1
|
Zhang H, Gomika Udugamasooriya D. Linker optimization and activity validation of a cell surface vimentin targeted homo-dimeric peptoid antagonist for lung cancer stem cells. Bioorg Med Chem 2024; 97:117560. [PMID: 38103535 DOI: 10.1016/j.bmc.2023.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) endows epithelia-derived cancer cells with properties of stem cells that govern cancer invasion and metastasis. Vimentin is one of the best studied EMT markers and recent reports indicate that vimentin interestingly translocated onto cell surface under various tumor conditions. We recently reported a cell surface vimentin (CSV) specific peptoid antagonist named JM3A. We now investigated the selective antagonist activity of the optimized homo-dimeric version of JM3A, JM3A-L2D on stem-like cancer cells or cancer stem cells (CSCs) over normal cells in non-small cell lung cancer (NSCLC). Homo-dimerization of JM3A provided the avidity effect and improved the biological activity compared to the monomeric version. We first optimized the central linker length of the dimer by designing seven JM3A derivatives with varying linker lengths/types and evaluated the anti-cancer activity using the standard MTS cell viability assay. The most optimized derivative contains a central lysine linker and two glycines, named JM3A-L2D, which displayed 100 nM vimentin binding affinity (Kd) with an anti-cancer activity (IC50) of 6.7 µM on H1299 NSCLC cells. This is a 190-fold improvement in binding over the original JM3A. JM3A-L2D exhibited better potency on high vimentin-expressing NSCLC cells (H1299 and H460) compared to low vimentin-expressing NSCLC cells (H2122). No activity was observed on normal bronchial HBEC3-KT cells. The anti-CSC activity of JM3A-L2D was evaluated using the standard colony formation assay and JM3A-L2D disrupted the colony formation with IC50 ∼ 400 nM. In addition, JM3A-L2D inhibited cell migration activity at IC50 ∼ 2 µM, assessed via wound healing assay. The underlying mechanism of action seems to be the induction of apoptosis by JM3A-L2D on high-vimentin expressing H1229 and H460 NSCLC cells. Our optimized highly CSV selective peptoid has the potential to be developed as an anti-cancer drug candidate, especially considering the high serum stability and economical synthesis of peptoids.
Collapse
Affiliation(s)
- Haowen Zhang
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4349 Martin Luther King Boulevard, Health Building 2, Room 7033, Houston, TX 77204-5037, USA
| | - D Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4349 Martin Luther King Boulevard, Health Building 2, Room 7033, Houston, TX 77204-5037, USA; Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX 77030-4009, USA.
| |
Collapse
|
2
|
Tate P, Mastrodomenico V, Cunha C, McClure J, Barron AE, Diamond G, Mounce BC, Kirshenbaum K. Peptidomimetic Oligomers Targeting Membrane Phosphatidylserine Exhibit Broad Antiviral Activity. ACS Infect Dis 2023; 9:1508-1522. [PMID: 37530426 PMCID: PMC10425984 DOI: 10.1021/acsinfecdis.3c00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 08/03/2023]
Abstract
The development of durable new antiviral therapies is challenging, as viruses can evolve rapidly to establish resistance and attenuate therapeutic efficacy. New compounds that selectively target conserved viral features are attractive therapeutic candidates, particularly for combating newly emergent viral threats. The innate immune system features a sustained capability to combat pathogens through production of antimicrobial peptides (AMPs); however, these AMPs have shortcomings that can preclude clinical use. The essential functional features of AMPs have been recapitulated by peptidomimetic oligomers, yielding effective antibacterial and antifungal agents. Here, we show that a family of AMP mimetics, called peptoids, exhibit direct antiviral activity against an array of enveloped viruses, including the key human pathogens Zika, Rift Valley fever, and chikungunya viruses. These data suggest that the activities of peptoids include engagement and disruption of viral membrane constituents. To investigate how these peptoids target lipid membranes, we used liposome leakage assays to measure membrane disruption. We found that liposomes containing phosphatidylserine (PS) were markedly sensitive to peptoid treatment; in contrast, liposomes formed exclusively with phosphatidylcholine (PC) showed no sensitivity. In addition, chikungunya virus containing elevated envelope PS was more susceptible to peptoid-mediated inactivation. These results indicate that peptoids mimicking the physicochemical characteristics of AMPs act through a membrane-specific mechanism, most likely through preferential interactions with PS. We provide the first evidence for the engagement of distinct viral envelope lipid constituents, establishing an avenue for specificity that may enable the development of a new family of therapeutics capable of averting the rapid development of resistance.
Collapse
Affiliation(s)
- Patrick
M. Tate
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Vincent Mastrodomenico
- Department
of Microbiology and Immunology, Loyola University
Chicago Medical Center, Maywood, Illinois 60130, United States
| | - Christina Cunha
- Department
of Microbiology and Immunology, Loyola University
Chicago Medical Center, Maywood, Illinois 60130, United States
| | | | - Annelise E. Barron
- Maxwell
Biosciences, Austin, Texas 78738, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Gill Diamond
- Department
of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky 40292, United States
| | - Bryan C. Mounce
- Department
of Microbiology and Immunology, Loyola University
Chicago Medical Center, Maywood, Illinois 60130, United States
| | - Kent Kirshenbaum
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Maxwell
Biosciences, Austin, Texas 78738, United States
| |
Collapse
|
3
|
Shukla SP, Zhang H, Fang B, Minna JD, Gomika Udugamasooriya D. Unbiased peptoid cell screen identifies a peptoid targeting newly appeared cell surface vimentin on tumor transformed early lung cancer cells. Bioorg Med Chem 2022; 58:116673. [PMID: 35189561 PMCID: PMC9040685 DOI: 10.1016/j.bmc.2022.116673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022]
Abstract
To identify potential new reagents and biomarkers for early lung cancer detection we combined the use of a novel preclinical isogenic model of human lung epithelial cells comparing non-malignant cells with those transformed to full malignancy using defined oncogenic changes and our on-bead two color (red and green stained cells) (OBTC) peptoid combinatorial screening methodology. The preclinical model used normal parent lung epithelial cells (HBEC3-KT, labeled with green dye) and isogenic fully malignant transformed derivatives (labeled with a red dye) via the sequential introduction of key genetic alterations of p53 knockdown, oncogenic KRAS and overexpression of cMYC (HBEC3p53, KRAS, cMYC). Using the unbiased OBTC screening approach, we tested 100,000 different peptoids and identified only one (named JM3A) that bound to the surface of the HBEC3p53, KRAS, cMYC cells (red cells) but not HBEC3-KT cells (green cells). Using the JM3A peptoid and proteomics, we identified the protein bound as vimentin using multiple validation approaches. These all confirmed the cell surface expression of vimentin (CSV) on transformed (HBEC3p53, KRAS, cMYC) but not on untransformed (HBEC3-KT) cells. JM3A coupled with fluorophores was able to detect and stain cell surface vimentin on very early stage lung cancers but not normal lung epithelial cells in a fashion comparable to that using anti-vimentin antibodies. We conclude: using a combined isogenic preclinical model of lung cancer and two color screening of a large peptoid library, we have identified differential expression of cell surface vimentin (CSV) after malignant transformation of lung epithelial cells, and developed a new peptoid reagent (JM3A) for detection of CSV which works well in staining of early stage NSCLCs. This new, highly specific, easy to prepare, CSV detecting JM3A peptoid provides an important new reagent for identifying cancer cells in early stage tumors as well as a resource for detection and isolating of CSV expressing circulating tumor cells.
Collapse
Affiliation(s)
- Satya Prakash Shukla
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Haowen Zhang
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery - Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA; Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX , USA.
| |
Collapse
|
4
|
A novel peptidomimetic therapeutic for selective suppression of lung cancer stem cells over non-stem cancer cells. Bioorg Chem 2021; 116:105340. [PMID: 34530236 DOI: 10.1016/j.bioorg.2021.105340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022]
Abstract
Cancers are highly heterogeneous and typically contain a small subset of drug-resisting cells called tumor initiating cells or cancer stem cells (CSCs). CSCs can self-renew, divide asymmetrically, and often cause tumor invasion and metastasis. Therefore, treatments specifically targeting CSCs are critical to improve patient survival. Recently, we identified a highly specific peptidomimetic (peptoid - PCS2) that selectively binds to the CSC subpopulation of lung cancer over the remaining cancer cells (non-CSCs). Subsequently, we identified plectin as the target of PCS2. Plectin is an intracellular structural protein, which is involved in tumor invasion and metastasis when it appears on cell surface. While PCS2 monomer did not display any anti-cancer activity, we designed a series of homo-dimeric versions of PCS2, and identified PCS2D1.2 optimized homo-dimer that displayed highly specific cytotoxicity towards CSCs over non-CSCs. PCS2D1.2 effectively blocked the in vitro colony formation and cell migration, hallmarks of CSCs. Furthermore, PCS2D1.2 reduced the in vivo tumor formation. In both in vitro and in vivo studies, PCS2D1.2 effectively reduced plectin expression and/or plectin-rich CSCs, but had no effect on non-CSCs. Therefore, PCS2D1.2 has the potential to be developed as a highly CSC specific drug candidate, which can be used in combination with current anti-cancer drugs.
Collapse
|
5
|
Abstract
One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca2+ ions. This makes radiolabeled annexins valuable apoptosis imaging agents for clinical and biomedical research applications for monitoring apoptosis in vivo. However, the use of radiolabeled annexin V for in vivo imaging of cell death has been met with a variety of challenges which have prevented its translation into the clinic. These difficulties include: complicated and time-consuming radiolabeling procedures, sub-optimal biodistribution, inadequate pharmacokinetics leading to poor tumour-to-blood contrast ratios, reliance upon Ca2+ concentrations in vivo, low tumor tissue penetration, and an incomplete understanding of what constitutes the best imaging protocol following induction of apoptosis. Therefore, new concepts and improved strategies for the development of PS-binding radiotracers are needed. Radiolabeled PS-binding peptides and various Zn(II) complexes as phosphate chemosensors offer an innovative strategy for radionuclide-based molecular imaging of apoptosis with PET and SPECT. Radiolabeled peptides and Zn(II) complexes provide several advantages over annexin V including better pharmacokinetics due to their smaller size, better availability, simpler synthesis and radiolabeling strategies as well as facilitated tissue penetration due to their smaller size and faster blood clearance profile allowing for optimized image contrast. In addition, peptides can be structurally modified to improve metabolic stability along with other pharmacokinetic and pharmacodynamic properties. The present review will summarize the current status of radiolabeled annexins, peptides and Zn(II) complexes developed as radiotracers for imaging apoptosis through targeting PS utilizing PET and SPECT imaging.
Collapse
|
6
|
Rustagi V, Udugamasooriya DG. Identification of side arm-modified DOTA scaffolds as multi-site binding ligands for cancer cells over normal cells. Bioorg Med Chem Lett 2019; 29:126619. [PMID: 31431362 DOI: 10.1016/j.bmcl.2019.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
Abstract
The metal-chelated 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-tetraamide (DOTA) scaffold has been widely used as a contrast agent for diagnostic purposes in positron emission tomography (PET) and magnetic resonance imaging (MRI), but not as a biomarker targetable ligand. While the oxygen atoms at the stem of the four arms of the DOTA scaffold are needed for metal chelation, we previously introduced various physiochemical properties to extend these arms in a chemical library fashion to enhance the imaging contrast mechanism. We developed two such on-bead libraries, with 80 and 76 DOTA derivatives, where one arm was used to attach the DOTA scaffold onto resin beads and the other three arms were chemically modified. We now hypothesized that the chemical moieties used to modify these three arms can also recognize biomarkers on a cell surface. Therefore in this current study, we used such 76 derivatives of DOTA library to screen against HeLa cervical cancer cells. We found that two of the four 'hits' identified displayed higher binding towards HeLa cells than the unmodified parent DOTA. Furthermore, one of those 'hits' displayed better binding towards cervical and prostate cancer cells than lung and breast cancer cells and normal HBEC-3KT and RWPE1 cells. This indicates that this derivative can recognize a biomarker specific for certain types of cancer cells. If the compound has intrinsic activity, this can be used as a theranostic agent for real time therapy monitoring applications in the future. We believe that our DOTA derivative-based library approach can be applied to other types of cell and protein screens on various disease types in the future.
Collapse
Affiliation(s)
- Vineeta Rustagi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Health Building 2, Room 7033, Houston, TX 77204-5037, USA
| | - D Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Health Building 2, Room 7033, Houston, TX 77204-5037, USA; Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX 77030-4009, USA.
| |
Collapse
|
7
|
Rustagi V, Gomika Udugamasooriya D. A facile on-bead method for fully symmetric tetra-substituted DOTA derivatizations using peptoid moieties. Biopolymers 2018; 110:e23249. [PMID: 30550621 DOI: 10.1002/bip.23249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 11/07/2022]
Abstract
The metal-chelated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) has made a significant impact on the field of diagnostic imaging. This imaging mechanism is largely dependent on the four side arm functionalities around the DOTA scaffold. We previously demonstrated the effect of peptoid residue modification on these DOTA side arms, thereby conferring diverse physiochemical properties to the imaging mechanism. We generated two on-bead Eu(III)-DOTA libraries with three side arm modifications, where the remaining arm was used to attach DOTA onto the resin. However, having an on-bead fully symmetric tetra-substituted DOTA synthesis route can greatly improve the fields of diagnostic, therapeutic, and theragnostic agent development. Here, we report an efficient method for the synthesis of symmetric tetra-substituted DOTA derivatives by modification with peptoid moieties on all four arms using a conceptually unique solid-phase synthesis approach. Resins with different loading capacities were examined for synthesis feasibility and high loading resins were most effective. The reaction yields were also studied by varying the number of peptoid residues and incorporating different linkers. We have tested the binding ability of the tetra-substituted derivative with its previously tested tri-substituted analogs as model applications. Our protocol provides an efficient and facile on-bead synthesis route for fully symmetric tetra-substituted DOTA derivatizations.
Collapse
Affiliation(s)
- Vineeta Rustagi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Health Building 2, Room 7033, Houston, Texas 77204-5037
| | - D Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Health Building 2, Room 7033, Houston, Texas 77204-5037
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77030-4009
| |
Collapse
|
8
|
Hartweg M, Edwards-Gayle CJC, Radvar E, Collis D, Reza M, Kaupp M, Steinkoenig J, Ruokolainen J, Rambo R, Barner-Kowollik C, Hamley IW, Azevedo HS, Becer CR. Ugi multicomponent reaction to prepare peptide–peptoid hybrid structures with diverse chemical functionalities. Polym Chem 2018. [DOI: 10.1039/c7py01953j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequence defined peptide–peptoid hybrids create new opportunities for self-assembled nano-structures.
Collapse
Affiliation(s)
- Manuel Hartweg
- School of Engineering and Materials Science
- Queen Mary University
- London
- UK
| | | | - Elham Radvar
- School of Engineering and Materials Science
- Queen Mary University
- London
- UK
| | - Dominic Collis
- School of Engineering and Materials Science
- Queen Mary University
- London
- UK
| | - Mehedi Reza
- Department of Applied Physics
- Aalto University
- Finland
| | - Michael Kaupp
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Jan Steinkoenig
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | | | | | - Christopher Barner-Kowollik
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Ian W. Hamley
- Department of Chemistry
- University of Reading
- Reading
- UK
| | - Helena S. Azevedo
- School of Engineering and Materials Science
- Queen Mary University
- London
- UK
| | - C. Remzi Becer
- School of Engineering and Materials Science
- Queen Mary University
- London
- UK
| |
Collapse
|
9
|
Shukla SP, Udugamasooriya DG. A mini-library system to investigate non-essential residues of lipid-phosphatidylserine (PS) binding peptide-peptoid hybrid PPS1. MEDCHEMCOMM 2017. [PMID: 29527284 DOI: 10.1039/c7md00372b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We recently identified a peptide-peptoid hybrid, PPS1, which specifically recognized lipid-phosphatidylserine (PS). PPS1 consists of distinct positively charged and hydrophobic residue-containing regions. PPS1 monomer was inactive, but the dimeric form, PPS1D1, displayed strong cytotoxicity for lung cancer cells compared to normal cells in vitro, and reduced the tumor growth in vivo. The minimum pharmacophore of PPS1D1 showed that the first (methionine) and fourth (N-lysine) residues were not important for PPS1D1 cytotoxic activity. In this study, we further investigated these two residues, in particular the fourth residue that lies between the most important four residue hydrophobic region and two positively charged residues, to determine whether replacements of these moieties could gain activity improvements, or render PPS1D1 totally insensitive for binding recognition. The positively charged fourth residue N-lysine was replaced with the substituents having varied physiochemical properties, such as aromatic-hydrophobic, aliphatic-alicyclic, heterocyclic, and negatively charged residues, developing a mini-library of 39 derivatives. The standard 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) colorimetric and/or the calcein AM cell viability assays performed on HCC4017 lung cancer cells indicated that the fourth position of PPS1D1 was insensitive to most changes, except reversal to the negative charge significantly affected the activity. This observation may be due to the neutralization of the nearby positively charged residue that is essential for binding. In addition, shortening each monomeric sequence by eliminating the methionine at the first position did not affect the activity.
Collapse
Affiliation(s)
- Satya Prakash Shukla
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5037, USA
| | - D Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5037, USA.,Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX 77030-4009, USA
| |
Collapse
|