1
|
Pozzetti L, Pinhammer MM, Asquith CRM. Medicinal chemistry applications of the Dimroth Rearrangement to the synthesis of biologically active compounds. Eur J Med Chem 2025; 289:117399. [PMID: 40024165 DOI: 10.1016/j.ejmech.2025.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
The Dimroth Rearrangement (DR) is an isomerization process involving the translocation of exo- and endocyclic nitrogen atoms in heterocyclic systems via a ring opening, rotation, and ring closure mechanism. Originally discovered over 120 years ago, the mechanistic occurrence of the DR on multiple heterocycles has been widely studied, and its application to the synthesis of biologically active compounds is well documented, albeit on some occasions not directly referenced. A surprisingly high number of drug discovery programs take advantage of the DR for the synthesis of heterocycle-containing compounds, including 4-aminopyrimidines and 4-anilinoquinazolines. Evidence of the flexibility and valuable potential of the DR can be found in the use of this reaction in the manufacture processes of several active pharmaceutical ingredients (APIs) on a commercial scale, allowing a reduction in the manufacturing costs and the environmental burden of the synthetic routes. The aim of this review is to outline the generality and broad applicability of the DR to the synthesis of biologically active compounds and highlight the opportunities to utilize this tool more widely within the medicinal chemistry toolbox.
Collapse
Affiliation(s)
- Luca Pozzetti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maja M Pinhammer
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Christopher R M Asquith
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
2
|
Kumar A, Kumar B, Bhatia R. Design, Synthesis, Molecular Docking, and Biological Evaluation of Isatin-Based Fused Heterocycles As Epidermal Growth Factor Receptor Inhibitors. Assay Drug Dev Technol 2023; 21:222-233. [PMID: 37439798 DOI: 10.1089/adt.2022.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
A series of isatin-based fused heterocycles were designed, synthesized, and evaluated for anticancer activity against four cancer cell lines: MCF-7, MDA-MB-231, A549, and HL-60. Among them, Q3 and T4 were found to be potent anticancer agents. Furthermore, two compounds Q3 and T4 were selected for epidermal growth factor receptor (EGFR) inhibitory activity. Two compounds Q3 and T4 were found to be most potent EGFR inhibitors with IC50 of 0.22 ± 0.10 and 0.19 ± 0.07 μM. The EGFR inhibitory activity of standard drug erlotinib was 0.08 ± 0.02 μM. Structural Activity Relationship studies showed that electronegative atoms were necessary for EGFR inhibitory potential. Finally, molecular docking studies were carried out to check the binding pattern of synthesized derivatives with the adenosine triphosphate (ATP) binding site of EGFR and results revealed that compounds Q3 (-9.2 kcal/mol) and T4 (-8.9 kcal/mol) exhibited better binding affinity than reference drug erlotinib (-7.3 kcal/mol).
Collapse
Affiliation(s)
- Ankush Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar, India
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, India
| |
Collapse
|
3
|
Șandor A, Ionuț I, Marc G, Oniga I, Eniu D, Oniga O. Structure-Activity Relationship Studies Based on Quinazoline Derivatives as EGFR Kinase Inhibitors (2017-Present). Pharmaceuticals (Basel) 2023; 16:534. [PMID: 37111291 PMCID: PMC10141396 DOI: 10.3390/ph16040534] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a critical role in the tumorigenesis of various forms of cancer. Targeting the mutant forms of EGFR has been identified as an attractive therapeutic approach and led to the approval of three generations of inhibitors. The quinazoline core has emerged as a favorable scaffold for the development of novel EGFR inhibitors due to increased affinity for the active site of EGFR kinase. Currently, there are five first-generation (gefitinib, erlotinib, lapatinib, vandetanib, and icotinib) and two second-generation (afatinib and dacomitinib) quinazoline-based EGFR inhibitors approved for the treatment of various types of cancers. The aim of this review is to outline the structural modulations favorable for the inhibitory activity toward both common mutant (del19 and L858R) and resistance-conferring mutant (T790M and C797S) EGFR forms, and provide an overview of the newly synthesized quinazoline derivatives as potentially competitive, covalent or allosteric inhibitors of EGFR.
Collapse
Affiliation(s)
- Alexandru Șandor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Dan Eniu
- Department of Surgical Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 34-36 Republicii Street, 40015 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| |
Collapse
|
4
|
Zayed MF. Medicinal Chemistry of Quinazolines as Anticancer Agents Targeting Tyrosine Kinases. Sci Pharm 2023. [DOI: 10.3390/scipharm91020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Cancer is a large group of diseases that can affect any organ or body tissue due to the abnormal cellular growth with the unknown reasons. Many of the existing chemotherapeutic agents are highly toxic with a low level of selectivity. Additionally, they lead to development of therapeutic resistance. Hence, the development of targeted chemotherapeutic agents with low side effects and high selectivity is required for cancer treatment. Quinazoline is a vital scaffold well-known to be linked with several biological activities. The anticancer activity is one of the prominent biological activities of this scaffold. Several established anticancer quinazolines work by different mechanisms on the various molecular targets. The aim of this review is to present different features of medicinal chemistry as drug design, structure activity relationship, and mode of action of some targeted anticancer quinazoline derivatives. It gives comprehensive attention on the chemotherapeutic activity of quinazolines in the viewpoint of drug discovery and its development. This review provides panoramic view to the medicinal chemists for supporting their efforts to design and synthesize novel quinazolines as targeted chemotherapeutic agents.
Collapse
|
5
|
New application of novel tetrazine derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Future Med Chem 2022; 14:1251-1266. [PMID: 35950486 DOI: 10.4155/fmc-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: A novel series of s-tetrazine derivatives was designed as a new scaffold and synthesized efficiently as VEGFR-2 inhibitors for the first time. Methodology & results: The inhibitory activities of the new compounds were tested by MTT assay and enzyme assay, respectively. Western blot assay, cell apoptosis assay and cell migration assay were carried out to study the action mechanism of them. All the synthesized compounds showed evident VEGFR-2 inhibitory activities (IC50 in the range of 88.53-257.55 nM). Compounds 23h, 25d, 26e and 27c showed excellent anti-proliferative activities against the four tested cell lines and were better than sorafenib basically. Conclusion: Compounds with good activities based on this novel scaffold can be screened successfully.
Collapse
|
6
|
Haider K, Das S, Joseph A, Yar MS. An appraisal of anticancer activity with structure-activity relationship of quinazoline and quinazolinone analogues through EGFR and VEGFR inhibition: A review. Drug Dev Res 2022; 83:859-890. [PMID: 35297084 DOI: 10.1002/ddr.21925] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 12/28/2022]
Abstract
Cancer is one of the leading causes of death. Globally a huge number of deaths and new incidences are reported annually. Heterocyclic compounds have been proved to be very effective in the treatment of different types of cancer. Among different heterocyclic scaffolds, quinazoline and quinazolinone core were found versatile and interesting with many biological activities. In the discovery of novel anticancer agents, the Quinazoline core is very effective. The FDA has approved more than 20 drugs as an anticancer bearing quinazoline or quinazolinone core in the last two decades. One prime example is Dacomitinib, which was newly approved for non-small-cell lung carcinoma treatment in 2018. These drugs work by different pathways to prevent the spread of cancer cell progression, including inhibition of different kinases, tubulin, kinesin spindle protein, and so forth. This review presented recent developments of quinazoline/quinazolinone scaffold bearing derivatives as anticancer agents acting as epidermal growth factor receptor (EGFR) vascular endothelial growth factor receptor (VEGFR), and dual EGFR/VEGFR inhibitors.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Centre for Excellence for Biomaterials Engineering, Faculty of Applied Sciences, AIMST University, Malaysia
| |
Collapse
|
7
|
Chao G, Yutong Z, Lingling C, Hao W, Jiajie M, Mengxin B, Honglin D, Xiaojie S, Limin L, Yang Z, Jiaxin Z, Yu K, Hongmin L, Qiurong Z. Synthesis and Antiproliferative Activity Evaluation of Novel 2,4,6-Trisubstituted Pyrimidine Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Design, synthesis, biological evaluation and docking study of novel quinazoline derivatives as EGFR-TK inhibitors. Future Med Chem 2021; 13:601-612. [PMID: 33685233 DOI: 10.4155/fmc-2020-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Quinazoline-based compounds have been proved effective in the treatment of cancers for years. Materials & methods: The structural features of several inhibitors of EGFR were integrated and quinazolines with a benzazepine moiety at the 4-position were constructed. Results: Most of the compounds exhibited excellent antitumor activities. Compound 33e showed excellent antitumor activities against the four tested cell lines (IC50: 1.06-3.55 μM). The enzymatic, signaling pathways and apoptosis assay of 33e were subsequently carried out to study the action of the mechanism. Conclusion: Compound 33e with a benzazepine moiety at the 4-position can be screened in this study and provides useful information for the design of EGFR-T790M inhibitors, which deserve additional research.
Collapse
|
9
|
Bansal R, Malhotra A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur J Med Chem 2020; 211:113016. [PMID: 33243532 DOI: 10.1016/j.ejmech.2020.113016] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/16/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023]
Abstract
Presently cancer is a grave health issue with predominance beyond restrictions. It can affect any organ of the body. Most of the available chemotherapeutic drugs are highly toxic, not much selective and eventually lead to the development of resistance. Therefore, a target specific palliative approach for the treatment of cancer is required. Remarkable advancements in science have illuminated various molecular pathways responsible for cancer. This has resulted in abundant opportunities to develop targeted anticancer agents. Quinazoline nucleus is a privileged scaffold with significant diversified pharmacological activities. Numerous established anticancer quinazoline derivatives constitute a new class of chemotherapeutic agents which are found to act by inhibiting various protein kinases as well as other molecular targets. A recent update on various quinazoline derivatives acting on different types of molecular targets for the treatment of cancer has been compiled in this review. Brief SAR studies of quinazoline derivatives acting through different mechanisms of action have been highlighted. The comprehensive medicinal chemistry aspects of these agents in this review provide a panoramic view to the biologists as well as medicinal chemists working in this area and would assist them in their efforts to design and synthesize novel quinazoline based anticancer compounds.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh, 160014, India.
| | - Anjleena Malhotra
- University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
10
|
Malhotra A, Bansal R, Halim CE, Yap CT, Sethi G, Kumar AP, Bishnoi M, Yadav K. Novel amide analogues of quinazoline carboxylate display selective antiproliferative activity and potent EGFR inhibition. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02634-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Bhatia P, Sharma V, Alam O, Manaithiya A, Alam P, Kahksha, Alam MT, Imran M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur J Med Chem 2020; 204:112640. [PMID: 32739648 DOI: 10.1016/j.ejmech.2020.112640] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
The over expression of EGFR has been recognized as the driver mechanism in the occurrence and progression of carcinomas such as lung cancer, breast cancer, pancreatic cancer, etcetera. EGFR receptor was thus established as an important target for the management of solid tumors. The occurrence of resistance caused as a result of mutations in EGFR has presented a formidable challenge in the discovery of novel inhibitors of EGFR. This has resulted in the development of three generations of EGFR TKIs. Newer mutations like C797S cause failure of Osimertinib and other EGFR TKIs belonging to the third-generation caused by the development of resistance. In this review, we have summarized the work done in the last five years to overcome the limitations of currently marketed drugs, giving structural activity relationships of quinazoline-based lead compounds synthesized and tested recently. We have also highlighted the shortcomings of the currently used approaches and have provided guidance for circumventing these limitations. Our review would help medicinal chemists streamline and guide their efforts towards developing novel quinazoline-based EGFR inhibitors.
Collapse
Affiliation(s)
- Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kahksha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Tauquir Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| |
Collapse
|
12
|
Ahmed EA, Mohamed MFA, Omran A, Salah H. Synthesis, EGFR-TK inhibition and anticancer activity of new quinoxaline derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1787448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eman A. Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mamdouh F. A. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Ahmed Omran
- Department of Pharmacology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hanan Salah
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
13
|
Zhang Y, Wang L, Sun B, Li X, Hou Q, Wang W, Li B. Synthesis and Antiproliferative Activities of Novel Substituted 5-Anilino-α-Glucofuranose Derivatives. Chem Biodivers 2020; 17:e1900739. [PMID: 32141216 DOI: 10.1002/cbdv.201900739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
In order to find novel antitumor candidate agents with high efficiency and low toxicity, 14 novel substituted 5-anilino-α-glucofuranose derivatives have been designed, synthesized and evaluated for antiproliferative activities in vitro. Their structures were characterized by NMR (1 H and 13 C) and HR-MS, and configuration (R/S) at C(5) was identified by two-dimensional 1 H,1 H-NOESY-NMR spectrum. Their antiproliferative activities against human tumor cells were investigated by MTT assay. The results demonstrated that most of the synthesized compounds had antiproliferative effects comparable to the reference drugs gefitinib and lapatinib. In particular, (5R)-5-O-(3-chloro-4-{[5-(4-fluorophenyl)thiophen-2-yl]methyl}anilino)-5-deoxy-1,2-O-(1-methylethylidene)-α-glucofuranose (9da) showed the most potent antiproliferative effects against SW480, A431 and A549 cells, with IC50 values of 8.57, 5.15 and 15.24 μm, respectively. This work suggested 5-anilino-α-glucofuranose as an antitumor core structure that may open a new way to develop more potent anti-cancer agents.
Collapse
Affiliation(s)
- Yaling Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lili Wang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Baoli Sun
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xiabing Li
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiaoli Hou
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wei Wang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Baolin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, P. R. China.,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
14
|
Ibrahim TS, Sheha TA, Abo-Dya NE, AlAwadh MA, Alhakamy NA, Abdel-Samii ZK, Panda SS, Abuo-Rahma GEDA, Mohamed MFA. Design, synthesis and anticancer activity of novel valproic acid conjugates with improved histone deacetylase (HDAC) inhibitory activity. Bioorg Chem 2020; 99:103797. [PMID: 32247939 DOI: 10.1016/j.bioorg.2020.103797] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Twenty-five valproic acid conjugates have been designed and synthesized. All target compounds were explored for their in vitro anti-proliferative activities using the MTT-based assay against four human cancer cell lines includingliver (HePG2), colon (HCT116), breast (MCF7) and cervical (HeLa) carcinoma cell lines. Out of six valproic acid-amino acid conjugates 2a-f. Only cysteine containing conjugate 2f showed the significant activity (IC50 9.10 µM against HePG2 and 6.81 µM against HCT116). However conjugate 2j showed broad-spectrum antitumor activity against all cell lines tested. In addition, conjugates 4j and 4k which contains phenyl hydrazide and hydroxamic acid group, respectively, also showed broad spectrum activity. Furthermore, six compounds were screened for HDAC 1-9 isozymes inhibitory activities. Compounds 2j, 4j and 4k manifested a higher inhibitory activity more than valproic acid but less than SAHA. In addition, the in vivo antitumor screening of 2j, 4j and 4k was done and the results have shown that 2j, 4j and 4k, particularly 4j, showed a significant decrease in tumor size and presented a considerable decrease in viable EAC count. Docking study of selectedcompound 4j revealed that it can bind nicely to the binding pocket of HDAC 1, 2, 3, 4 and HDAC 8. The results suggest that compounds 2j, 4j and 4k, particularly 4j, may be promising lead candidates for the development of novel targeted anti-tumor drug potentially via inhibiting HDACs.
Collapse
Affiliation(s)
- Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Taghreed A Sheha
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nader E Abo-Dya
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed A AlAwadh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zakaria K Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Siva S Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| | | | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
| |
Collapse
|
15
|
Zhang Y, Chen L, Li X, Gao L, Hao Y, Li B, Yan Y. Novel 4-arylaminoquinazolines bearing N, N-diethyl(aminoethyl)amino moiety with antitumour activity as EGFR wt-TK inhibitor. J Enzyme Inhib Med Chem 2020; 34:1668-1677. [PMID: 31530043 PMCID: PMC6758725 DOI: 10.1080/14756366.2019.1667341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herein, four novel 4-arylaminoquinazoline derivatives with N,N-diethyl(aminoethyl)amino moiety were designed, synthesised and evaluated on biological activities in vitro. All synthesised compounds have inhibitory effects against tumour cells (SW480, A549, A431 and NCI-H1975). In particular, 4-(3-chloro-4-(3-fluorobenzyloxy)phenylamino)-6-(5-((N,N-diethyl(aminoethyl))aminomethyl)furan-2-yl)quinazoline (6a) and 6-(5-((N,N-diethylethyl)aminomethyl)furan-2-yl)-4-(4-(E)-(propen-1-yl)phenylamino)quinazoline (6d) were potent antitumour agents which showed high antiproliferative activities against tumour cells in vitro. Moreover, compound 6a could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G0/G1 phase at tested concentrations. Also, compound 6a could inhibit the activity of wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) with IC50 value of 15.60 nM. Molecular docking showed that compound 6a formed three hydrogen bonds with EGFRwt-TK, while lapatinib formed only two hydrogen bonds with the receptor protein. It is believed that this work would be giving a reference for developing anti-cancer drugs targeted EGFR-TK.
Collapse
Affiliation(s)
- Yaling Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an , P. R. China
| | - Li Chen
- School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an , P. R. China
| | - Xiabing Li
- School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an , P. R. China
| | - Li Gao
- School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an , P. R. China
| | - Yunxia Hao
- School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an , P. R. China
| | - Baolin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an , P. R. China.,School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an , P. R. China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an , P. R. China
| |
Collapse
|
16
|
Zhang X, Li Y, Feng Z, Zhang Y, Gong Y, Song H, Ding X, Yan Y. Multifloroside Suppressing Proliferation and Colony Formation, Inducing S Cell Cycle Arrest, ROS Production, and Increasing MMP in Human Epidermoid Carcinoma Cell Lines A431. Molecules 2019; 25:molecules25010007. [PMID: 31861384 PMCID: PMC6983163 DOI: 10.3390/molecules25010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Multifloroside (4), together with 10-hydroxyoleoside 11-methyl ester (1), 10-hydroxyoleoside dimethyl ester (2), and 10-hydroxyligustroside (3), are all secoiridoids, which are naturally occurring compounds that possess a wide range of biological and pharmacological activities. However, the anti-cancer activity of 1–4 has not been evaluated yet. The objective of this work was to study the anti-cancer activities of 1–4 in the human epidermoid carcinoma cell lines A431 and the human non-small cell lung cancer (NSCLC) cell lines A549. The results indicate that 1–4 differ in potency in their ability to inhibit the proliferation of human A431 and A549 cells, and multifloroside (4) display the highest inhibitory activity against A431 cells. The structure-activity relationships suggest that the o-hydroxy-p-hydroxy-phenylethyl group may contribute to the anti-cancer activity against A431 cells. Multifloroside treatment can also inhibit cell colony formation, arrest the cell cycle in the S-phase, increase the levels of reactive-oxygen-species (ROS), and mitochondrial membrane potential (MMP), but it did not significantly induce cell apoptosis at low concentrations. The findings indicated that multifloroside (4) has the tendency to show selective anti-cancer effects in A431 cells, along with suppressing the colony formation, inducing S cell cycle arrest, ROS production, and increasing MMP.
Collapse
Affiliation(s)
- Xin Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Yamei Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Zhengping Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Yaling Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Correspondence: (Y.Z.); (Y.Y.); Tel./Fax: +86-029-8531-0623 (Y.Y.)
| | - Ye Gong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Huanhuan Song
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Xiaoli Ding
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Correspondence: (Y.Z.); (Y.Y.); Tel./Fax: +86-029-8531-0623 (Y.Y.)
| |
Collapse
|
17
|
An B, Pan T, Hu J, Pang Y, Huang L, Chan AS, Li X, Yan J. The discovery of a potent and selective third-generation EGFR kinase inhibitor as a therapy for EGFR L858R/T790M double mutant non-small cell lung cancer. Eur J Med Chem 2019; 183:111709. [DOI: 10.1016/j.ejmech.2019.111709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/13/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023]
|
18
|
Engelhardt H, Böse D, Petronczki M, Scharn D, Bader G, Baum A, Bergner A, Chong E, Döbel S, Egger G, Engelhardt C, Ettmayer P, Fuchs JE, Gerstberger T, Gonnella N, Grimm A, Grondal E, Haddad N, Hopfgartner B, Kousek R, Krawiec M, Kriz M, Lamarre L, Leung J, Mayer M, Patel ND, Simov BP, Reeves JT, Schnitzer R, Schrenk A, Sharps B, Solca F, Stadtmüller H, Tan Z, Wunberg T, Zoephel A, McConnell DB. Start Selective and Rigidify: The Discovery Path toward a Next Generation of EGFR Tyrosine Kinase Inhibitors. J Med Chem 2019; 62:10272-10293. [PMID: 31689114 DOI: 10.1021/acs.jmedchem.9b01169] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epidermal growth factor receptor (EGFR), when carrying an activating mutation like del19 or L858R, acts as an oncogenic driver in a subset of lung tumors. While tumor responses to tyrosine kinase inhibitors (TKIs) are accompanied by marked tumor shrinkage, the response is usually not durable. Most patients relapse within two years of therapy often due to acquisition of an additional mutation in EGFR kinase domain that confers resistance to TKIs. Crucially, oncogenic EGFR harboring both resistance mutations, T790M and C797S, can no longer be inhibited by currently approved EGFR TKIs. Here, we describe the discovery of BI-4020, which is a noncovalent, wild-type EGFR sparing, macrocyclic TKI. BI-4020 potently inhibits the above-described EGFR variants and induces tumor regressions in a cross-resistant EGFRdel19 T790M C797S xenograft model. Key was the identification of a highly selective but moderately potent benzimidazole followed by complete rigidification of the molecule through macrocyclization.
Collapse
Affiliation(s)
- Harald Engelhardt
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Dietrich Böse
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Mark Petronczki
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Dirk Scharn
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Anke Baum
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Andreas Bergner
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Eugene Chong
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Sandra Döbel
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Georg Egger
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Christian Engelhardt
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Julian E Fuchs
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Nina Gonnella
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Andreas Grimm
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Elisabeth Grondal
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Nizar Haddad
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Barbara Hopfgartner
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Roland Kousek
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Mariusz Krawiec
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Monika Kriz
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Lyne Lamarre
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Joyce Leung
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Nitinchandra D Patel
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Biljana Peric Simov
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Jonathan T Reeves
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Renate Schnitzer
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Andreas Schrenk
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Bernadette Sharps
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Heinz Stadtmüller
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Zhulin Tan
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Tobias Wunberg
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Andreas Zoephel
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| |
Collapse
|
19
|
Enrichment of novel quinazoline derivatives with high antitumor activity in mitochondria tracked by its self-fluorescence. Eur J Med Chem 2019; 178:417-432. [DOI: 10.1016/j.ejmech.2019.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
|
20
|
Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem 2019; 170:55-72. [DOI: 10.1016/j.ejmech.2019.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
|
21
|
Arshad F, Khan MF, Akhtar W, Alam MM, Nainwal LM, Kaushik SK, Akhter M, Parvez S, Hasan SM, Shaquiquzzaman M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur J Med Chem 2019; 167:324-356. [PMID: 30776694 DOI: 10.1016/j.ejmech.2019.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Morpholine, a six-membered heterocycle containing one nitrogen and one oxygen atom, is a moiety of great significance. It forms an important intermediate in many industrial and organic syntheses. Morpholine containing drugs are of high therapeutic value. Its wide array of pharmacological activity includes anti-diabetic, anti-emetic, growth stimulant, anti-depressant, bronchodilator and anticancer. Multi-drug resistance in cancer cases have emerged in the last few years and have led to the failure of many chemotherapeutic drugs. Newer treatment methods and drugs are being developed to overcome this problem. Target based drug discovery is an effective method to develop novel anticancer drugs. To develop newer drugs, previously reported work needs to be studied. Keeping this in mind, last five year's literature on morpholine used as anticancer agents has been reviewed and summarized in the paper herein.
Collapse
Affiliation(s)
- Fatima Arshad
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohemmed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sumit Kumar Kaushik
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
22
|
Inhibiting two cellular mutant epidermal growth factor receptor tyrosine kinases by addressing computationally assessed crystal ligand pockets. Future Med Chem 2019; 11:833-846. [PMID: 30724109 DOI: 10.4155/fmc-2018-0525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: Blocking receptor tyrosine kinases is a useful strategy for inhibiting the overexpression of EGFR. However, the quality of crystal pocket is an essential issue for virtually identifying new leads for surviving resistance cancer cells. Results: With the examinating crystal pocket quality by the self-docking root-mean-square deviation (RMSD) calculation, we used the two best kinase pockets of mutant EGFR kinases, T790M/L858R and G719S, for virtual screening. After sorting all the docking poses of the 57,177 library compounds by consensus scores, three evidently blocked cellular EGFR phosphorylation in the H1975 and SW48 cell lines. Conclusion: The computationally assessed qualities of crystal pockets of crystal EGFR kinases can help identify new cellular active and target-specific ligands rapidly and at low cost.
Collapse
|
23
|
Zhang Y, Chen L, Xu H, Li X, Zhao L, Wang W, Li B, Zhang X. 6,7-Dimorpholinoalkoxy quinazoline derivatives as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells. Eur J Med Chem 2018; 147:77-89. [PMID: 29421573 DOI: 10.1016/j.ejmech.2018.01.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 01/03/2023]
Abstract
A series of novel 6,7-dimorpholinoalkoxy quinazoline derivatives was designed, synthesized and evaluated as potent EGFR inhibitors. Most of synthesized derivatives exhibited moderate to excellent antiproliferative activities against five human tumor cell lines. Compound 8d displayed the most remarkable inhibitory activities against tumor cells expressing wild type (A431, A549 and SW480 cells) or mutant (HCC827 and NCI-H1975 cells) epidermal growth factor receptor (EGFR) (with IC50 values in the range of 0.37-4.87 μM), as well as more potent inhibitory effects against recombinant EGFR tyrosine kinase (EGFR-TK, wt or T790M) (with the IC50 values of 7.0 and 9.3 nM, respectively). Molecular docking showed that 8d can form four hydrogen bonds with EGFR, and two of them were located in the Asp855-Phe856-Gly857 (DFG) motif of EGFR. Meanwhile, 8d can significantly block EGF-induced EGFR activation and the phosphorylation of its downstream proteins such as Akt and Erk1/2 in human NSCLC cells. Also, 8d mediated cell apoptosis and the prolongation of cell cycle progression in G0/G1-phase in A549 cells. The work would have remarkable implications for further design and development of more potent EGFR tyrosine kinase inhibitors (TKIs).
Collapse
Affiliation(s)
- Yaling Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Li Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Hongjiang Xu
- Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210042, PR China
| | - Xiabing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Lijun Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Wei Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Baolin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Xiquan Zhang
- Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210042, PR China
| |
Collapse
|
24
|
Zhang Y, Gao H, Liu R, Liu J, Chen L, Li X, Zhao L, Wang W, Li B. Quinazoline-1-deoxynojirimycin hybrids as high active dual inhibitors of EGFR and α-glucosidase. Bioorg Med Chem Lett 2017; 27:4309-4313. [DOI: 10.1016/j.bmcl.2017.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022]
|