1
|
Batool A, Kopp I, Kubeil M, Bachmann M, Andrews PC, Stephan H. Targeted bismuth-based materials for cancer. Dalton Trans 2025; 54:5614-5639. [PMID: 40040450 DOI: 10.1039/d5dt00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The use of bismuth and its compounds in biomedicine has developed rapidly in recent years. Due to their unique properties, there are great opportunities for the development of new non-invasive strategies for the early diagnosis and effective treatment of cancers. This perspective highlights key fabrication methods to generate well-defined and clinically relevant bismuth materials of varying characteristics. On the one hand, this opens up a wide range of possibilities for unimodal and multimodal imaging. On the other hand, effective treatment strategies, which are increasingly based on combinatorial therapies, are given a great deal of attention. One of the biggest challenges remains the selective tumour targeting, whether active or passive. Here we present an overview on new developments of bismuth based materials moving forward from a simple enrichment at the tumour site via uptake by the mononuclear phagocytic system (MPS) to a more active tumour specific targeting via covalent modification with tumour-seeking molecules based on either small or antibody-derived molecules.
Collapse
Affiliation(s)
- Amna Batool
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Ina Kopp
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
2
|
Wang Z, Huang Y, Deng D, Li S, Yu Y, Ye Y, Chen Y, Lei J. Facile synthesis and antifungal evaluation of hypervalent organoantimony(III) and organobismuth(III) thioates with tridentate C,N,C-coordinating ligands. Org Biomol Chem 2024; 22:7164-7172. [PMID: 39145686 DOI: 10.1039/d4ob00702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the present work, a series of organometallic thioates bearing a 5,6,7,12-tetrahydrodibenzo[c,f][1,5]azastibocine or -azabismocine framework were synthesized through the cross-coupling reactions of the corresponding halide precursors with thiols and disulfides at room temperature. The former transformation can be achieved under additive-free conditions, and mild dithiothreitol (DTT) is the only additive in the latter. Both methods feature simple operation, a broad substrate scope, and good reaction yields. Antifungal assays showed that the synthesized organobismuth(III) thioates possess significantly higher antibiotic activity against Candida albicans than clinical fluconazole, while the inhibitory effects of Sb-sulfenylated products are low to negligible. Furthermore, the antibiofilm potential of such Bi-S bond-containing compounds was discovered as well.
Collapse
Affiliation(s)
- Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yan Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Dandan Deng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yimei Yu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yifei Ye
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yi Chen
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China.
| | - Jian Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
3
|
Lei J, Liu Y, Yin M, Li S, Wang Z, Chen Y. Coordination environment dependence of anticancer activity in cyclometalated bismuth(III) complexes with C,O-chelating ligands. J Inorg Biochem 2024; 256:112571. [PMID: 38669912 DOI: 10.1016/j.jinorgbio.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
In this paper, a series of cyclometalated bismuth(III) complexes bearing C,O-bidentate ligands were synthesized and characterized by techniques such as UV-vis, NMR, HRMS, and single crystal X-ray diffraction. Meanwhile, their cytotoxicities against various human cell lines, including colon cancer cells (HCT-116), breast cancer cells (MDA-MB-231), lung cancer cells (A549), gastric cancer cells (SGC-7901), and normal embryonic kidney cells (HEK-293) were assessed in vitro. Compared with the clinical cisplatin, most of the synthesized complexes possessed significantly higher degrees of anticancer activity and selectivity, giving a selectivity index of up to 71.3. The structure-activity relationship study revealed that the anticancer performance of these bismuth(III) species depends on the factors of coordination environment surrounding the metal center, such as coordination number, coordination bonding strength, lone 6s2 electron pair stereoactivity. The Annexin V-FITC/PI double staining assay results suggested that the coordination environment-dependent cytotoxicity is ascribable to apoptosis. Western blot analysis confirmed the proposal, as evidenced by the down-regulating level of Bcl-2 and the activation of caspase-3. Furthermore, the representative complexes Bi1, Bi4, Bi6, and Bi8 exhibited relatively lower inhibitory efficiency on human ovarian cancer cells (A2780) than on its cisplatin-resistant daughter cells (A2780/cis), thus demonstrating that such compounds are capable of circumventing the cisplatin-induced resistance. This investigation elucidated the excellent anticancer performance of C,O-coordinated bismuth(III) complexes and established the correlation between cytotoxic activity and coordination chemistry, which provides a practical basis for in-depth designing and developing bismuth-based chemotherapeutics.
Collapse
Affiliation(s)
- Jian Lei
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory for Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yongping Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Mingming Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory for Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory for Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Yi Chen
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China.
| |
Collapse
|
4
|
Rosário JDS, Moreira FH, Rosa LHF, Guerra W, Silva-Caldeira PP. Biological Activities of Bismuth Compounds: An Overview of the New Findings and the Old Challenges Not Yet Overcome. Molecules 2023; 28:5921. [PMID: 37570891 PMCID: PMC10421188 DOI: 10.3390/molecules28155921] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Bismuth-based drugs have been used primarily to treat ulcers caused by Helicobacter pylori and other gastrointestinal ailments. Combined with antibiotics, these drugs also possess synergistic activity, making them ideal for multiple therapy regimens and overcoming bacterial resistance. Compounds based on bismuth have a low cost, are safe for human use, and some of them are also effective against tumoral cells, leishmaniasis, fungi, and viruses. However, these compounds have limited bioavailability in physiological environments. As a result, there is a growing interest in developing new bismuth compounds and approaches to overcome this challenge. Considering the beneficial properties of bismuth and the importance of discovering new drugs, this review focused on the last decade's updates involving bismuth compounds, especially those with potent activity and low toxicity, desirable characteristics for developing new drugs. In addition, bismuth-based compounds with dual activity were also highlighted, as well as their modes of action and structure-activity relationship, among other relevant discoveries. In this way, we hope this review provides a fertile ground for rationalizing new bismuth-based drugs.
Collapse
Affiliation(s)
- Jânia dos Santos Rosário
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte 30421-169, MG, Brazil
| | - Fábio Henrique Moreira
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte 30421-169, MG, Brazil
| | - Lara Hewilin Fernandes Rosa
- Institute of Chemistry, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia 38400-142, MG, Brazil
| | - Wendell Guerra
- Institute of Chemistry, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia 38400-142, MG, Brazil
| | | |
Collapse
|
5
|
Li W, Huang Y, Liu Y, Wang Z, Li S, Chen Y, Ye Y, Yin S, Lei J. Antibacterial performance of heterocyclic organobismuth (III) complexes based on bidentate C,O‐coordinating ligands: Synergism of ligand identity and coordination number. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/11/2023] [Indexed: 01/04/2025]
Abstract
A series of heterocyclic organobismuth (III) complexes based on bidentate C,O‐coordinating ligands were designed and synthesized as antimicrobials. Antibacterial assays showed that complexes of this type are more effective for Gram‐positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis) than Gram‐negative ones (Escherichia coli and Pseudomonas aeruginosa). Their activities are especially relevant to the synergism of lipophilicity, geometry, and stability, which depends on both the identity of coordinating ligands and the coordination number at the bismuth center. By comparison, the hypervalent 14‐Bi‐6 species diarylbismuth nitrate (8) was found to exhibit the most potent inhibitory effect, together with a high degree of selectivity, which gives an IC50(LO2)/MIC(Staphylococcus aureus) ratio of up to 23.08. Time–kill analysis demonstrated that complex 8 is bacteriostatic at low concentrations while displaying significant bactericidal activity at high doses. The results of drug resistance experiments suggested that complex 8 can inhibit the formation of bacterial biofilm and consequently delay or prevent the development of drug resistance. Furthermore, complex 8 also showed high inhibition efficiency against several drug‐resistant Staphylococcus aureus, and the MIC values are within the range of 0.39–1.56 μM, thus indicating the lack of cross‐resistance between this organometallic compound and commonly used antibiotics.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Yan Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Yongping Liu
- School of Medicine Hunan University of Chinese Medicine Changsha China
| | - Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Yi Chen
- School of Medicine Hunan University of Chinese Medicine Changsha China
| | - Yifei Ye
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Shuang‐Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Jian Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| |
Collapse
|
6
|
Sharutin VV, Poddel’sky AI, Sharutina OK. Organic Compounds of Bismuth: Synthesis, Structure, and Applications. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 2021; 50:12037-12069. [PMID: 34533144 DOI: 10.1039/d0cs00031k] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bismuth as a relatively non-toxic and inexpensive metal with exceptional properties has numerous biomedical applications. Bismuth-based compounds are used extensively as medicines for the treatment of gastrointestinal disorders including dyspepsia, gastric ulcers and H. pylori infections. Recently, its medicinal application was further extended to potential treatments of viral infection, multidrug resistant microbial infections, cancer and also imaging, drug delivery and biosensing. In this review we have highlighted the unique chemistry and biological chemistry of bismuth-209 as a prelude to sections covering the unique antibacterial activity of bismuth including a description of research undertaken to date to elucidate key molecular mechanisms of action against H. pylori, the development of novel compounds to treat infection from microbes beyond H. pylori and the significant role bismuth compounds can play as resistance breakers. Furthermore we have provided an account of the potential therapeutic application of bismuth-213 in targeted alpha therapy as well as a summary of the biomedical applications of bismuth-based nanoparticles and composites. Ultimately this review aims to provide the state of the art, highlight the untapped biomedical potential of bismuth and encourage original contributions to this exciting and important field.
Collapse
Affiliation(s)
- Darren M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.,SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | - Philip C Andrews
- School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
8
|
Binuclear silver(I) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, characterization, cytotoxic activity and evaluation of cellular mechanism of action. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Mukaimine A, Hirayama T, Nagasawa H. Asymmetric bismuth-rhodamines as an activatable fluorogenic photosensitizer. Org Biomol Chem 2021; 19:3611-3619. [PMID: 33506853 DOI: 10.1039/d0ob02456b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bismuth-rhodamine compounds stand out for their unique excitable photosensitizing properties and concomitant fluorescence; however, further knowledge of the structure-property relationship is required to expand the scope of their practical application. With this aim, this study describes the first examples of asymmetric bismuth-incorporated rhodamines, BiRNH and BiRAc, including their synthesis, photophysical properties, and photosensitizing abilities. Upon red light excitation, BiRNH exhibits detectable emission and photosensitizing properties, while the N-acetylated derivative BiRAc shows a hypsochromic shift in the absorption wavelength and attenuation of emission and photosensitizing ability. These significantly different photophysical properties enabled us to design an activatable fluorogenic photosensitizer, BiRGlu, which bears a γ-glutamyl group instead of the acetyl group in BiRAc. The γ-glutamyl group can be cleaved by γ-glutamyl transpeptidase (GGT) to produce BiRNH, which acts as a red-light-excitable fluorophore and photosensitizer. A cell study revealed that the phototoxicity and fluorescence of BiRGlu could be simultaneously and selectively activated in the cells with high GGT activity. Thus, we established that BiRNH could be envisaged as a versatile scaffold for activatable fluorogenic photosensitizers.
Collapse
Affiliation(s)
- Akari Mukaimine
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu-shi, Gifu, 501-1196, Japan.
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu-shi, Gifu, 501-1196, Japan.
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu-shi, Gifu, 501-1196, Japan.
| |
Collapse
|
10
|
1,1′-2-Trisubstituted ferrocenyl dibismuthines containing N / O donor pendant arm. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Dostál L, Jambor R, Aman M, Hejda M. (N),C,N-Coordinated Heavier Group 13-15 Compounds: Synthesis, Structure and Applications. Chempluschem 2020; 85:2320-2340. [PMID: 33073931 DOI: 10.1002/cplu.202000620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/23/2020] [Indexed: 01/07/2023]
Abstract
The aim of this review is to summarize recent achievements in the field of (N),C,N-coordinated group 13-15 compounds not only regarding their synthesis and structure, but mainly focusing on their potential applications. Relevant compounds contain various types of N-coordinating ligands built up on an ortho-(di)substituted phenyl platform. Thus, group 13 and 14 derivatives were used as single-source precursors for the deposition of semiconducting thin films, as building blocks for the preparation of high-molecular polymers with remarkable optical and chemical properties or as compounds with interesting reactivity in hydrometallation processes. Group 15 derivatives function as catalysts in the Mannich reaction, in the allylation of aldehydes or activation of CO2 . They were used as transmetallation reagents in transition metal catalysed coupling reactions. The univalent species serve as ligands for transition metals, activate alkynes or alkenes and are utilized as catalysts in the transfer hydrogenation of azo-compounds.
Collapse
Affiliation(s)
- Libor Dostál
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Michal Aman
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Martin Hejda
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| |
Collapse
|
12
|
Tan N, Wu S, Lan D, Au CT, Yi B. Crystal structure of 5 H-dibenzo[ c, f][1,5]oxabismocin-12 (7 H)-yl acetate, C 16H 15O 3Bi. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2019-0825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C16H15O3Bi, orthorhombic, Pna21 (no. 33), a = 17.277(3) Å, b = 4.7288(8) Å, c = 17.776(3) Å, V = 1452.3(4) Å3, Z = 4, R
gt(F) = 0.0292, wR(F
2) = 0.0678, T = 296 K.
Collapse
Affiliation(s)
- Nianyuan Tan
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Shuisheng Wu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Donghui Lan
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Chak-Tong Au
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Bing Yi
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| |
Collapse
|
13
|
Villamizar C. CP, Anzaldo B, Sharma P, Gutiérrez Pérez R, del Río-Portilla F, Toscano AR. Chiral Ferrocenyl-Bismuthines containing N/O donor pendant arm: Syntheses and molecular structures. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Khan MH, Cai M, Li S, Zhang Z, Zhang J, Wen X, Sun H, Liang H, Yang F. Developing a binuclear multi-target Bi(III) complex by optimizing 2-acetyl-3-ethylpyrazine thiosemicarbazides. Eur J Med Chem 2019; 182:111616. [DOI: 10.1016/j.ejmech.2019.111616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
15
|
Andleeb S, Imtiaz-ud-Din. Recent progress in designing the synthetic strategies for bismuth based complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Yan Z, Liu A, Ou Y, Li J, Yi H, Zhang N, Liu M, Huang L, Ren J, Liu W, Hu A. Design, synthesis and fungicidal activity evaluation of novel pyrimidinamine derivatives containing phenyl-thiazole/oxazole moiety. Bioorg Med Chem 2019; 27:3218-3228. [DOI: 10.1016/j.bmc.2019.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 01/31/2023]
|
17
|
Lei J, Liu Y, Ou Y, Au CT, Chen Y, Yin SF. Organoantimony(III) halide complexes with azastibocine framework as potential antitumor agents: Correlation between cytotoxic activity and N→Sb inter-coordination. Eur J Med Chem 2019; 177:350-361. [PMID: 31158749 DOI: 10.1016/j.ejmech.2019.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 11/16/2022]
Abstract
The relationship between chemical structure and in vitro cytotoxic activities of a series of azastibocine-framework organoantimony(III) halide complexes against cancerous (HepG2, MDA-MB-231, MCF-7 and HeLa) and nonmalignant (HEK-293) cell lines was studied for the first time. A positive correlation between cytotoxic activity and the length of N→Sb coordinate bond on azastibocine framework of same nitrogen substituent was observed. By comparison, the organoantimony(III) complex 6-cyclohexyl-12-fluoro-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azastibocine (C4) exhibited the highest selectivity index, giving a IC50(nonmalignant)/IC50(cancerous) ratio of up to 8.33. The results of cell cycle analysis indicated that the inhibitory effect of C4 on the cellular viability was caused by cell cycle arrest mainly at the S phase. The necrosis induced by C4 was confirmed by the Trypan blue dye exclusion test and the increase of lactic dehydrogenase (LDH) released in the culture medium. Furthermore, evaluation of the levels of intracellular reactive oxygen species (ROS) in MDA-MB-231 cells, by quantifying the relative fluorescence units (RFU) using spectrofluorometer, indicated that cytotoxic activity of C4 is dependent on the production of ROS. This work established the correlation between cytotoxic activity and N→Sb inter-coordination, a finding that provided theoretical and experimental basis for in-depth design of antimony-based organometallic complexes as potential anticancer agents.
Collapse
Affiliation(s)
- Jian Lei
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yongping Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yingcan Ou
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Chak-Tong Au
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, PR China
| | - Yi Chen
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
18
|
Tan N, Wu S, Huiqiong Y, Lan D, Au CT, Yi B. Crystal structure of 6-cyclohexyl-6,7-dihydrodibenzo[ c, f][1,5]azabismocin-12(5 H)-yl nitrate, C 20H 23O 3N 2Bi. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2018-0507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C20H23O3N2Bi, monoclinic, P21/n (no. 14), a = 10.6897(5) Å, b = 10.5590(5) Å, c = 17.4099(9) Å, β = 105.491(2)°, V = 1893.71(16) Å3, Z = 4, R
gt(F) = 0.0253, wR(F
2) = 0.0576, T = 296(2) K.
Collapse
Affiliation(s)
- Nianyuan Tan
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Shuisheng Wu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Yang Huiqiong
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Donghui Lan
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Chak-Tong Au
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Bing Yi
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, Hunan Institute of Engineering , Xiangtan 411104 , China
| |
Collapse
|
19
|
One-Pot Synthesis of Hypervalent Diaryl(iodo)bismuthanes from o-Carbonyl Iodoarenes by Zincation. HETEROATOM CHEMISTRY 2019. [DOI: 10.1155/2019/2385064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diaryl(iodo)bismuthanes possessing a hypervalent C=O•••Bi–I bond were conveniently synthesized in a one-pot reaction by using arylzinc reagents generated from o-carbonyl iodobenzenes and zinc powder under ultrasonication. This method is superior to the conventional organolithium and Grignard methods because it has a wide functional group tolerance, requires no protecting group manipulations, and proceeds under mild reaction conditions that do not need low temperature control. Furthermore, no intermediate triarylbismuthane precursor for the hypervalent iodobismuthane is necessary.
Collapse
|
20
|
Tan N, Dang L, Lan D, Wu S, Au CT, Yi B. Crystal structure of bis{5 H-dibenzo[ c,f][1,5]oxabismocin-12(7 H)-yl} carbonate, C 29H 24O 5Bi 2. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2018-0067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C29H24O5Bi2, orthorhombic, Pbca (no. 61), a = 14.8835(6) Å, b = 14.5551(6) Å, c = 23.6000(9) Å, V = 5112.5(4) Å3, Z = 8, R
gt(F) = 0.0293, wR(F
2) = 0.0579, T = 296(2) K.
Collapse
Affiliation(s)
- Nianyuan Tan
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Limin Dang
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Donghui Lan
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Shuisheng Wu
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Chak-Tong Au
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Bing Yi
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| |
Collapse
|