1
|
Long L, Zhang H, Zhou Z, Duan L, Fan D, Wang R, Xu S, Qiao D, Zhu W. Pyrrole-containing hybrids as potential anticancer agents: An insight into current developments and structure-activity relationships. Eur J Med Chem 2024; 273:116470. [PMID: 38762915 DOI: 10.1016/j.ejmech.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Cancer poses a significant threat to human health. Therefore, it is urgent to develop potent anti-cancer drugs with excellent inhibitory activity and no toxic side effects. Pyrrole and its derivatives are privileged heterocyclic compounds with significant diverse pharmacological effects. These compounds can target various aspects of cancer cells and have been applied in clinical settings or are undergoing clinical trials. As a result, pyrrole has emerged as a promising drug scaffold and has been further probed to get novel entities for the treatment of cancer. This article reviews recent research progress on anti-cancer drugs containing pyrrole. It focuses on the mechanism of action, biological activity, and structure-activity relationships of pyrrole derivatives, aiming to assist in designing and synthesizing innovative pyrrole-based anti-cancer compounds.
Collapse
Affiliation(s)
- Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - ZhiHui Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
2
|
Liew HY, Tan XY, Chan HH, Khaw KY, Ong YS. Natural HSP90 inhibitors as a potential therapeutic intervention in treating cancers: A comprehensive review. Pharmacol Res 2022; 181:106260. [DOI: 10.1016/j.phrs.2022.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
3
|
Zhang K, Guan X, Zhang X, Liu L, Yin R, Jiang T. Protective Effects of Marine Alkaloid Neolamellarin A Derivatives against Glutamate Induced PC12 Cell Apoptosis. Mar Drugs 2022; 20:md20040262. [PMID: 35447935 PMCID: PMC9026748 DOI: 10.3390/md20040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Marine alkaloids obtained from sponges possess a variety of biological activities and potential medicinal value. The pyrrole-derived lamellarin-like alkaloids, especially their permethyl derivatives, show low cytotoxicity and potent MDR reversing activity. Neolamellarin A is a novel lamellarin-like alkaloid which was extracted from marine animal sponges. We reported the synthetic method of permethylated Neolamellarin A and its derivatives by a convergent strategy in 2015. In 2018, we reported the synthesis and the neuroprotective activity in PC12 cells of 3,4-bisaryl-N-alkylated permethylated Neolamellarin A derivatives. In this report, another series of 15 different 3,4-bisaryl-N-acylated permethylated Neolamellarin A derivatives were synthesized, and the outstanding protective effects of these compounds against glutamate induced PC12 cell apoptosis were presented and discussed. These Neolamellarin A derivatives which possessed low cytotoxicity and superior neuroprotective activity may have the potential to be developed into antagonists against glutamate induced nerve cell apoptosis.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (K.Z.); (X.G.); (X.Z.)
| | - Xian Guan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (K.Z.); (X.G.); (X.Z.)
| | - Xiao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (K.Z.); (X.G.); (X.Z.)
| | - Lu Liu
- Marine Biomedical Research Institute of Qiangdao, Qingdao 266237, China;
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (K.Z.); (X.G.); (X.Z.)
- Marine Biomedical Research Institute of Qiangdao, Qingdao 266237, China;
- Correspondence: (R.Y.); (T.J.); Tel.: +86-532-8590-6853 (R.Y.)
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (K.Z.); (X.G.); (X.Z.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (R.Y.); (T.J.); Tel.: +86-532-8590-6853 (R.Y.)
| |
Collapse
|
4
|
Lin D, Jiang S, Zhang A, Wu T, Qian Y, Shao Q. Structural derivatization strategies of natural phenols by semi-synthesis and total-synthesis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:8. [PMID: 35254538 PMCID: PMC8901917 DOI: 10.1007/s13659-022-00331-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
Structural derivatization of natural products has been a continuing and irreplaceable source of novel drug leads. Natural phenols are a broad category of natural products with wide pharmacological activity and have offered plenty of clinical drugs. However, the structural complexity and wide variety of natural phenols leads to the difficulty of structural derivatization. Skeleton analysis indicated most types of natural phenols can be structured by the combination and extension of three common fragments containing phenol, phenylpropanoid and benzoyl. Based on these fragments, the derivatization strategies of natural phenols were unified and comprehensively analyzed in this review. In addition to classical methods, advanced strategies with high selectivity, efficiency and practicality were emphasized. Total synthesis strategies of typical fragments such as stilbenes, chalcones and flavonoids were also covered and analyzed as the supplementary for supporting the diversity-oriented derivatization of natural phenols.
Collapse
Affiliation(s)
- Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Senze Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yongchang Qian
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
5
|
Piven YA, Yastrebova MA, Khamidullina AI, Scherbakov AM, Tatarskiy VV, Rusanova JA, Baranovsky AV, Zinovich VG, Khlebnicova TS, Lakhvich FA. Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes targeting HSP90-HER2 axis in breast cancer cells. Bioorg Med Chem 2022; 53:116521. [PMID: 34844036 DOI: 10.1016/j.bmc.2021.116521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023]
Abstract
Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes were designed as potential HSP90 inhibitors. A series of the compounds was synthesized by oximation of (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-ones followed by O-acylation with acylamidobenzoic acids. The obtained compounds showed an antiproliferative effect on three breast cancer cell lines (MCF7, MDA-MB-231 and HCC1954). Compound 16s exhibited high antiproliferative potency against HCC1954 breast cancer cells with the IC50 value of 6 µM was selected for in-depth evaluation. Compound 16s did not inhibit the growth of normal epithelial cells. We have demonstrated that the compound 16s can induce apoptosis in cancer cells via inhibition of HSP90 "client" proteins including a key oncogenic receptor, HER2/neu. Described here compounds can be considered for further basic and preclinical investigation as a part of HSP90/HER2-targeted therapies.
Collapse
Affiliation(s)
- Yuri A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Margarita A Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Alvina I Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Julia A Rusanova
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv 01601, Ukraine
| | - Alexander V Baranovsky
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Veronica G Zinovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Tatyana S Khlebnicova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Fedor A Lakhvich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| |
Collapse
|
6
|
Li G, Shao Y, Pan Y, Li Y, Wang Y, Wang L, Wang X, Shao K, Wang S, Liu N, Zhang J, Zhao W, Nakamura H. Total synthesis and biological evaluation of 7-hydroxyneolamellarin A as hypoxia-inducible factor-1α inhibitor for cancer therapy. Bioorg Med Chem Lett 2021; 50:128338. [PMID: 34469710 DOI: 10.1016/j.bmcl.2021.128338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
7-Hydroxyneolamellarin A (7-OH-Neo A, 1), a natural marine product derived from sponge Dendrilla nigra, was first synthesized with 10% overall yield under the instruction of convergent synthetic strategy. We found that 7-OH-Neo A could attenuate the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein and inhibit vascular epidermal growth factor (VEGF) transcriptional activity, showing well inhibitory effect on HIF-1 signaling pathway. Meantime, 7-OH-Neo A had the well anti-tumor activities, such as inhibiting tumor angiogenesis, proliferation, migration and invasion. More importantly, 7-OH-Neo A exhibited profound anti-tumor effect in mice breast cancer model by suppressing the accumulation of HIF-1α in tumor tissue. Mechanism study demonstrated that 7-OH-Neo A might target the protein with the ability of stabilizing HIF-1α in hypoxia. Due to the excellent water solubility, superior anti-tumor activity and good biocompatibility, 7-OH-Neo A shows the promising potential for being exploited as an anti-tumor agent in near future.
Collapse
Affiliation(s)
- Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yujie Shao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yueqing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liu Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xu Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shisheng Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Naixuan Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
7
|
Li G, Dong H, Ma Y, Shao K, Li Y, Wu X, Wang S, Shao Y, Zhao W. Structure-activity relationships study of neolamellarin A and its analogues as hypoxia inducible factor-1 (HIF-1) inhibitors. Bioorg Med Chem Lett 2019; 29:2327-2331. [PMID: 31281016 DOI: 10.1016/j.bmcl.2019.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
The novel marine pyrrole alkaloid neolamellarin A derived from sponge has been shown to inhibit hypoxia-induced HIF-1 activity. In this work, we designed and synthesized neolamellarin A and its series of derivatives by a convergent synthetic strategy. The HIF-1 inhibitory activity and cytotoxicity of these compounds were evaluated in Hela cells by dual-luciferase reporter gene assay and MTT assay, respectively. The results showed that neolamellarin A 1 (IC50 = 10.8 ± 1.0 μM) and derivative 2b (IC50 = 11.9 ± 3.6 μM) had the best HIF-1 inhibitory activity and low cytotoxicity. Our SAR research focused on the effects of key regions aliphatic carbon chain length, aromatic ring substituents and C-7 substituent on biological activity, providing a basis for the subsequent research on the development of novel pyrrole alkaloids as HIF-1 inhibitors and design of small molecule probes for target protein identification.
Collapse
Affiliation(s)
- Guangzhe Li
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Huijuan Dong
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Yao Ma
- Dalian Hospital of Obstetrics and Gynaecology, Dalian 116083, China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yueqing Li
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiaodan Wu
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Shisheng Wang
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Yujie Shao
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Weijie Zhao
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
8
|
Karmakar U, Samanta R. Pd(II)-Catalyzed Direct Sulfonylation of Benzylamines Using Sodium Sulfinates. J Org Chem 2019; 84:2850-2861. [DOI: 10.1021/acs.joc.8b03098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ujjwal Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|