, based on the amalgamation of two or more pharmacophores of bioactive conjugates to engender a single molecular structure with enhanced pharmacokinetics and biological activity, compared to their parent molecules, has recently become a promising approach in drug development. The practical application of combined active scaffolds targeting tubulin polymerization inhibitors has been corroborated in the past few years. Meanwhile, different designs and syntheses of novel anti-tubulin hybrids have been broadly studied, illustrated, and detailed in the literature. This review describes various molecular hybrids with their reported structural-activity relationships (SARs) where it is possible in an effort to generate efficacious tubulin polymerization inhibitors. The aim is to create a platform on which new active scaffolds can be modeled for improved tubulin polymerization inhibitory potency and hence, the development of new therapeutic agents against cancer.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.S.)
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
8
|
Shankaraiah N, Tokala R, Bora D. Contribution of Knoevenagel Condensation Products towards Development of Anticancer Agents: An Updated Review. ChemMedChem 2022; 17:e202100736. [PMID: 35226798 DOI: 10.1002/cmdc.202100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Knoevenagel condensation is an entrenched, prevailing, prominent arsenal following greener principles in the generation of α, β-unsaturated ketones/carboxylic acids by involving carbonyl functionalities and active methylenes. This reaction has proved to be a major driving force in many multicomponent reactions indicating the prolific utility towards the development of biologically fascinating molecules. This eminent reaction was acclimatised on different pharmacophoric aldehydes (benzimidazole, β-carboline, phenanthrene, indole, imidazothiadiazole, pyrazole etc.) and active methylenes (oxindole, barbituric acid, Meldrum's acid, thiazolidinedione etc.) to generate the library of chemical compounds. Their potential was also explicit to understand the significance of functionalities involved, which thereby evoke further developments in drug discovery. Furthermore, most of these reaction products exhibited remarkable anticancer activity in nanomolar to micromolar ranges by targeting different cancer targets like DNA, microtubules, Topo-I/II, and kinases (PIM, PARP, NMP, p300/CBP) etc. This review underscores the efficiency of the Knoevenagel condensation explored in the past six-year to generate molecules of pharmacological interest, predominantly towards cancer. The present review also provides the aspects of structure-activity relationships, mode of action and docking study with possible interaction with the target protein.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER, Department of Medicinal Chemistry, Balanagar, 500037, Hyderabad, INDIA
| | - Ramya Tokala
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| | - Darshana Bora
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| |
Collapse
|
9
|
Mondal P, Rajapakse S, Wijeratne GB. Following Nature's Footprint: Mimicking the High-Valent Heme-Oxo Mediated Indole Monooxygenation Reaction Landscape of Heme Enzymes. J Am Chem Soc 2022; 144:3843-3854. [PMID: 35112858 DOI: 10.1021/jacs.1c11068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pathways for direct conversion of indoles to oxindoles have accumulated considerable interest in recent years due to their significance in the clear comprehension of various pathogenic processes in humans and the multipotent therapeutic value of oxindole pharmacophores. Heme enzymes are predominantly responsible for this conversion in biology and are thought to proceed with a compound-I active oxidant. These heme-enzyme-mediated indole monooxygenation pathways are rapidly emerging therapeutic targets; however, a clear mechanistic understanding is still lacking. Additionally, such knowledge holds promise in the rational design of highly specific indole monooxygenation synthetic protocols that are also cost-effective and environmentally benign. We herein report the first examples of synthetic compound-I and activated compound-II species that can effectively monooxygenate a diverse array of indoles with varied electronic and steric properties to exclusively produce the corresponding 2-oxindole products in good to excellent yields. Rigorous kinetic, thermodynamic, and mechanistic interrogations clearly illustrate an initial rate-limiting epoxidation step that takes place between the heme oxidant and indole substrate, and the resulting indole epoxide intermediate undergoes rearrangement driven by a 2,3-hydride shift on indole ring to ultimately produce 2-oxindole. The complete elucidation of the indole monooxygenation mechanism of these synthetic heme models will help reveal crucial insights into analogous biological systems, directly reinforcing drug design attempts targeting those heme enzymes. Moreover, these bioinspired model compounds are promising candidates for the future development of better synthetic protocols for the selective, efficient, and sustainable generation of 2-oxindole motifs, which are already known for a plethora of pharmacological benefits.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Shanuk Rajapakse
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| |
Collapse
|
10
|
Khetmalis YM, Shivani M, Murugesan S, Chandra Sekhar KVG. Oxindole and its derivatives: A review on recent progress in biological activities. Biomed Pharmacother 2021; 141:111842. [PMID: 34174506 DOI: 10.1016/j.biopha.2021.111842] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Oxindole has been shown to be a pharmacologically advantageous scaffold having many biological properties that are relevant to medicinal chemistry. The simplicity and widespread occurrence of this scaffold in plant-based alkaloids have further reinforced oxindole's merit in the domain of novel drug discovery. First extracted from Uncaria tomentosa, commonly the known as cat claw's plant which was found abundantly in the Amazon rainforest, molecules with the oxindole moiety have been shown to be common in a wide variety of compounds extracted from plant sources. The role of oxindole as a chemical scaffold for fabricating and designing biological drugs agents can be ascribed to its ability to be modified by a number of chemical groups to generate novel biological functions. This review is aimed at providing a description of the general chemistry based on existing corresponding structure-activity relationships (SARs) and compile all recent developmentary studies on oxindole-derived compounds as a successful pharmaceutical agent. A substantial group of oxindole derivatives are chiefly being tested as anticancer agents, however, a several oxindole derivatives have been shown to possesses antimicrobial, α-glucosidase inhibitory, antiviral, antileishmanial, antitubercular, antioxidative, tyrosinase inhibitory, PAK4 inhibitory, antirheumatoid arthritis and intraocular pressure reducing activities, to name a few. In this review we show the potential value of developing newer oxindole derivatives with an improved range of pharmacological implications as well as identifying drugs possessing oxindole core, that are showing and serving increased efficacy in clinical practice.
Collapse
Affiliation(s)
- Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India
| | - Mithula Shivani
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 33303, Rajasthan, India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
11
|
Zuo Y, He X, Tang Q, Hu W, Zhou T, Hu W, Shang Y. Palladium‐Catalyzed 5‐
exo‐dig
Cyclization Cascade, Sequential Amination/Etherification for Stereoselective Construction of 3‐Methyleneindolinones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Youpeng Zuo
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Wangcheng Hu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Wenbo Hu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
12
|
Dey P, Kundu A, Han SH, Kim KS, Park JH, Yoon S, Kim IS, Kim HS. Biological Evaluation of Oxindole Derivative as a Novel Anticancer Agent against Human Kidney Carcinoma Cells. Biomolecules 2020; 10:1260. [PMID: 32878322 PMCID: PMC7565513 DOI: 10.3390/biom10091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma has emerged as one of the leading causes of cancer-related deaths in the USA. Here, we examined the anticancer profile of oxindole derivatives (SH-859) in human renal cancer cells. Targeting 786-O cells by SH-859 inhibited cell growth and affected the protein kinase B/mechanistic target of rapamycin 1 pathway, which in turn downregulated the expression of glycolytic enzymes, including lactate dehydrogenase A and glucose transporter-1, as well as other signaling proteins. Treatment with SH-859 altered glycolysis, mitochondrial function, and levels of adenosine triphosphate and cellular metabolites. Flow cytometry revealed the induction of apoptosis and G0/G1 cell cycle arrest in renal cancer cells following SH-859 treatment. Induction of autophagy was also confirmed after SH-859 treatment by acridine orange and monodansylcadaverine staining, immunocytochemistry, and Western blot analyses. Finally, SH-859 also inhibited the tumor development in a xenograft model. Thus, SH-859 can serve as a potential molecule for the treatment of human renal carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (A.K.); (S.H.H.); (K.-S.K.); (J.H.P.); (S.Y.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (A.K.); (S.H.H.); (K.-S.K.); (J.H.P.); (S.Y.)
| |
Collapse
|
13
|
Biswas P, Mandal S, Guin J. Aerobic Acylarylation of α,β-Unsaturated Amides with Aldehydes. Org Lett 2020; 22:4294-4299. [DOI: 10.1021/acs.orglett.0c01336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Promita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhasis Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
Parveen N, Sekar G. Palladium Nanoparticle-Catalyzed Stereoselective Domino Synthesis of 3-Allylidene-2(3 H)-oxindoles and 3-Allylidene-2(3 H)-benzofuranones. J Org Chem 2020; 85:4682-4694. [PMID: 32156112 DOI: 10.1021/acs.joc.9b03397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A single-step, stereoselective protocol for the synthesis of unsymmetrically substituted (E)-3-allylideneoxindole and (E)-3-allylidenebenzofuran from readily accessible starting materials using palladium binaphthyl nanoparticles (Pd-BNPs) has been developed. Pd-BNP showing a wide range of functional group tolerance and an immense array of substrate scope have been explored with the successful synthesis of the drug molecule "tubulin polymerization inhibitor" free from trace metal impurities. The model reaction is extended to a gram-scale synthesis, and one of the products is utilized for derivatization. The Pd-BNP has been recycled up to 5 catalytic cycles without any loss in reaction yields and particle size of nanoparticles.
Collapse
Affiliation(s)
- Naziya Parveen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
15
|
Kumari A, Singh RK. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg Chem 2019; 89:103021. [PMID: 31176854 DOI: 10.1016/j.bioorg.2019.103021] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Indole is a versatile pharmacophore, a privileged scaffold and an outstanding heterocyclic compound with wide ranges of pharmacological activities due to different mechanisms of action. It is an superlative moiety in drug discovery with the sole property of resembling different structures of the protein. Plenty of research has been taking place in recent years to synthesize and explore the various therapeutic prospectives of this moiety. This review summarizes some of the recent effective chemical synthesis (2014-2018) for indole ring. This review also emphasized on the structure-activity relationship (SAR) to reveal the active pharmacophores of various indole analogues accountable for anticancer, anticonvulsant, antimicrobial, antitubercular, antimalarial, antiviral, antidiabetic and other miscellaneous activities which have been investigated in the last five years. The precise features with motives and framework of each research topic is introduced for helping the medicinal chemists to understand the perspective of the context in a better way. This review will definitely offer the platform for researchers to strategically design diverse novel indole derivatives having different promising pharmacological activities with reduced toxicity and side effects.
Collapse
Affiliation(s)
- Archana Kumari
- Rayat-Bahra Institute of Pharmacy, Dist. Hoshiarpur, 146104 Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126 Punjab, India.
| |
Collapse
|
16
|
Shukla G, Alam T, Srivastava HK, Kumar R, Patel BK. Visible-Light-Mediated Ir(III)-Catalyzed Concomitant C3 Oxidation and C2 Amination of Indoles. Org Lett 2019; 21:3543-3547. [DOI: 10.1021/acs.orglett.9b00887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hemant Kumar Srivastava
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Ritush Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
17
|
Li W, Zhao SJ, Gao F, Lv ZS, Tu JY, Xu Z. Synthesis and In Vitro Anti-Tumor, Anti-Mycobacterial and Anti-HIV Activities of Diethylene-Glycol-Tethered Bis-Isatin Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201802185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wei Li
- School of Chemistry and Materials Science; Hubei Engineering University; Xiaogan, Hubei P R China
| | - Shi-Jia Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; Wuhan University of Science and Technology; Wuhan, Hubei P R China
| | - Feng Gao
- Department of Medical Imaging; Jinling Hospital; Medical School of Nanjing University; Nanjing, Jiangsu P. R. China
| | - Zao-Sheng Lv
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; Wuhan University of Science and Technology; Wuhan, Hubei P R China
| | - Jun-Ying Tu
- Hubei Xiaogan Senior Middle School; Xiaogan, Hubei P R China
| | - Zhi Xu
- Huanghuai University; Zhumadian, Henan P R China
| |
Collapse
|
18
|
Zhou Y, Ju Y, Yang Y, Sang Z, Wang Z, He G, Yang T, Luo Y. Discovery of hybrids of indolin-2-one and nitroimidazole as potent inhibitors against drug-resistant bacteria. J Antibiot (Tokyo) 2018; 71:887-897. [DOI: 10.1038/s41429-018-0076-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/20/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
|
19
|
Tan C, Xiong S, Chen C. Fast and Controlled Ring-Opening Polymerization of Cyclic Esters by Alkoxides and Cyclic Amides. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02697] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chen Tan
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuoyan Xiong
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Zhao HW, Liu YY, Zhao YD, Feng NN, Du J, Song XQ, Pang HL, Chen XQ. Base-Catalyzed Formal [3+2] Cycloaddition of Diazooxindoles with Oxazol-5-(4H
)-ones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hong-Wu Zhao
- College of Life Science and Bio-engineering; Beijing University of Technology; 100124 Beijing P. R. China
| | - Yue-Yang Liu
- College of Life Science and Bio-engineering; Beijing University of Technology; 100124 Beijing P. R. China
| | - Yu-Di Zhao
- College of Life Science and Bio-engineering; Beijing University of Technology; 100124 Beijing P. R. China
| | - Ning-Ning Feng
- College of Life Science and Bio-engineering; Beijing University of Technology; 100124 Beijing P. R. China
| | - Juan Du
- College of Life Science and Bio-engineering; Beijing University of Technology; 100124 Beijing P. R. China
| | - Xiu-Qing Song
- College of Life Science and Bio-engineering; Beijing University of Technology; 100124 Beijing P. R. China
| | - Hai-Liang Pang
- College of Life Science and Bio-engineering; Beijing University of Technology; 100124 Beijing P. R. China
| | - Xiao-Qin Chen
- College of Life Science and Bio-engineering; Beijing University of Technology; 100124 Beijing P. R. China
| |
Collapse
|
21
|
Facile synthesis of simple 2-oxindole-based compounds with promising antiproliferative activity. Future Med Chem 2018; 10:269-282. [PMID: 29334243 DOI: 10.4155/fmc-2017-0148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM Discovery of novel potent anticancer agents with lower side effects is a challenge to overcome cancer, the second leading cause of death. METHODOLOGY 2-oxindole-based hydrazides (6a-g) and benzenesulfonyl hydrazides (9a-d) were synthesized by simple condensation reactions of the appropriate hydrazides (2a-g) or (8a-d) with 1-ethyl-2,3-oxindolinedione (4). They were screened for their cytotoxicity against HepG2 (liver), MCF-7 (breast), HCT116 (colon) and A549 (lung) cancer cell lines. RESULTS The substituted benzohydrazides (6b-g) revealed higher activity and selectivity toward the tested cell lines than doxorubicin and 9a-d. Compound 6c exhibited the highest activity against MCF-7 cell line with IC50 = 0.0058 μM and it induced apoptosis by caspase-3 activation, Bax upregulation and Bcl-2 downregulation in a dose-dependent manner. CONCLUSION This compound can be considered as a potent cytotoxic agent with apoptotic induction property.
Collapse
|
22
|
Ganesh M, Rao MP, Mirajakar SJ. Part I: Diastereoselective Reactions Involving β-Mono- and β,β′-Disubstituted Alkylidene Oxindoles: Pondering Alkene Geometry. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Madhu Ganesh
- Department of Chemistry, P.O. Box 1908, B.M.S.; College of Engineering; Bull Temple Road Bengaluru 560019 India
| | - Madhuri P. Rao
- Department of Chemistry, P.O. Box 1908, B.M.S.; College of Engineering; Bull Temple Road Bengaluru 560019 India
| | - Shruti J. Mirajakar
- Department of Chemistry, P.O. Box 1908, B.M.S.; College of Engineering; Bull Temple Road Bengaluru 560019 India
| |
Collapse
|