1
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2025; 45:426-483. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. Current scenario on non-nucleoside reverse transcriptase inhibitors (2018-present). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
3
|
Ferreira Pimentel LC, Cunha AC, Boas Hoelz LV, Canzian HF, Leite Firmino Marinho DI, Boechat N, Bastos MM. Phenylamino-pyrimidine (PAP) Privileged Structure: Synthesis and Medicinal Applications. Curr Top Med Chem 2020; 20:227-243. [DOI: 10.2174/1568026620666200124094949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 12/23/2022]
Abstract
The phenylamino-pyrimidine (PAP) nucleus has been demonstrated to be useful for the development of new drugs and is present in a wide variety of antiretroviral agents and tyrosine kinase inhibitors (TKIs). This review aims to evaluate the application of PAP derivatives in drugs and other bioactive compounds. It was concluded that PAP derivatives are still worth exploring, as they may provide highly competitive ATP TKI’s with nano/picomolar activity.
Collapse
Affiliation(s)
- Luiz Claudio Ferreira Pimentel
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Anna Claudia Cunha
- Universidade Federal Fluminense, Departamento de Quimica Organica, Campus do Valonguinho, CEP 24020-150, Niteroi, RJ, Brazil
| | - Lucas Villas Boas Hoelz
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Henayle Fernandes Canzian
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Debora Inacio Leite Firmino Marinho
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Nubia Boechat
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Monica Macedo Bastos
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Huang YM, Alharbi NS, Sun B, Shantharam CS, Rakesh KP, Qin HL. Synthetic routes and structure-activity relationships (SAR) of anti-HIV agents: A key review. Eur J Med Chem 2019; 181:111566. [PMID: 31401538 DOI: 10.1016/j.ejmech.2019.111566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/05/2023]
Abstract
The worldwide increase of AIDS, an epidemic infection in constant development has an essential and still requires potent antiretroviral chemotherapeutic agents for reducing the integer of deaths caused by HIV. Thus, there is an urgent need for new anti-HIV drug candidates with increased strength, new targets, superior pharmacokinetic properties, and compact side effects. From this viewpoint, we first review present strategies of anti-HIV drug innovation and the synthesis of heterocyclic or natural compound as anti-HIV agents for facilitating the development of more influential and successful anti-HIV agents.
Collapse
Affiliation(s)
- Yu-Mei Huang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - Njud S Alharbi
- Biotechnology Research Group, Deportment of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bing Sun
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| | - C S Shantharam
- Department of Chemistry, Pooja Bhagavath Memorial Mahajana Education Centre, Mysuru, 570016, Karnataka, India
| | - K P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| |
Collapse
|
5
|
Kong L, Yan S, Yao Y, Xiao Q, Lin J. Cascade Reactions Utilizing the Nucleophilic Properties of 1,1‐Enediamines for the Regioselective Synthesis of 4‐Aryl‐2‐aminopyridines. ChemistrySelect 2019. [DOI: 10.1002/slct.201900026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ling‐Bin Kong
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry Education, School of Chemical Science and TechnologyYunnan University Kunming 650091, P. R. China
| | - Sheng‐Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry Education, School of Chemical Science and TechnologyYunnan University Kunming 650091, P. R. China
| | - Yuan Yao
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry Education, School of Chemical Science and TechnologyYunnan University Kunming 650091, P. R. China
| | - Qiang Xiao
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry Education, School of Chemical Science and TechnologyYunnan University Kunming 650091, P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry Education, School of Chemical Science and TechnologyYunnan University Kunming 650091, P. R. China
| |
Collapse
|
6
|
Zorn KM, Lane TR, Russo DP, Clark AM, Makarov V, Ekins S. Multiple Machine Learning Comparisons of HIV Cell-based and Reverse Transcriptase Data Sets. Mol Pharm 2019; 16:1620-1632. [PMID: 30779585 DOI: 10.1021/acs.molpharmaceut.8b01297] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human immunodeficiency virus (HIV) causes over a million deaths every year and has a huge economic impact in many countries. The first class of drugs approved were nucleoside reverse transcriptase inhibitors. A newer generation of reverse transcriptase inhibitors have become susceptible to drug resistant strains of HIV, and hence, alternatives are urgently needed. We have recently pioneered the use of Bayesian machine learning to generate models with public data to identify new compounds for testing against different disease targets. The current study has used the NIAID ChemDB HIV, Opportunistic Infection and Tuberculosis Therapeutics Database for machine learning studies. We curated and cleaned data from HIV-1 wild-type cell-based and reverse transcriptase (RT) DNA polymerase inhibition assays. Compounds from this database with ≤1 μM HIV-1 RT DNA polymerase activity inhibition and cell-based HIV-1 inhibition are correlated (Pearson r = 0.44, n = 1137, p < 0.0001). Models were trained using multiple machine learning approaches (Bernoulli Naive Bayes, AdaBoost Decision Tree, Random Forest, support vector classification, k-Nearest Neighbors, and deep neural networks as well as consensus approaches) and then their predictive abilities were compared. Our comparison of different machine learning methods demonstrated that support vector classification, deep learning, and a consensus were generally comparable and not significantly different from each other using 5-fold cross validation and using 24 training and test set combinations. This study demonstrates findings in line with our previous studies for various targets that training and testing with multiple data sets does not demonstrate a significant difference between support vector machine and deep neural networks.
Collapse
Affiliation(s)
- Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| | - Daniel P Russo
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States.,The Rutgers Center for Computational and Integrative Biology , Camden , New Jersey 08102 , United States
| | - Alex M Clark
- Molecular Materials Informatics, Inc. , 2234 Duvernay Street , Montreal , Quebec H3J2Y3 , Canada
| | - Vadim Makarov
- Bach Institute of Biochemistry , Research Center of Biotechnology of the Russian Academy of Sciences , Leninsky Prospekt 33-2 , Moscow 119071 , Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| |
Collapse
|
7
|
Shirvani P, Fassihi A, Saghaie L. Recent Advances in the Design and Development of Non-nucleoside Reverse Transcriptase Inhibitor Scaffolds. ChemMedChem 2018; 14:52-77. [PMID: 30417561 DOI: 10.1002/cmdc.201800577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/04/2018] [Indexed: 12/31/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have always been an important part of the anti-HIV-1 combination therapy known as combination antiretroviral therapy (cART) since 1996. The use of NNRTIs for about 22 years has led to some mutations in the residues that compose the reverse transcriptase active site, resulting in the emergence of drug-resistant viruses. Thus, the search for new potent NNRTIs with an improved safety profile and activity against drug-resistant HIV strains is indispensable, and many hit and lead NNRTIs have been discovered in the last decade. This review provides an overview of the development in this field from 2013 to August 2018.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| |
Collapse
|
8
|
Battini L, Bollini M. Challenges and approaches in the discovery of human immunodeficiency virus type‐1 non‐nucleoside reverse transcriptase inhibitors. Med Res Rev 2018; 39:1235-1273. [DOI: 10.1002/med.21544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| |
Collapse
|
9
|
Gu SX, Lu HH, Liu GY, Ju XL, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors. Eur J Med Chem 2018; 158:371-392. [PMID: 30223123 DOI: 10.1016/j.ejmech.2018.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs) have been playing an important role in the fight against acquired immunodeficiency syndrome (AIDS). Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine (TMC125) and rilpivirine (TMC278), have attracted extensive attention due to their extraordinary potency, high specificity and low toxicity. However, the rapid emergence of drug-resistant virus strains and dissatisfactory pharmacokinetics of DAPYs present new challenges. In the past two decades, an increasing number of novel DAPY derivatives have emerged, which significantly enriched the structure-activity relationship of DAPYs. Studies of crystallography and molecular modeling have afforded a lot of useful information on structural requirements of NNRTIs, which contributes greatly to the improvement of their resistance profiles. In this review, we reviewed the discovery history and their evolution of DAPYs including their structural modification, derivatization and scaffold hopping in continuous pursuit of excellent anti-HIV drugs. And also, we discussed the prospect of DAPYs and the directions of future efforts.
Collapse
Affiliation(s)
- Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Huan-Huan Lu
- Yichang Humanwell Pharmaceutical Co., Ltd, Yichang, 443005, PR China
| | - Gen-Yan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Xiu-Lian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
10
|
Francesconi V, Giovannini L, Santucci M, Cichero E, Costi MP, Naesens L, Giordanetto F, Tonelli M. Synthesis, biological evaluation and molecular modeling of novel azaspiro dihydrotriazines as influenza virus inhibitors targeting the host factor dihydrofolate reductase (DHFR). Eur J Med Chem 2018; 155:229-243. [PMID: 29886325 PMCID: PMC7115377 DOI: 10.1016/j.ejmech.2018.05.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/27/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
Abstract
Recently we identified cycloguanil-like dihydrotriazine derivatives, which provided host-factor directed antiviral activity against influenza viruses and respiratory syncytial virus (RSV), by targeting the human dihydrofolate reductase (hDHFR) enzyme. In this context we deemed interesting to further investigate the structure activity relationship (SAR) of our first series of cycloguanil-like dihydrotriazines, designing two novel azaspiro dihydrotriazine scaffolds. The present study allowed the exploration of the potential chemical space, around these new scaffolds, that are well tolerated for maintaining the antiviral effect by means of interaction with the hDHFR enzyme. The new derivatives confirmed their inhibitory profile against influenza viruses, especially type B. In particular, the two best compounds shared potent antiviral activity (4: EC50 = 0.29 μM; 6: EC50 = 0.19 μM), which was comparable to that of zanamivir (EC50 = 0.14 μM), and better than that of ribavirin (EC50 = 3.2 μM). In addition, these two compounds proved to be also effective against RSV (4: EC50 = 0.40 μM, SI ≥ 250; 6: EC50 = 1.8 μM, SI ≥ 56), surpassing the potency and selectivity index (SI) of ribavirin (EC50 = 5.8 μM, SI > 43). By a perspective of these results, the above adequately substituted azaspiro dihydrotriazines may represent valuable hit compounds worthy of further structural optimization to develop improved host DHFR-directed antiviral agents.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Luca Giovannini
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Elena Cichero
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227, Dortmund, Germany
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy.
| |
Collapse
|
11
|
Alsharif MA, Mukhtar S, Asiri AM, Khan SA. One pot synthesis, physicochemical and photophysical investigation of biologically active pyridine-3-carboxylate (ECPC) as probe to determine CMC of surfactants in organized media. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Wan Y, Tian Y, Wang W, Gu S, Ju X, Liu G. In silico studies of diarylpyridine derivatives as novel HIV-1 NNRTIs using docking-based 3D-QSAR, molecular dynamics, and pharmacophore modeling approaches. RSC Adv 2018; 8:40529-40543. [PMID: 35557880 PMCID: PMC9091378 DOI: 10.1039/c8ra06475j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/26/2018] [Indexed: 11/22/2022] Open
Abstract
A series of novel diarylpyridine derivatives has recently been identified as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), and most of them exhibited potent activities against HIV-1 strains, with EC50 values in the low nanomolar range. However, the three-dimensional quantitative structure–activity relationships (3D-QSARs) and pharmacophore characteristics of these compounds remain to be studied. In the present study, forty-two diarylpyridine derivatives were firstly docked into HIV-1 reverse transcriptase, and molecular dynamics (10 ns) simulations were further performed to validate the reliability of the docking results, which indicated that residues Lys101, Tyr181, Tyr188, Phe227, and Trp229 might play important roles in binding with these diarylpyridines. The “U”-shaped docking conformations of all compounds were then used to construct 3D-QSAR and pharmacophore models. The satisfactory statistical parameters of CoMFA (qloo2 = 0.665, rncv2 = 0.989, rpred2 = 0.962, etc.) and CoMSIA (qloo2 = 0.727, rncv2 = 0.988, rpred2 = 0.912, etc.) models demonstrated that both constructed models had excellent predictability, and their contour maps gave insights into the structural requirements of the diarylpyridines for the anti-HIV-1 activity. A docking-conformation-based pharmacophore model, containing three hydrophobic centers, three hydrogen-bond acceptors, and three hydrogen-bond donors, was also established. The observations in this study might provide important information for the rational design and development of novel HIV-1 NNRTIs. Computational modeling approaches were successfully applied to a series of diarylpyridine derivatives as novel HIV-1 NNRTIs.![]()
Collapse
Affiliation(s)
- Youlan Wan
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yafeng Tian
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Wenjie Wang
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Shuangxi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| |
Collapse
|