1
|
Sharma S, Roy R, Vartak A, Sen E, Sk UH. Synthesis and characterization of a novel Naphthalimide-Selenium based Temozolomide drug conjugate in glioma cells. Bioorg Chem 2025; 154:107998. [PMID: 39615280 DOI: 10.1016/j.bioorg.2024.107998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 01/15/2025]
Abstract
Temozolomide (TMZ)2 is the frontline chemotherapeutic drug against glioblastoma. As chemoresistance is a severe limitation of TMZ therapy, we aimed to synthesize a novel drug to improve its efficacy. This was achieved by conjugating TMZ with Naphthalimide (known DNA intercalator) via selenourea linkage (redox regulator). The synthesized Naphthalimide-selenourea-TMZ (Naph-Se-TMZ)3 exhibited heightened cell death in TMZ-sensitive and TMZ-resistant glioma cells compared to an equivalent dose of TMZ. Diminished cell viability was concomitant with heightened reactive oxygen species (ROS)4 levels in Naph-Se-TMZ treated cells. Docking simulations and in vitro studies attributed the improved cytotoxicity of Naph-Se-TMZ to its ability to inhibit HDAC1. A ROS-dependent decrease in HDAC1 expression and total HDAC activity was observed in Naph-Se-TMZ treated cells. We report the heightened cytotoxicity of synthesized novel Naph-Se-TMZ over TMZ in TMZ-resistant and TMZ-sensitive glioma cells through its ability to serve as a ROS generator and HDAC inhibitor. Importantly, TCGA dataset analysis indicating the association of heightened HDAC1 expression with poor prognosis and elevated antioxidant enzyme levels in glioma patients points towards the likely involvement of HDAC1 in protecting glioma cells from oxidative stress-induced damage. Taken together, our findings underscore the potential of Naph-Se-TMZ as a more effective therapeutic alternative to TMZ for glioblastoma treatment.
Collapse
Affiliation(s)
- Shalini Sharma
- National Brain Research Centre, Manesar, Haryana 122 052, India
| | - Rubi Roy
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Aastha Vartak
- National Brain Research Centre, Manesar, Haryana 122 052, India
| | - Ellora Sen
- National Brain Research Centre, Manesar, Haryana 122 052, India.
| | - Ugir Hossain Sk
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India.
| |
Collapse
|
2
|
Clara da Silva Durigon M, Renata Caitano Visnheski B, Braz Júnior O, Christina Thomas J, Fogagnoli Simas F, Piovan L. Polyfunctionalized organoselenides: New synthetic approach from selenium-containing cyanohydrins and anti-melanoma activity. Bioorg Med Chem Lett 2024; 110:129860. [PMID: 38942128 DOI: 10.1016/j.bmcl.2024.129860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
A series of seleno-containing polyfunctionalized compounds was synthesized exploring cyanohydrin chemistry, including α-hydroxy esters, α-hydroxy acids, 1,2-diols, and 1,2-diacetates, with yields ranging from 26 up to 99 %. The cytotoxicity of all synthesized compounds was then evaluated using a non-tumor cell line (BALB/3T3 murine fibroblasts), and those deemed non-cytotoxic had their anti-melanoma activity evaluated using B16-F10 murine melanoma cells. These assays identified two compounds with selective cytotoxic activity against the tested melanoma cell line, showing a potential anti-melanoma application.
Collapse
|
3
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Xu W, Du Y, Pan B, Wang Q, Zheng H, Zhang R, Lou J, Zhu G, Zhou J, Sun J. Novel phenoxy-((phenylethynyl) selanyl) propan-2-ol derivatives as potential anticancer agents. BMC Chem 2023; 17:172. [PMID: 38017577 PMCID: PMC10685490 DOI: 10.1186/s13065-023-01076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Selenocompounds protect against damage to healthy cells and induce the death of tumor cells by apoptosis; for this reason, they are attractive compounds for cancer research. In the present study, two series of novel phenoxy-((phenylethynyl) selanyl) propan-2-ol derivatives were synthesized, and their anti-proliferation activities were evaluated. Of the 23 compounds synthesized, most showed potent anti-proliferative activity against human cancer cell lines. Specifically, compounds 3h, 3g, and 3h-2, which had a 2- or 4-position halogen substituent on 1-((phenylethynyl)selanyl)-3-phenoxypropan-2-ol, exhibited the best anti-proliferative activity against tumor cells. Flow cytometry demonstrated that 3h, 3g, and 3h-2 induced G2/M phase arrest and apoptosis in A549 cells. Cellular studies demonstrated that the induction of apoptosis by 3h correlated with changes in the expression of cell cycle-related proteins and apoptosis-related proteins. Xenograft tumor experiments in nude mice revealed that compound 3h has antitumor effects in vivo and no evident toxic effects in nude mice. In addition, compound 3h alleviated cisplatin-induced liver and kidney damage. These findings uncover the applicability of compound 3h as a novel lead compound for cancer treatment.
Collapse
Affiliation(s)
- Wenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Yali Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Beibin Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Qiying Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Haoran Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Ruonan Zhang
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jiaxin Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Guanghui Zhu
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
| | - Jie Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China.
| | - Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
5
|
Raza A, Singh A, Amin S, Spallholz JE, Sharma AK. Identification and biotin receptor-mediated activity of a novel seleno-biotin compound that inhibits viability of and induces apoptosis in ovarian cancer cells. Chem Biol Interact 2022; 365:110071. [DOI: 10.1016/j.cbi.2022.110071] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
|
6
|
Hou W, Xu H. Incorporating Selenium into Heterocycles and Natural Products─From Chemical Properties to Pharmacological Activities. J Med Chem 2022; 65:4436-4456. [PMID: 35244394 DOI: 10.1021/acs.jmedchem.1c01859] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selenium (Se)-containing compounds have emerged as potential therapeutic agents for the treatment of a range of diseases. Through tremendous effort, considerable knowledge has been acquired to understand the complex chemical properties and biological activities of selenium, especially after its incorporation into bioactive molecules. From this perspective, we compiled extensive literature evidence to summarize and critically discuss the relationship between the pharmacological activities and chemical properties of selenium compounds and the strategic incorporation of selenium into organic molecules, especially bioactive heterocycles and natural products. We also provide perspectives regarding the challenges in selenium-based medicinal chemistry and future research directions.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
8
|
Si L, Yan X, Wang Y, Ren B, Ren H, Ding Y, Zheng Q, Li D, Liu Y. Chamaejasmin B Decreases Malignant Characteristics of Mouse Melanoma B16F0 and B16F10 Cells. Front Oncol 2020; 10:415. [PMID: 32300554 PMCID: PMC7145408 DOI: 10.3389/fonc.2020.00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chamaejasmin B (CHB), a natural biflavone isolated from Stellera chamaejasme L., has been reported to exhibit anti-cancer properties; however, its effect in melanoma cells is not clear. Here, we aimed to investigate the anticancer effect of CHB in mouse melanoma B16F0 and B16F10 cells. We found that CHB significantly suppressed cell proliferation and promoted cell cycle arrest at G0/G1 phase in B16F0 cells; it also induced cell differentiation and increased melanin content by increasing tyrosinase (TYR) activity and mRNA levels of melanogenesis-related genes in B16F0 cells. Meanwhile, wound closure, invasion, and migration of B16F0 and B16F10 cells were dramatically inhibited. Moreover, CHB significantly increased ROS levels and decreased ΔΨm, resulting in B16F0 and B16F10 cell apoptosis. Finally, in vivo studies showed that CHB inhibited tumor growth and induced tumor apoptosis in a mouse xenograft model of murine melanoma B16F0 and B16F10 cells. Overall, CHB decreases malignant characteristics and may be a promising therapeutic agent for malignant melanoma cells via multiple signaling pathways.
Collapse
Affiliation(s)
- Lingling Si
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyan Yan
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yan Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, China
| | - Boxue Ren
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, China
| | - Huanhuan Ren
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, China
| | - Yangfang Ding
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, China
| | - Qiusheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, China
| | - Defang Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Ying Liu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
9
|
Singh H, Kinarivala N, Sharma S. Multi-Targeting Anticancer Agents: Rational Approaches, Synthetic Routes and Structure Activity Relationship. Anticancer Agents Med Chem 2020; 19:842-874. [PMID: 30657048 DOI: 10.2174/1871520619666190118120708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
We live in a world with complex diseases such as cancer which cannot be cured with one-compound one-target based therapeutic paradigm. This could be due to the involvement of multiple pathogenic mechanisms. One-compound-various-targets stratagem has become a prevailing research topic in anti-cancer drug discovery. The simultaneous interruption of two or more targets has improved the therapeutic efficacy as compared to the specific targeted based therapy. In this review, six types of dual targeting agents along with some interesting strategies used for their design and synthesis are discussed. Their pharmacology with various types of the molecular interactions within their specific targets has also been described. This assemblage will reveal the recent trends and insights in front of the scientific community working in dual inhibitors and help them in designing the next generation of multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, United States
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India.,Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, United States
| |
Collapse
|
10
|
Ruberte AC, Sanmartin C, Aydillo C, Sharma AK, Plano D. Development and Therapeutic Potential of Selenazo Compounds. J Med Chem 2019; 63:1473-1489. [PMID: 31638805 DOI: 10.1021/acs.jmedchem.9b01152] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incorporation of selenium (Se) atom into small molecules can substantially enhance their antioxidant, anti-inflammatory, antimutagenic, antitumoral or chemopreventive, antiviral, antibacterial, antifungal, antiparasitic, and neuroprotective effects. Specifically, selenazo compounds have received great attention owing to their chemical properties, pharmaceutical applications, and low toxicity. In this Perspective, we compile extensive literature evidence with the description and discussion of the most recent advances in different selenazo and selenadiazo motifs as potential pharmacological candidates. We also provide some perspectives on the challenges and future directions in the advancement of these selenazo compounds, each of which could generate drug candidates for various diseases.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carmen Sanmartin
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain.,Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| |
Collapse
|
11
|
Qin F, Wang Y, Jiang X, Wang Y, Zhang N, Wen X, Wang L, Jiang Q, He G. Design, synthesis and molecular mechanisms of novel dual inhibitors of heat shock protein 90/phosphoinositide 3-kinase alpha (Hsp90/PI3Kα) against cutaneous melanoma. J Enzyme Inhib Med Chem 2019; 34:909-926. [PMID: 30957641 PMCID: PMC8853710 DOI: 10.1080/14756366.2019.1596903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Overexpression of heat shock protein 90 (Hsp90) is common in various types of cancer. In cutaneous melanoma, a cancer with one of the high levels of Hsp90 overexpression, such expression was correlated with a panel of protein kinases, thus offering an opportunity to identify Hsp90-based multi-kinase inhibitors for novel cancer therapies. Towards this goal, we utilized a 2,4-dihydroxy-5-isopropylbenzate-based Hsp90 inhibitor scaffold and thieno[2,3-d]pyrimidine-based kinase inhibitor scaffold to develop a Hsp90-inhibiting compound library. Our inhibitory compound named 8m inhibited Hsp90 and PI3Kα with an IC50 value of 38.6 nM and 48.4 nM, respectively; it displayed improved cellular activity which could effectively induce cell cycle arrest and apoptosis in melanoma cells and lead to the inhibition of cell proliferation, colony formation, migration and invasion. Our results demonstrated 8m to be a promising lead compound for further therapeutic potential assessment of Hsp90/PI3Kα dual inhibitors in melanoma targeted therapy.
Collapse
Affiliation(s)
- Feifei Qin
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yali Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Xian Jiang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yujia Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Nan Zhang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Xiang Wen
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Lian Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Qinglin Jiang
- c School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College , Chengdu , China
| | - Gu He
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| |
Collapse
|
12
|
Leishmanicidal Activity of Isoselenocyanate Derivatives. Antimicrob Agents Chemother 2019; 63:AAC.00904-18. [PMID: 30478164 DOI: 10.1128/aac.00904-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022] Open
Abstract
Conventional chemotherapy against leishmaniasis includes agents exhibiting considerable toxicity. In addition, reports of drug resistance are not uncommon. Thus, safe and effective therapies are urgently needed. Isoselenocyanate compounds have recently been identified with potential antitumor activity. It is well known that some antitumor agents demonstrate effects against Leishmania In this study, the in vitro leishmanicidal activities of several organo-selenium and organo-sulfur compounds were tested against Leishmania major and Leishmania amazonensis parasites, using promastigotes and intracellular amastigote forms. The cytotoxicity of these agents was measured in murine peritoneal macrophages and their selectivity indexes were calculated. One of the tested compounds, the isoselenocyanate derivative NISC-6, showed selectivity indexes 2- and 10-fold higher than those of the reference drug amphotericin B when evaluated in L. amazonensis and L. major, respectively. The American strain (L. amazonensis) was less sensitive to NISC-6 than L. major, showing a trend similar to that observed previously for amphotericin B. In addition, we also observed that NISC-6 significantly reduced the number of amastigotes per infected macrophage. On the other hand, we showed that NISC-6 decreases expression levels of Leishmania genes involved in the cell cycle, such as topoisomerase-2 (TOP-2), PCNA, and MCM4, therefore contributing to its leishmanicidal activity. The effect of this compound on cell cycle progression was confirmed by flow cytometry. We observed a significant increase of cells in the G1 phase and a dramatic reduction of cells in the S phase compared to untreated cells. Altogether, our data suggest that the isoselenocyanate NISC-6 may be a promising candidate for new drug development against leishmaniasis.
Collapse
|
13
|
Alcolea V, Karelia DN, Pandey MK, Plano D, Singh P, Palop JA, Amin S, Sanmartín C, Sharma AK. Identification of a Novel Quinoxaline-Isoselenourea Targeting the STAT3 Pathway as a Potential Melanoma Therapeutic. Int J Mol Sci 2019; 20:521. [PMID: 30691132 PMCID: PMC6386884 DOI: 10.3390/ijms20030521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/31/2023] Open
Abstract
The prognosis for patients with metastatic melanoma remains very poor. Constitutive signal transducer and activator of transcription 3 (STAT3) activation has been correlated to metastasis, poor patient survival, larger tumor size, and acquired resistance against vemurafenib (PLX-4032), suggesting its potential as a molecular target. We recently designed a series of isoseleno- and isothio-urea derivatives of several biologically active heterocyclic scaffolds. The cytotoxic effects of lead isoseleno- and isothio-urea derivatives (compounds 1 and 3) were studied in a panel of five melanoma cell lines, including B-RAFV600E-mutant and wild-type (WT) cells. Compound 1 (IC50 range 0.8⁻3.8 µM) showed lower IC50 values than compound 3 (IC50 range 8.1⁻38.7 µM) and the mutant B-RAF specific inhibitor PLX-4032 (IC50 ranging from 0.4 to >50 µM), especially at a short treatment time (24 h). These effects were long-lasting, since melanoma cells did not recover their proliferative potential after 14 days of treatment. In addition, we confirmed that compound 1 induced cell death by apoptosis using Live-and-Dead, Annexin V, and Caspase3/7 apoptosis assays. Furthermore, compound 1 reduced the protein levels of STAT3 and its phosphorylation, as well as decreased the expression of STAT3-regulated genes involved in metastasis and survival, such as survivin and c-myc. Compound 1 also upregulated the cell cycle inhibitor p21. Docking studies further revealed the favorable binding of compound 1 with the SH2 domain of STAT3, suggesting it acts through STAT3 inhibition. Taken together, our results suggest that compound 1 induces apoptosis by means of the inhibition of the STAT3 pathway, non-specifically targeting both B-RAF-mutant and WT melanoma cells, with much higher cytotoxicity than the current therapeutic drug PLX-4032.
Collapse
Affiliation(s)
- Verónica Alcolea
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain.
| | - Deepkamal N Karelia
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| | - Manoj K Pandey
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain.
| | - Parvesh Singh
- School of Chemistry and Physics, University of Kwa-Zulu Natal (UKZN), Westville Campus, Durban 4000, South Africa.
| | - Juan Antonio Palop
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain.
| | - Shantu Amin
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain.
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
14
|
Frieben EE, Amin S, Sharma AK. Development of Isoselenocyanate Compounds’ Syntheses and Biological Applications. J Med Chem 2019; 62:5261-5275. [DOI: 10.1021/acs.jmedchem.8b01698] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Emily E. Frieben
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Shantu Amin
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
15
|
Tomczyk MD, Walczak KZ. l,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur J Med Chem 2018; 159:393-422. [PMID: 30312931 DOI: 10.1016/j.ejmech.2018.09.055] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022]
Abstract
In this review, we describe a detailed investigation about the structural variations and relative activity of 1,8-naphthalimide based intercalators and anticancer agents. The 1,8-naphthalimides binds to the DNA via intercalation, and exert their antitumor activities through Topoisomerase I/II inhibition, photoinduced DNA damage or related mechanism. Here, our discussion focused on works published over the last ten years (2007-2017) related to therapeutic applications, in the order of cancer treatment followed by other properties of 1,8-naphthalimides. In preparing for this review, we considered that several seminal reviews have appeared over the last fifteen years and focused on closely related subjects, however, none of them is exhaustive.
Collapse
Affiliation(s)
- Mateusz D Tomczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Krzysztof Z Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
16
|
Capilla AS, Soucek R, Grau L, Romero M, Rubio-Martínez J, Caignard DH, Pujol MD. Substituted tetrahydroisoquinolines: synthesis, characterization, antitumor activity and other biological properties. Eur J Med Chem 2018; 145:51-63. [PMID: 29324343 DOI: 10.1016/j.ejmech.2017.12.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Abstract
This work deals with the molecular design, synthesis and biological activity of a series of tetrahydro[1,4]dioxanisoquinolines and dimethoxyisoquinoline analogues. This study describes the synthesis strategy of these potential antitumor compounds, their multi-step synthesis and their optimization. A series of tetrahydroisoquinolines was synthesized and their cytotoxicity evaluated. Some of these tetrahydroisoquinolines showed promising KRas inhibition, antiangiogenesis activity and antiosteoporosis properties. Molecular modeling studies showed that compound 12 bind in the p1 pocket of the KRas protein making interactions with the hydrophobic residues Leu56, Tyr64, Tyr71 and Thr74 and hydrogen bonds with residues Glu37 and Asp38.
Collapse
Affiliation(s)
- A Sergi Capilla
- Laboratori de Química Farmacèutica (Unitat associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Spain
| | - Richard Soucek
- Laboratori de Química Farmacèutica (Unitat associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Spain
| | - Laura Grau
- Laboratori de Química Farmacèutica (Unitat associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Spain
| | - Manel Romero
- Laboratori de Química Farmacèutica (Unitat associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Spain
| | - Jaime Rubio-Martínez
- Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona and the Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Barcelona, Spain
| | - Daniel H Caignard
- Les laboratoires Servier, 1 rue Carle Hébert-92415, Courbevoie Cedex, 92200 Neuilly-sur Seine, France
| | - Maria Dolors Pujol
- Laboratori de Química Farmacèutica (Unitat associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Spain.
| |
Collapse
|