1
|
Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg Med Chem Lett 2024; 111:129912. [PMID: 39089526 DOI: 10.1016/j.bmcl.2024.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India
| | - Saroj Verma
- Pharmaceutical Chemistry Division, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India.
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India.
| |
Collapse
|
2
|
Iraji A, Nikfar P, Nazari Montazer M, Karimi M, Edraki N, Saeedi M, Mirfazli SS. Synthesis, biological evaluation and molecular modeling studies of methyl indole-isoxazole carbohydrazide derivatives as multi-target anti-Alzheimer's agents. Sci Rep 2024; 14:21115. [PMID: 39256495 PMCID: PMC11387822 DOI: 10.1038/s41598-024-71729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects the elderly population globally and there is an urgent demand for developing novel anti-AD agents. In this study, a new series of indole-isoxazole carbohydrazides were designed and synthesized. The structure of all compounds was elucidated using spectroscopic methods including FTIR, 1H NMR, and 13C NMR as well as mass spectrometry and elemental analysis. All derivatives were screened for their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Out of all synthesized compounds, compound 5d exhibited the highest potency as AChE inhibitor with an IC50 value of 29.46 ± 0.31 µM. It showed significant selectivity towards AChE, with no notable inhibition against BuChE. A kinetic study on AChE for compound 5d indicated a competitive inhibition pattern. Also, 5d exhibited promising BACE1 inhibitory potential with an IC50 value of 2.85 ± 0.09 µM and in vitro metal chelating ability against Fe3+. The molecular dynamic studies of 5d against both AChE and BACE1 were executed to evaluate the behavior of this derivative in the binding site. The results showed that the new compounds deserve further chemical optimization to be considered potential anti-AD agents.
Collapse
Affiliation(s)
- Aida Iraji
- Department of Persian Medicine, School of Medicine, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Nikfar
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Karimi
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Manzoor S, Gabr MT, Nafie MS, Raza MK, Khan A, Nayeem SM, Arafa RK, Hoda N. Discovery of Quinolinone Hybrids as Dual Inhibitors of Acetylcholinesterase and Aβ Aggregation for Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:539-559. [PMID: 38149821 DOI: 10.1021/acschemneuro.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The development of multitargeted therapeutics has evolved as a promising strategy to identify efficient therapeutics for neurological disorders. We report herein new quinolinone hybrids as dual inhibitors of acetylcholinesterase (AChE) and Aβ aggregation that function as multitargeted ligands for Alzheimer's disease. The quinoline hybrids (AM1-AM16) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. Among the tested compounds, AM5 and AM10 inhibited AChE activity by more than 80% at single-dose screening and possessed a remarkable ability to inhibit the fibrillation of Aβ42 oligomers at 10 μM. In addition, dose-dependent screening of AM5 and AM10 was performed, giving half-maximal AChE inhibitory concentration (IC50) values of 1.29 ± 0.13 and 1.72 ± 0.18 μM, respectively. In addition, AM5 and AM10 demonstrated concentration-dependent inhibitory profiles for the aggregation of Aβ42 oligomers with estimated IC50 values of 4.93 ± 0.8 and 1.42 ± 0.3 μM, respectively. Moreover, the neuroprotective properties of the lead compounds AM5 and AM10 were determined in SH-SY5Y cells incubated with Aβ oligomers. This work would enable future research efforts aiming at the structural optimization of AM5 and AM10 to develop potent dual inhibitors of AChE and amyloid aggregation. Furthermore, the in vivo assay confirmed the antioxidant activity of compounds AM5 and AM10 through increasing GSH, CAT, and SOD activities that are responsible for scavenging the ROS and restoring its normal level. Blood investigation illustrated the protective activity of the two compounds against lead-induced neurotoxicity through retaining hematological and liver enzymes near normal levels. Finally, immunohistochemistry investigation revealed the inhibitory activity of β-amyloid (Aβ) aggregation.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York10021, United States
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (P.O. Box 27272), United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ashma Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Reem K Arafa
- Drug Design and Discovery Lab, Helmy Institute for Medical Sciences, Zewail City of Science, Technology and Innovation, Giza 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza12578,Egypt
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
4
|
Zhao R, Zhu J, Jiang X, Bai R. Click chemistry-aided drug discovery: A retrospective and prospective outlook. Eur J Med Chem 2024; 264:116037. [PMID: 38101038 DOI: 10.1016/j.ejmech.2023.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Click chemistry has emerged as a valuable tool for rapid compound synthesis, presenting notable advantages and convenience in the exploration of potential drug candidates. In particular, in situ click chemistry capitalizes on enzymes as reaction templates, leveraging their favorable conformation to selectively link individual building blocks and generate novel hits. This review comprehensively outlines and introduces the extensive use of click chemistry in compound library construction, and hit and lead discovery, supported by specific research examples. Additionally, it discusses the limitations and precautions associated with the application of click chemistry in drug discovery. Our intention for this review is to contribute to the development of a modular synthetic approach for the rapid identification of drug candidates.
Collapse
Affiliation(s)
- Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
5
|
Du H, Song J, Ma F, Gao H, Zhao X, Mao R, He X, Yan Y. Novel harmine derivatives as potent acetylcholinesterase and amyloid beta aggregation dual inhibitors for management of Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2281893. [PMID: 37965884 PMCID: PMC10653770 DOI: 10.1080/14756366.2023.2281893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
In this study, a series of potential ligands for the treatment of AD were synthesised and characterised as novel harmine derivatives modified at position 9 with benzyl piperazinyl. In vitro studies revealed that the majority of the derivatives exhibited moderate to potent inhibition against hAChE and Aβ1 - 42 aggregation. Notably, compounds 13 and 17d displayed potent drug - likeness and ADMET properties, demonstrating remarkable inhibitory activities towards AChE (IC50 = 58.76 nM and 89.38 nM, respectively) as well as Aβ aggregation (IC50 = 9.31 μM and 13.82 μM, respectively). More importantly, compounds 13 and 17d showed exceptional neuroprotective effects against Aβ1 - 42-induced SH - SY5Y damage, while maintaining low toxicity in SH - SY5Y cells. Further exploration of the mechanism through kinetic studies and molecular modelling confirmed that compound 13 could interact with both the CAS and the PAS of AChE. These findings suggested that harmine derivatives hold great potential as dual - targeted candidates for treating AD.
Collapse
Affiliation(s)
- Hongtao Du
- School of Life Sciences, Yan’an University, Yan'an, China
- Shaanxi Qi Yuan Kang Bo Biotechnology Co. LTD, Tongchuan Shaanxi, China
| | - Jinzhi Song
- Shaanxi Horticultural Technology workstation, Xi’an Shaanxi, China
| | - Fang Ma
- Shaanxi Qi Yuan Kang Bo Biotechnology Co. LTD, Tongchuan Shaanxi, China
- Northwest Agriculture & Forestry University, Xianyang, China
| | - Hongxin Gao
- School of Graduate Studies, Lingnan University, Hong Kong, China
| | - Xinyan Zhao
- Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang Shaanxi, China
| | - Renjun Mao
- School of Life Sciences, Yan’an University, Yan'an, China
- Shaanxi Horticultural Technology workstation, Xi’an Shaanxi, China
| | - Xiaolong He
- School of Life Sciences, Yan’an University, Yan'an, China
| | - Yan Yan
- School of Life Sciences, Yan’an University, Yan'an, China
- Shaanxi Qi Yuan Kang Bo Biotechnology Co. LTD, Tongchuan Shaanxi, China
| |
Collapse
|
6
|
Ciccone L, Camodeca C, Tonali N, Barlettani L, Rossello A, Fruchart Gaillard C, Kaffy J, Petrarolo G, La Motta C, Nencetti S, Orlandini E. New Hybrid Compounds Incorporating Natural Products as Multifunctional Agents against Alzheimer's Disease. Pharmaceutics 2023; 15:2369. [PMID: 37896129 PMCID: PMC10610016 DOI: 10.3390/pharmaceutics15102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
A series of new hybrid derivatives 1a-c, 2a-c, 3a-c, 4a-c, 5a-c, inspired by nature, were synthesized and studied as multifunctional agents for the treatment of Alzheimer's disease (AD). These compounds were designed to merge together the trifluoromethyl benzyloxyaminic bioactive moiety, previously identified, with different acids available in nature. The ability of the synthesized compounds to chelate biometals, such as Cu2+, Zn2+ and Fe2+, was studied by UV-Vis spectrometer, and through a preliminary screening their antioxidant activity was evaluated by DPPH. Then, selected compounds were tested by in vitro ABTS free radical method and ex vivo rat brain TBARS assay. Compounds 2a-c, combining the strongest antioxidant and biometal chelators activities, were studied for their ability to contrast Aβ1-40 fibrillization process. Finally, starting from the promising profile obtained for compound 2a, we evaluated if it could be able to induce a positive cross-interaction between transthyretin (TTR) and Aβ in presence and in absence of Cu2+.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Nicolò Tonali
- CNRS, BioCIS, Bâtiment Henri Moissan, Université Paris-Saclay, 17 Av. des Sciences, 91400 Orsay, France; (N.T.); (J.K.)
| | - Lucia Barlettani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy;
| | - Carole Fruchart Gaillard
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris Saclay, 91191 Gif-sur-Yvette, France;
| | - Julia Kaffy
- CNRS, BioCIS, Bâtiment Henri Moissan, Université Paris-Saclay, 17 Av. des Sciences, 91400 Orsay, France; (N.T.); (J.K.)
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Elisabetta Orlandini
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy;
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| |
Collapse
|
7
|
Singh A, Singh K, Kaur J, Kaur R, Sharma A, Kaur J, Kaur U, Chadha R, Bedi PMS. Pathogenesis of Alzheimer's Disease and Diversity of 1,2,3-Triazole Scaffold in Drug Development: Design Strategies, Structural Insights, and Therapeutic Potential. ACS Chem Neurosci 2023; 14:3291-3317. [PMID: 37683129 DOI: 10.1021/acschemneuro.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease is a most prevalent form of dementia all around the globe and currently poses a significant challenge to the healthcare system. Currently available drugs only slow the progression of this disease rather than provide proper containment. Identification of multiple targets responsible for this disease in the last three decades established it as a multifactorial neurodegenerative disorder that needs novel multifunctional agents for its management and the possible reason for the failure of currently available single target clinical drugs. 1,2,3-Triazole is a miraculous nucleus in medicinal chemistry and the first choice for development of multifunctional hybrid molecules. Apart from that, it is an integral component of various drugs in clinical trials as well as in clinical practice. This review is focused on the pathogenesis of Alzheimer's disease and 1,2,3-triazole containing derivatives developed in recent decades as potential anti-Alzheimer's agents. The review will provide (A) precise insight of various established targets of Alzheimer's disease including cholinergic, amyloid, tau, monoamine oxidases, glutamate, calcium, and reactive oxygen species hypothesis and (B) design hypothesis, structure-activity relationships, and pharmacological outcomes of 1,2,3-triazole containing multifunctional anti-Alzheimer's agents. This review will provide a baseline for various research groups working on Alzheimer's drug development in designing potent, safer, and effective multifunctional anti-Alzheimer's candidates of the future.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jashandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ramanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jasleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Uttam Kaur
- University School of Business, Chandigarh University, Mohali, Punjab 140413, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
8
|
Li Q, Qi S, Liang J, Tian Y, He S, Liao Q, Xing S, Han L, Chen X. Review of triazole scaffolds for treatment and diagnosis of Alzheimer's disease. Chem Biol Interact 2023; 382:110623. [PMID: 37451665 DOI: 10.1016/j.cbi.2023.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Triazole scaffolds, a series of 5-membered heterocycles, are well known for their high efficacy, low toxicity, and superior pharmacokinetics. Alzheimer's disease (AD) is the first neurodegenerative disorder with complex pathological mechanisms. Triazole, as an aromatic group with three nitrogen atoms, forms polar and non-polar interactions with diverse key residues in the receptor-ligand binding procedure, and has been widely used in the molecular design in the development of anti-AD agents. Moreover, considering the simple synthesis approaches, triazole scaffolds are commonly used to link two pharmacodynamic groups in one chemical molecule, forming multi-target directed ligands (MTDLs). Furthermore, the click reaction between azide- and cyano-modified enzyme and ligand provides feasibility for the new modulator discovery, compound tissue distribution evaluation, enzyme localization, and pharmacological mechanism study, promoting the diagnosis of AD course.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Yuqing Tian
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Qinghong Liao
- Shandong Junrong Technology Transfer Co., Ltd, Qingdao, 266071, Shandong, PR China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
9
|
Khalili Ghomi M, Noori M, Nazari Montazer M, Zomorodian K, Dastyafteh N, Yazdanpanah S, Sayahi MH, Javanshir S, Nouri A, Asadi M, Badali H, Larijani B, Irajie C, Iraji A, Mahdavi M. [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as new therapeutic candidates against urease positive microorganisms: design, synthesis, pharmacological evaluations, and in silico studies. Sci Rep 2023; 13:10136. [PMID: 37349372 PMCID: PMC10287669 DOI: 10.1038/s41598-023-37203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023] Open
Abstract
Regarding the important role of the urease enzyme as a virulence factor in urease-positive microorganisms in this study, new series of [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives were designed and synthesized. All compounds evaluated against urease enzyme exhibiting IC50 values of 0.87 ± 0.09 to 8.32 ± 1.21 µM as compared with thiourea as the positive control (IC50 = 22.54 ± 2.34 µM). The kinetic evaluations of 6a as the most potent derivative recorded a competitive type of inhibition. Molecular dynamic simulations of the 6a derivative were also conducted, showing that 6a occupied the active site with closed state. Antimicrobial activities of all derivatives were performed, and 6f (R = 3-Cl), 6g (R = 4-Cl), and 6h (R = 3,4-diCl) analogs demonstrated significant antifungal activities with MIC values of 1, 2, and 0.5 µg/mL compared with fluconazole with MIC = 2 µg/mL. Synthesized analogs also exhibited potent urease inhibitory activities against C. neoformans (IC50 = 83.7-118.7 µg/mL) and P. mirabilis (IC50 = 74.5-113.7 µg/mL), confirming their urease inhibitory potential. The results demonstrated that the designed scaffold could be considered a suitable pharmacophore to develop potent urease inhibitors.
Collapse
Affiliation(s)
- Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Dastyafteh
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Somayeh Yazdanpanah
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hosein Sayahi
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Abbas Nouri
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Discovery of novel 2-hydroxyl-4-benzyloxybenzyl aniline derivatives as potential multifunctional agents for the treatment of Parkinson's disease. Eur J Med Chem 2023; 249:115142. [PMID: 36716641 DOI: 10.1016/j.ejmech.2023.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
To discover novel multifunctional agents for the treatment of Parkinson's disease, a series of 2-hydroxyl-4-benzyloxybenzyl aniline derivatives was designed, synthesized and evaluated. The biological screening indicated that representative compound 6h possessed excellent MAO-B inhibition (IC50 = 0.014 μM), high antioxidant activity (ORAC = 2.14 Trolox equivalent), good metal chelating ability, appropriate BBB permeability and significant neuroprotective effect. Additionally, 6h exhibited great ability to alleviate the neuroinflammtion by suppressing the activation of NF-κB pathway in vitro. Furthermore, 6h can also ameliorate MPTP induced Parkinson's disease symptoms in mice by improving the dopamine level and repressing oxidative damage. These results indicated that compound 6h was a promising candidate for further development against PD.
Collapse
|
11
|
Puentes-Díaz N, Chaparro D, Morales-Morales D, Flores-Gaspar A, Alí-Torres J. Role of Metal Cations of Copper, Iron, and Aluminum and Multifunctional Ligands in Alzheimer's Disease: Experimental and Computational Insights. ACS OMEGA 2023; 8:4508-4526. [PMID: 36777601 PMCID: PMC9909689 DOI: 10.1021/acsomega.2c06939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people around the world. Even though the causes of AD are not completely understood due to its multifactorial nature, some neuropathological hallmarks of its development have been related to the high concentration of some metal cations. These roles include the participation of these metal cations in the production of reactive oxygen species, which have been involved in neuronal damage. In order to avoid the increment in the oxidative stress, multifunctional ligands used to coordinate these metal cations have been proposed as a possible treatment to AD. In this review, we present the recent advances in experimental and computational works aiming to understand the role of two redox active and essential transition-metal cations (Cu and Fe) and one nonbiological metal (Al) and the recent proposals on the development of multifunctional ligands to stop or revert the damaging effects promoted by these metal cations.
Collapse
Affiliation(s)
- Nicolás Puentes-Díaz
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
| | - Diego Chaparro
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
- Departamento
de Química, Universidad Militar Nueva
Granada, Cajicá 250240, Colombia
| | - David Morales-Morales
- Instituto
de Química, Universidad Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Areli Flores-Gaspar
- Departamento
de Química, Universidad Militar Nueva
Granada, Cajicá 250240, Colombia
- Areli Flores-Gaspar − Departamento de Química,
Universidad Militar Nueva
Granada, Cajicá, 250247, Colombia.
| | - Jorge Alí-Torres
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
- Jorge Alí-Torres − Departamento de Química, Universidad Nacional de
Colombia, Sede Bogotá,11301, Bogotá, Colombia.
| |
Collapse
|
12
|
Oliyaei N, Moosavi-Nasab M, Tanideh N, Iraji A. Multiple roles of fucoxanthin and astaxanthin against Alzheimer's disease: Their pharmacological potential and therapeutic insights. Brain Res Bull 2023; 193:11-21. [PMID: 36435362 DOI: 10.1016/j.brainresbull.2022.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder affecting the elderly. The exact pathology of AD is not yet fully understood and several hallmarks such as the deposition of amyloid-β, tau hyperphosphorylation, and neuroinflammation, as well as mitochondrial, metal ions, autophagy, and cholinergic dysfunctions are known as pathologic features of AD. Since no definitive treatment has been proposed to target AD to date, many natural products have shown promising preventive potentials and contributed to slowing down the disease progression. Algae is a promising source of novel bioactive substances known to prevent neurodegenerative disorders including AD. In this context, fucoxanthin and astaxanthin, natural carotenoids abundant in algae, has shown to possess neuroprotective properties through antioxidant, and anti-inflammatory characteristics in modulating the symptoms of AD. Fucoxanthin and astaxanthin exhibit anti-AD activities by inhibition of AChE, BuChE, BACE-1, and MAO, suppression of Aβ accumulation. Also, fucoxanthin and astaxanthin inhibit apoptosis induced by Aβ1-42 and H2O2-induced cytotoxicity, and modulate the antioxidant enzymes (SOD and CAT), through inhibition of the ERK pathway. Moreover, cellular and animal studies on the beneficial effects of fucoxanthin and astaxanthin against AD were also reviewed. The potential role of fucoxanthin and astaxanthin exhibits great efficacy for the management of AD by acting on multiple targets.
Collapse
Affiliation(s)
- Najmeh Oliyaei
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Patil VM, Masand N, Gautam V, Kaushik S, Wu D. Multi-Target-Directed Ligand Approach in Anti-Alzheimer’s Drug Discovery. DECIPHERING DRUG TARGETS FOR ALZHEIMER’S DISEASE 2023:285-319. [DOI: 10.1007/978-981-99-2657-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Saeedi M, Iraji A, Vahedi-Mazdabadi Y, Alizadeh A, Edraki N, Firuzi O, Eftekhari M, Akbarzadeh T. Cinnamomum verum J. Presl. Bark essential oil: in vitro investigation of anti-cholinesterase, anti-BACE1, and neuroprotective activity. BMC Complement Med Ther 2022; 22:303. [DOI: 10.1186/s12906-022-03767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Cinnamomum verum J. Presl. (Lauraceae), Myrtus communis L. (Myrtaceae), Ruta graveolens L. (Rutaaceae), Anethum graveolens L. (Apiaceae), Myristica fragrans Houtt. (Myristicaceae), and Crocus sativus L. (Iridaceae) have been recommended for improvement of memory via inhalation, in Iranian Traditional Medicine (ITM). In this respect, the essential oils (EOs) from those plants were obtained and evaluated for cholinesterase (ChE) inhibitory activity as ChE inhibitors are the available drugs in the treatment of Alzheimer’s disease (AD).
Methods
EOs obtained from the plants under investigation, were evaluated for their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro based on the modified Ellman’s method. The most potent EO was candidate for the investigation of its beta-secretase 1 (BACE1) inhibitory activity and neuroprotectivity.
Results
Among all EOs, C. verum demonstrated the most potent activity toward AChE and BChE with IC50 values of 453.7 and 184.7 µg/mL, respectively. It also showed 62.64% and 41.79% inhibition against BACE1 at the concentration of 500 and 100 mg/mL, respectively. However, it depicted no neuroprotective potential against β-amyloid (Aβ)-induced neurotoxicity in PC12 cells. Also, identification of chemical composition of C. verum EO was achieved via gas chromatography-mass spectrometry (GC-MS) analysis and the major constituent; (E)-cinnamaldehyde, was detected as 68.23%.
Conclusion
Potent BChE inhibitory activity of C. verum EO can be considered in the development of cinnamon based dietary supplements for the management of patients with advanced AD.
Collapse
|
15
|
Synthesis, Structure and Cytotoxic Properties of Copper(II) Complexes of 2-Iminocoumarins Bearing a 1,3,5-Triazine or Benzoxazole/Benzothiazole Moiety. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217155. [PMID: 36363982 PMCID: PMC9659224 DOI: 10.3390/molecules27217155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022]
Abstract
A series of copper(II) complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazines 2a-h, 3-(benzoxazol-2-yl)-2H-chromen-2-imines 4a-b, and 3-(benzothiazol-2-yl)-2H-chromen-2-imines 6a-c were obtained by reacting of appropriate 2-iminocoumarin ligands L1a-h, L3a-b, and L5a-c with 3-fold molar excess of copper(II) chloride. The structure of these compounds was confirmed by IR spectroscopy, elemental analysis, and single-crystal X-ray diffraction data (2f, 2g, 2h, and 6c). All the synthesized complexes were screened for their activity against five human cancer cell lines: DAN-G, A-427, LCLC-103H, SISO, and RT-4 by using a crystal violet microtiter plate assay and relationships between structure and in vitro cytotoxic activity are discussed. The coordination of 2-iminocoumarins with copper(II) ions resulted in complexes 2a-h, 4a-b, and 6a-c with significant inhibitory properties toward tested tumor cell lines with IC50 values ranging from 0.04 μM to 15.66 μM. In comparison to the free ligands L1a-h, L3a-b, and L5a-c, the newly prepared Cu(II) complexes often displayed increased activity. In the series of copper(II) complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazines 2a-h the most potent compound 2g contained a 4-phenylpiperazine moiety at position 6 of the 1,3,5-triazine ring and an electron-donating diethylamino group at position 7' of the 2-iminocoumarin scaffold. Among the Cu(II) complexes of 3-(benzoxazol-2-yl)-2H-chromen-2-imines 4a-b and 3-(benzothiazol-2-yl)-2H-chromen-2-imines 6a-c the most active was benzoxazole-2-iminocoumarin 4b that also possessed a diethylamino group at position 7' of the 2-iminocoumarin moiety. Moreover, compound 4b was found to be the most prominent agent and displayed the higher potency than cisplatin against tested cell lines.
Collapse
|
16
|
Kumari S, Maddeboina K, Bachu RD, Boddu SHS, Trippier PC, Tiwari AK. Pivotal role of nitrogen heterocycles in Alzheimer's disease drug discovery. Drug Discov Today 2022; 27:103322. [PMID: 35868626 DOI: 10.1016/j.drudis.2022.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease that progressively worsens with time. Clinical options are limited and only provide symptomatic relief to AD patients. The search for effective anti-AD compounds is ongoing with a few already in Phase III clinical trials, yet to be approved. Heterocycles containing nitrogen are important to biological processes owing to their abundance in nature, their function as subunits of biological molecules and/or macromolecular structures, and their biological activities. The present review discusses previously used strategies, SAR, relevant in vitro and in vivo studies, and success stories of nitrogen-containing heterocyclic compounds in AD drug discovery. Also, we propose strategies for designing and developing novel potent anti-AD small molecules that can be used as treatments for AD.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| | - Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, UNMC Center for Drug Discovery, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE; Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
17
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
18
|
Piperidine-Iodine as Efficient Dual Catalyst for the One-Pot, Three-Component Synthesis of Coumarin-3-Carboxamides. Molecules 2022; 27:molecules27144659. [PMID: 35889530 PMCID: PMC9323834 DOI: 10.3390/molecules27144659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
A simple and efficient one-pot, three-component synthetic method for the preparation of coumarin-3-carboxamides was carried out by the reaction of salicylaldehyde, aliphatic primary/secondary amines, and diethylmalonate. The protocol employs piperidine-iodine as a dual system catalyst and ethanol, a green solvent. The main advantages of this approach are that it is a metal-free and clean reaction, has low catalyst loading, and requires no tedious workup.
Collapse
|
19
|
Sykam K, Donempudi S, Basak P. 1,2,
3‐Triazole
rich polymers for flame retardant application: A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kesavarao Sykam
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad India
| | - Shailaja Donempudi
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad India
| | - Pratyay Basak
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad India
| |
Collapse
|
20
|
Patel S, Bansoad AV, Singh R, Khatik GL. BACE1: A Key Regulator in Alzheimer's Disease Progression and Current Development of its Inhibitors. Curr Neuropharmacol 2022; 20:1174-1193. [PMID: 34852746 PMCID: PMC9886827 DOI: 10.2174/1570159x19666211201094031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease with no specific disease-modifying treatment. β-secretase (BACE1) is considered the potential and rationale target because it is involved in the rate-limiting step, which produces toxic Aβ42 peptides that leads to deposits in the form of amyloid plaques extracellularly, resulting in AD. OBJECTIVE This study aims to discuss the role and implications of BACE1 and its inhibitors in the management of AD. METHODS We have searched and collected the relevant quality work from PubMed using the following keywords "BACE1", BACE2", "inhibitors", and "Alzheimer's disease". In addition, we included the work which discusses the role of BACE1 in AD and the recent work on its inhibitors. RESULTS In this review, we have discussed the importance of BACE1 in regulating AD progression and the current development of BACE1 inhibitors. However, the development of a BACE1 inhibitor is very challenging due to the large active site of BACE1. Nevertheless, some of the BACE1 inhibitors have managed to enter advanced phases of clinical trials, such as MK-8931 (Verubecestat), E2609 (Elenbecestat), AZD3293 (Lanabecestat), and JNJ-54861911 (Atabecestat). This review also sheds light on the prospect of BACE1 inhibitors as the most effective therapeutic approach in delaying or preventing AD progression. CONCLUSION BACE1 is involved in the progression of AD. The current ongoing or failed clinical trials may help understand the role of BACE1 inhibition in regulating the Aβ load and cognitive status of AD patients.
Collapse
Affiliation(s)
| | - Ankush Vardhaman Bansoad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Rakesh Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, ,Address correspondence to this author at the Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, India, 226002; E-mail: ,
| |
Collapse
|
21
|
Synthesis, and in vitro biological evaluations of novel naphthoquinone conjugated to aryl triazole acetamide derivatives as potential anti-Alzheimer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Tawfik HO, El-Hamaky AA, El-Bastawissy EA, Shcherbakov KA, Veselovsky AV, Gladilina YA, Zhdanov DD, El-Hamamsy MH. New Genetic Bomb Trigger: Design, Synthesis, Molecular Dynamics Simulation, and Biological Evaluation of Novel BIBR1532-Related Analogs Targeting Telomerase against Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2022; 15:ph15040481. [PMID: 35455478 PMCID: PMC9025901 DOI: 10.3390/ph15040481] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Telomeres serve a critical function in cell replication and proliferation at every stage of the cell cycle. Telomerase is a ribonucleoprotein, responsible for maintaining the telomere length and chromosomal integrity of frequently dividing cells. Although it is silenced in most human somatic cells, telomere restoration occurs in cancer cells because of telomerase activation or alternative telomere lengthening. The telomerase enzyme is a universal anticancer target that is expressed in 85–95% of cancers. BIBR1532 is a selective non-nucleoside potent telomerase inhibitor that acts by direct noncompetitive inhibition. Relying on its structural features, three different series were designed, and 30 novel compounds were synthesized and biologically evaluated as telomerase inhibitors using a telomeric repeat amplification protocol (TRAP) assay. Target compounds 29a, 36b, and 39b reported the greatest inhibitory effect on telomerase enzyme with IC50 values of 1.7, 0.3, and 2.0 μM, respectively, while BIBR1532 displayed IC50 = 0.2 μM. Compounds 29a, 36b, and 39b were subsequently tested using a living-cell TRAP assay and were able to penetrate the cell membrane and inhibit telomerase inside living cancer cells. Compound 36b was tested for cytotoxicity against 60 cancer cell lines using the NCI (USA) procedure, and the % growth was minimally impacted, indicating telomerase enzyme selectivity. To investigate the interaction of compound 36b with the telomerase allosteric binding site, molecular docking and molecular dynamics simulations were used.
Collapse
Affiliation(s)
- Haytham O. Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.A.E.-H.); (E.A.E.-B.); (M.H.E.-H.)
- Correspondence: (H.O.T.); (D.D.Z.)
| | - Anwar A. El-Hamaky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.A.E.-H.); (E.A.E.-B.); (M.H.E.-H.)
| | - Eman A. El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.A.E.-H.); (E.A.E.-B.); (M.H.E.-H.)
| | - Kirill A. Shcherbakov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (K.A.S.); (A.V.V.); (Y.A.G.)
| | - Alexander V. Veselovsky
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (K.A.S.); (A.V.V.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (K.A.S.); (A.V.V.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (K.A.S.); (A.V.V.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence: (H.O.T.); (D.D.Z.)
| | - Mervat H. El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.A.E.-H.); (E.A.E.-B.); (M.H.E.-H.)
| |
Collapse
|
23
|
Prasanna CAL, Sharma A. Pharmacological exploration of triazole based therapeutics for Alzheimer disease: An overview. Curr Drug Targets 2022; 23:933-953. [DOI: 10.2174/1389450123666220328153741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Alzheimer`s disease (AD) is an irreversible progressive neurodegenerative disorder which may account for approximately 60-70% cases of dementia worldwide. AD is characterized by impaired behavioural and cognitive functions including memory, language, conception, attentiveness, judgment, and reasoning problems. The two important hallmarks of AD are the appearance of plaques and tangles of amyloid beta (Aβ) and tau proteins, respectively, in the brain based on the etiology of the disease including cholinergic impairment, metal dyshomeostasis, oxidative stress, and degradation of neurotransmitters. Currently, the used medication only provides alleviation of symptoms but not effective in curing the disease that is creating by an urge to develop new molecules to treat AD. Heterocyclic compounds have proven their ability to be developed as drugs for the treatment of various diseases. The five-membered heterocyclic compound triazole has received foremost fascination for the discovery of new drugs due to the possibility of structural variation and proved its significance in various drug categories. Therefore, this review summarizes mainly the recent advancements in the development of novel 1,2,3-triazole and 1,2,4-triazole based molecules in the drug discovery process for targeting various AD targets such as phosphodiesterase 1 (PDE1) Inhibitors, Apoptosis signal-regulating kinase 1 (ASK1) inhibitors, Somatostatin receptor subtype-4 (SSTR4) agonist, many other druggable targets, molecular modelling studies as well as various methodology for the synthesis of triazoles containing molecules such as Click reaction, Pellizzari and Einhorn-Brunner Reaction.
Collapse
Affiliation(s)
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
24
|
Guo HY, Chen ZA, Shen QK, Quan ZS. Application of triazoles in the structural modification of natural products. J Enzyme Inhib Med Chem 2021; 36:1115-1144. [PMID: 34167422 PMCID: PMC8231395 DOI: 10.1080/14756366.2021.1890066] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Nature products have been extensively used in the discovery and development of new drugs, as the most important source of drugs. The triazole ring is one of main pharmacophore of the nitrogen-containing heterocycles. Thus, a new class of triazole-containing natural product conjugates has been synthesised. These compounds reportedly exert anticancer, anti-inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, anti-Alzheimer, and enzyme inhibitory effects. This review summarises the research progress of triazole-containing natural product derivatives involved in medicinal chemistry in the past six years. This review provides insights and perspectives that will help scientists in the fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zheng-Ai Chen
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
25
|
Zhang X, Zhang S, Zhao S, Wang X, Liu B, Xu H. Click Chemistry in Natural Product Modification. Front Chem 2021; 9:774977. [PMID: 34869223 PMCID: PMC8635925 DOI: 10.3389/fchem.2021.774977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Click chemistry is perhaps the most powerful synthetic toolbox that can efficiently access the molecular diversity and unique functions of complex natural products up to now. It enables the ready synthesis of diverse sets of natural product derivatives either for the optimization of their drawbacks or for the construction of natural product-like drug screening libraries. This paper showcases the state-of-the-art development of click chemistry in natural product modification and summarizes the pharmacological activities of the active derivatives as well as the mechanism of action. The aim of this paper is to gain a deep understanding of the fruitful achievements and to provide perspectives, trends, and directions regarding further research in natural product medicinal chemistry.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuan Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
26
|
Attarroshan M, Firuzi O, Iraji A, Sharifi S, Tavakkoli M, Vesal M, Khoshneviszadeh M, Pirhadi S, Edraki N. Imino-2H-Chromene Based Derivatives as Potential Anti-Alzheimer's Agents: Design, Synthesis, Biological Evaluation and in Silico Study. Chem Biodivers 2021; 19:e202100599. [PMID: 34786830 DOI: 10.1002/cbdv.202100599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022]
Abstract
A new series of imino-2H-chromene derivatives were rationally designed and synthesized as novel multifunctional agents against Alzheimer's disease. A set of phenylimino-2H-chromenes as well as the newly synthesized iminochromene derivatives were evaluated as BACE1, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) inhibitors. The results indicated that among the iminochromene set, 10c bearing fluorobenzyl moiety was the most potent BACE1 inhibitor with an IC50 value 6.31 μM. In vitro anti-cholinergic activities demonstrated that compound 10a bearing benzyl pendant was the best inhibitor of AChE (% inhibition at 30 μM=24.4) and BuChE (IC50 =3.3 μM). Kinetic analysis of compound 10a against BuChE was also performed and showed a mixed-type inhibition pattern. The neuroprotective assessment revealed that compound 11b, a phenylimino-2H-chromene derivative with hydroxyethyl moiety, provided 32.3 % protection at 25 μM against Aβ-induced PC12 neuronal cell damage. In addition, docking and simulation studies of the most potent compounds against BACE1 and BuChE confirmed the experimental results.
Collapse
Affiliation(s)
- Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrzad Sharifi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmmod Vesal
- Department of Biochemistry, Islamic Azad University, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Husain A, Balushi K A, Akhtar MJ, Khan SA. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer's disease. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Manzoor S, Gabr MT, Rasool B, Pal K, Hoda N. Dual targeting of acetylcholinesterase and tau aggregation: Design, synthesis and evaluation of multifunctional deoxyvasicinone analogues for Alzheimer's disease. Bioorg Chem 2021; 116:105354. [PMID: 34562674 DOI: 10.1016/j.bioorg.2021.105354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Development of multitargeted ligands have demonstrated remarkable efficiency as potential therapeutics for Alzheimer's disease (AD). Herein, we reported a new series of deoxyvasicinone analogues as dual inhibitor of acetylcholinesterase (AChE) and tau aggregation that function as multitargeted ligands for AD. All the multitargeted ligands 11(a-j) and 15(a-g) were designed, synthesized, and validated by 1HNMR, 13CNMR and mass spectrometry. All the synthesized compounds 11(a-j) and 15(a-g) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. All the screened compounds possessed weak inhibition of BACE-1, Aβ42 and α-syn aggregation. However, several compounds were identified as potential hits in the AChE inhibitory screening assay and cellular tau aggregation screening. Among all compounds, 11f remarkably inhibited AChE activity and cellular tau oligomerization at single-dose screening (10 µM). Moreover, 11f displayed a half-maximal inhibitory concentration (IC50) value of 0.91 ± 0.05 µM and half-maximal effective concentration (EC50) value of 3.83 ± 0.51 µM for the inhibition of AChE and cellular tau oligomerization, respectively. In addition, the neuroprotective effect of 11f was determined in tau-expressing SH-SY5Y cells incubated with Aβ oligomers. These findings highlighted the potential of 11f to function as a multifunctional ligand for the development of promising anti-AD drugs.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| | - Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, CA 94305, United States.
| | - Bisma Rasool
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
29
|
Rastegari A, Safavi M, Vafadarnejad F, Najafi Z, Hariri R, Bukhari SNA, Iraji A, Edraki N, Firuzi O, Saeedi M, Mahdavi M, Akbarzadeh T. Synthesis and evaluation of novel arylisoxazoles linked to tacrine moiety: in vitro and in vivo biological activities against Alzheimer's disease. Mol Divers 2021; 26:409-428. [PMID: 34273065 DOI: 10.1007/s11030-021-10248-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is now ranked as the third leading cause of death after heart disease and cancer. There is no definite cure for AD due to the multi-factorial nature of the disease, hence, multi-target-directed ligands (MTDLs) have attracted lots of attention. In this work, focusing on the efficient cholinesterase inhibitory activity of tacrine, design and synthesis of novel arylisoxazole-tacrine analogues was developed. In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition assay confirmed high potency of the title compounds. Among them, compounds 7l and 7b demonstrated high activity toward AChE and BChE with IC50 values of 0.050 and 0.039 μM, respectively. Both compounds showed very good self-induced Aβ aggregation and AChE-induced inhibitory activity (79.4 and 71.4% for compound 7l and 61.8 and 58.6% for compound 7b, respectively). Also, 7l showed good anti-BACE1 activity with IC50 value of 1.65 µM. The metal chelation test indicated the ability of compounds 7l and 7b to chelate biometals (Zn2+, Cu2+, and Fe2+). However, they showed no significant neuroprotectivity against Aβ-induced damage in PC12 cells. Evaluation of in vitro hepatotoxicity revealed comparable toxicity of compounds 7l and 7b with tacrine. In vivo studies by Morris water maze (MWM) task demonstrated that compound 7l significantly reversed scopolamine-induced memory deficit in rats. Finally, molecular docking studies of compounds 7l and 7b confirmed establishment of desired interactions with the AChE, BChE, and BACE1 active sites.
Collapse
Affiliation(s)
- Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Fahimeh Vafadarnejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, 2014, Sakaka, Saudi Arabia
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Saeedi
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Synthesis and bio-evaluation of new multifunctional methylindolinone-1,2,3-triazole hybrids as anti-Alzheimer's agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Mahernia S, Hassanzadeh M, Adib M, Peytam F, Haghighijoo Z, Iraji A, Mahdavi M, Edraki N, Amanlou M. The possible effect of microRNA-155 (miR-155) and BACE1 inhibitors in the memory of patients with down syndrome and Alzheimer's disease: Design, synthesis, virtual screening, molecular modeling and biological evaluations. J Biomol Struct Dyn 2021; 40:5803-5814. [PMID: 33480329 DOI: 10.1080/07391102.2021.1873861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MiR-155 plays main roles in several physiological and pathological mechanisms, such as Down syndrome (DS), immunity and inflammation and potential anti-AD therapeutic target. The miR-155 is one of the overexpressed miRNAs in DS patients that contribute directly and indirectly to the onset or progression of the DS. Since the miR-155 can simultaneously reduce the translation of several genes at post-transcriptional levels, targeting the miR-155 might set the stage for the treatment of DS. One of the rational strategies in providing therapeutic interventions in this respect is to design and develop novel small molecules inhibiting the miR-155 function or biogenesis or maturation. In the present study, we aim to introduce small molecule compounds with the potential to inhibit the generation of the selectively miR-155 processing by employing computational drug design approaches, as well as in vitro studies. We designed and synthesized a novel series of imidazo[1,2-a]pyridines derivatives as new nonpeptic candidates for the treatment of DS with AD. The designed compounds were investigated for their BACE1 and miR-155 binder inhibitory potential in vitro and in cell. In addition, we present a systematic computational approach that includes 3 D modeling, docking-based virtual screening, and molecular dynamics simulation to identify Small - molecule inhibitors of pre-miR-155 maturation. To confirm the inhibitory potential of compound 8k on miR-155 maturation, qRT- PCR was performed. All our results confirm that compound 8k, in addition to being a good inhibitor of BACE1, can also be a good inhibitor of miR-155.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shabnam Mahernia
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Adib
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fariba Peytam
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Haghighijoo
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Amanlou
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Sadeghian B, Sakhteman A, Faghih Z, Nadri H, Edraki N, Iraji A, Sadeghian I, Rezaei Z. Design, synthesis and biological activity evaluation of novel carbazole-benzylpiperidine hybrids as potential anti Alzheimer agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Saeedi M, Felegari P, Iraji A, Hariri R, Rastegari A, Mirfazli SS, Edraki N, Firuzi O, Mahdavi M, Akbarzadeh T. Novel N-benzylpiperidine derivatives of 5-arylisoxazole-3-carboxamides as anti-Alzheimer's agents. Arch Pharm (Weinheim) 2020; 354:e2000258. [PMID: 33226157 DOI: 10.1002/ardp.202000258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/31/2020] [Indexed: 01/05/2023]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) has prompted researchers to develop multitarget-directed molecules to find an effective therapy against the disease. In this context, a novel series of N-(1-benzylpiperidin-4-yl)-5-arylisoxazole-3-carboxamide derivatives were designed, synthesized, and evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro biological evaluation demonstrated that compound 4e was the best AChE (IC50 = 16.07 μM) and BuChE inhibitor (IC50 = 15.16 μM). A kinetic study of 4e was also conducted, which presented a mixed-type inhibition for both enzymes. Molecular docking studies revealed that compound 4e fitted well into the active sites of AChE and BuChE, forming stable and strong interactions with key residues Glu199, Trp84, Asp72, Tyr121, and Phe288 in AChE and His438, Trp82, Ala328, Tyr332, Phe329, Thr120, and Pro285 in BuChE. Besides, the inhibition of BACE1 by 4e and the biometal chelation activity of 4e were measured. The neuroprotective assessment revealed that 4e exhibited 23.2% protection at 50 µM toward amyloid-beta-induced PC12 neuronal cells. Overall, this study exhibited that compound 4e was a promising compound targeting multiple factors associated with AD.
Collapse
Affiliation(s)
- Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Felegari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - S Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Iraji A, Khoshneviszadeh M, Bakhshizadeh P, Edraki N, Khoshneviszadeh M. Structure-Based Design, Synthesis, Biological Evaluation and Molecular Docking Study of 4-Hydroxy-N'-methylenebenzohydrazide Derivatives Acting as Tyrosinase Inhibitors with Potentiate Anti-Melanogenesis Activities. Med Chem 2020; 16:892-902. [DOI: 10.2174/1573406415666190724142951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Background:
Melanogenesis is a process of melanin synthesis, which is a primary response
for the pigmentation of human skin. Tyrosinase is a key enzyme, which catalyzes a ratelimiting
step of the melanin formation. Natural products have shown potent inhibitors, but some of
these possess toxicity. Numerous synthetic inhibitors have been developed in recent years may
lead to the potent anti– tyrosinase agents.
Objective:
A number of 4-hydroxy-N'-methylenebenzohydrazide analogues with related structure
to chalcone and tyrosine were constructed with various substituents at the benzyl ring of the molecule
and evaluate as a tyrosinase inhibitor. In addition, computational analysis and metal chelating
potential have been evaluated.
Methods:
Design and synthesized compounds were evaluated for activity against mushroom tyrosinase.
The metal chelating capacity of the potent compound was examined using the mole ratio
method. Molecular docking of the synthesized compounds was carried out into the tyrosine active
site.
Results:
Novel 4-hydroxy-N'-methylenebenzohydrazide derivatives were synthesized. The two
compounds 4c and 4g showed an IC50 near the positive control, led to a drastic inhibition of tyrosinase.
Confirming in vitro results were performed via the molecular docking analysis demonstrating
hydrogen bound interactions of potent compounds with histatidine-Cu+2 residues with in
the active site. Kinetic study of compound 4g showed competitive inhibition towards tyrosinase.
Metal chelating assay indicates the mole fraction of 1:2 stoichiometry of the 4g-Cu2+ complex.
Conclusion:
The findings in the present study demonstrate that 4-Hydroxy-N'-
methylenebenzohydrazide scaffold could be regarded as a bioactive core inhibitor of tyrosinase
and can be used as an inspiration for further studies in this area.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Bakhshizadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Design and synthesis of multi-target directed 1,2,3-triazole-dimethylaminoacryloyl-chromenone derivatives with potential use in Alzheimer's disease. BMC Chem 2020; 14:64. [PMID: 33134975 PMCID: PMC7592376 DOI: 10.1186/s13065-020-00715-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/08/2020] [Indexed: 02/01/2023] Open
Abstract
To discover multifunctional agents for the treatment of Alzheimer's disease (AD), a new series of 1,2,3-triazole-chromenone derivatives were designed and synthesized based on the multi target-directed ligands approach. The in vitro biological activities included acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition as well as anti-Aβ aggregation, neuroprotective effects, and metal-chelating properties. The results indicated a highly selective BuChE inhibitory activity with an IC50 value of 21.71 μM for compound 10h as the most potent compound. Besides, compound 10h could inhibit self-induced Aβ1–42 aggregation and AChE-induced Aβ aggregation with 32.6% and 29.4% inhibition values, respectively. The Lineweaver–Burk plot and molecular modeling study showed that compound 10h targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of BuChE. It should be noted that compound 10h was able to chelate biometals. Thus, the designed scaffold could be considered as multifunctional agents in AD drug discovery developments. ![]()
Collapse
|
36
|
Godlewska-Żyłkiewicz B, Świsłocka R, Kalinowska M, Golonko A, Świderski G, Arciszewska Ż, Nalewajko-Sieliwoniuk E, Naumowicz M, Lewandowski W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4454. [PMID: 33049979 PMCID: PMC7579235 DOI: 10.3390/ma13194454] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Natural carboxylic acids are plant-derived compounds that are known to possess biological activity. The aim of this review was to compare the effect of structural differences of the selected carboxylic acids (benzoic acid (BA), cinnamic acid (CinA), p-coumaric acid (p-CA), caffeic acid (CFA), rosmarinic acid (RA), and chicoric acid (ChA)) on the antioxidant, antimicrobial, and cytotoxic activity. The studied compounds were arranged in a logic sequence of increasing number of hydroxyl groups and conjugated bonds in order to investigate the correlations between the structure and bioactivity. A review of the literature revealed that RA exhibited the highest antioxidant activity and this property decreased in the following order: RA > CFA ~ ChA > p-CA > CinA > BA. In the case of antimicrobial properties, structure-activity relationships were not easy to observe as they depended on the microbial strain and the experimental conditions. The highest antimicrobial activity was found for CFA and CinA, while the lowest for RA. Taking into account anti-cancer properties of studied NCA, it seems that the presence of hydroxyl groups had an influence on intermolecular interactions and the cytotoxic potential of the molecules, whereas the carboxyl group participated in the chelation of endogenous transition metal ions.
Collapse
Affiliation(s)
- Beata Godlewska-Żyłkiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Aleksandra Golonko
- Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02–532 Warsaw, Poland;
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Żaneta Arciszewska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Edyta Nalewajko-Sieliwoniuk
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland;
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| |
Collapse
|
37
|
Hosseinpoor H, Iraji A, Edraki N, Pirhadi S, Attarroshan M, Khoshneviszadeh M, Khoshneviszadeh M. A Series of Benzylidenes Linked to Hydrazine-1-carbothioamide as Tyrosinase Inhibitors: Synthesis, Biological Evaluation and Structure-Activity Relationship. Chem Biodivers 2020; 17:e2000285. [PMID: 32478439 DOI: 10.1002/cbdv.202000285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Tyrosinase is a type 3 copper enzyme responsible for skin pigmentation disorders, skin cancer, and enzymatic browning of vegetables and fruits. In the present article, 12 small molecules of 2-benzylidenehydrazine-1-carbothioamide were designed, synthesized and evaluated for their anti-tyrosinase activities followed by molecular docking and pharmacophore-based screening. Among synthesized thiosemicarbazone derivatives, one compound, (2E)-2-[(4-nitrophenyl)methylidene]hydrazine-1-carbothioamide, is the strongest inhibitor of mushroom tyrosinase with IC50 of 0.05 μM which demonstrated a 128-fold increase in potency compared to the positive control. Kinetic studies also revealed mix type inhibition by this compound. Docking studies confirmed the complete fitting of the synthesized compounds into the tyrosinase active site. The results underline the potential of 2-benzylidenehydrazine-1-carbothioamides as potent pharmacophore to extend the tyrosinase inhibition in drug discovery.
Collapse
Affiliation(s)
- Hona Hosseinpoor
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, 71345, Shiraz, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, 71468, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, 71345, Shiraz, Iran
| |
Collapse
|
38
|
Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A, Firuzi O. 5,6-Diphenyl triazine-thio methyl triazole hybrid as a new Alzheimer's disease modifying agents. Mol Divers 2020; 24:641-654. [PMID: 31327094 DOI: 10.1007/s11030-019-09970-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
In this study, new derivatives of 5,6-diphenyl triazine-thio methyl triazole hybrid were designed, synthesized and evaluated as multifunctional agents for Alzheimer's disease. Among all synthesized compounds, 4a and 4h showed the best inhibitory activities against BACE1 (40% and 37.5% μM inhibition at 50 µM, respectively). Molecular docking studies showed that compound 4a occupied the entire BACE1 enzyme and the thio triazine fragment deeply penetrates into S2 binding site via two hydrogen bonds with Thr72 and Gln73 amino acids. Different aromatic moieties occupy S'2 pocket via hydrophobic interactions. 6-Phenyl ring also had a potential hydrophobic interaction with S1 pocket. In vitro ChE inhibitory assay demonstrated that most of the derivatives exhibited more selectivity toward BuChE than AChE. 4c as the most potent BuChE inhibitor displayed an IC50 value of 6.4 µM, and 4b exhibited AChE inhibitory activity with 25.1% inhibition at 50 μM. Further, molecular docking studies revealed that the thiazolidinones moiety plays a key role in the inhibition mechanism by well fitting into the enzyme bounding pocket. Moreover, molecular docking study of 4a, 4b and 4c with ChE active site was also performed.
Collapse
Affiliation(s)
- Mahnaz Yazdani
- Department of Chemistry, Khozestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Rashid Badri
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Saeedi M, Safavi M, Allahabadi E, Rastegari A, Hariri R, Jafari S, Bukhari SNA, Mirfazli SS, Firuzi O, Edraki N, Mahdavi M, Akbarzadeh T. Thieno[2,3-b]pyridine amines: Synthesis and evaluation of tacrine analogs against biological activities related to Alzheimer's disease. Arch Pharm (Weinheim) 2020; 353:e2000101. [PMID: 32657467 DOI: 10.1002/ardp.202000101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/06/2022]
Abstract
In search of safer tacrine analogs, various thieno[2,3-b]pyridine amine derivatives were synthesized and evaluated for their inhibitory activity against cholinesterases (ChEs). Among the synthesized compounds, compounds 5e and 5d showed the highest activity towards acetylcholinesterase and butyrylcholinesterase, with IC50 values of 1.55 and 0.23 µM, respectively. The most active ChE inhibitors (5e and 5d) were also candidates for further complementary assays, such as kinetic and molecular docking studies as well as studies on inhibitory activity towards amyloid-beta (βA) aggregation and β-secretase 1, neuroprotectivity, and cytotoxicity against HepG2 cells. Our results indicated efficient anti-Alzheimer's activity of the synthesized compounds.
Collapse
Affiliation(s)
- Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Emad Allahabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Jafari
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Syed N A Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Saudi Arabia
| | - Seyedeh S Mirfazli
- Department of Medicinal Chemistry, Iran University of Medical Sciences, Tehran, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Multitarget Therapeutic Strategies for Alzheimer's Disease: Review on Emerging Target Combinations. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5120230. [PMID: 32714977 PMCID: PMC7354643 DOI: 10.1155/2020/5120230] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases represent nowadays one of the major health problems. Despite the efforts made to unveil the mechanism leading to neurodegeneration, it is still not entirely clear what triggers this phenomenon and what allows its progression. Nevertheless, it is accepted that neurodegeneration is a consequence of several detrimental processes, such as protein aggregation, oxidative stress, and neuroinflammation, finally resulting in the loss of neuronal functions. Starting from these evidences, there has been a wide search for novel agents able to address more than a single event at the same time, the so-called multitarget-directed ligands (MTDLs). These compounds originated from the combination of different pharmacophoric elements which endowed them with the ability to interfere with different enzymatic and/or receptor systems, or to exert neuroprotective effects by modulating proteins and metal homeostasis. MTDLs have been the focus of the latest strategies to discover a new treatment for Alzheimer's disease (AD), which is considered the most common form of dementia characterized by neurodegeneration and cognitive dysfunctions. This review is aimed at collecting the latest and most interesting target combinations for the treatment of AD, with a detailed discussion on new agents with favorable in vitro properties and on optimized structures that have already been assessed in vivo in animal models of dementia.
Collapse
|
41
|
Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int J Mol Sci 2020; 21:E4618. [PMID: 32610556 PMCID: PMC7370201 DOI: 10.3390/ijms21134618] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches.
Collapse
Affiliation(s)
- Francesca Annunziata
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Cecilia Pinna
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| | - Lucia Tamborini
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| |
Collapse
|
42
|
Azimi S, Firuzi O, Iraji A, Zonouzi A, Khoshneviszadeh M, Mahdavi M, Edraki N. Synthesis and In Vitro Biological Activity Evaluation of Novel Imidazo [2,1-B][1,3,4] Thiadiazole as Anti-Alzheimer Agents. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666181108115510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Considering that AD is multifactorial in nature, novel series of imidazo
[2,1-b][1,3,4] thiadiazole derivatives were designed to address the basic factors responsible for the
disease.
<p>
Methods: These compounds were investigated as inhibitors of beta-site APP cleaving enzyme 1,
acetylcholinesterase and butyryl cholinesterase.
<p>
Results: The BACE1 inhibitory results indicated that nitro phenyl substituted derivatives of imidazo
[2,1-b][1,3,4] thiadiazole scaffold (R2 = m-NO2) demonstrated superior BACE1 inhibitory activity
compared to other substituted moieties. In the BuChE assay, compounds 4h and 4l carrying meta
NO2 at R2 of phenyl ring turned out to be potent inhibitors.
<p>
Conclusion: In conclusion, these novel synthesized derivatives seem to be promising anti-Alzheimer
agents.
Collapse
Affiliation(s)
- Sara Azimi
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Zonouzi
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Saeedi M, Rastegari A, Hariri R, Mirfazli SS, Mahdavi M, Edraki N, Firuzi O, Akbarzadeh T. Design and Synthesis of Novel Arylisoxazole-Chromenone Carboxamides: Investigation of Biological Activities Associated with Alzheimer's Disease. Chem Biodivers 2020; 17:e1900746. [PMID: 32154628 DOI: 10.1002/cbdv.201900746] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
A novel series of hybrid arylisoxazole-chromenone carboxamides were designed, synthesized, and evaluated for their cholinesterase (ChE) inhibitory activity based on the modified Ellman's method. Among synthesized compounds, 5-(3-nitrophenyl)-N-{4-[(2-oxo-2H-1-benzopyran-7-yl)oxy]phenyl}-1,2-oxazole-3-carboxamide depicted the most acetylcholinesterase (AChE) inhibitory activity (IC50 =1.23 μm) and 5-(3-chlorophenyl)-N-{4-[(2-oxo-2H-1-benzopyran-7-yl)oxy]phenyl}-1,2-oxazole-3-carboxamide was found to be the most potent butyrylcholinesterase (BChE) inhibitor (IC50 =9.71 μm). 5-(3-Nitrophenyl)-N-{4-[(2-oxo-2H-1-benzopyran-7-yl)oxy]phenyl}-1,2-oxazole-3-carboxamide was further investigated for its BACE1 inhibitory activity as well as neuroprotectivity and metal chelating ability as important factors involved in onset and progress of Alzheimer's disease. It could inhibit BACE1 by 48.46 % at 50 μm. It also showed 6.4 % protection at 25 μm and satisfactory chelating ability toward Zn2+ , Fe2+ , and Cu2+ ions. Docking studies of 5-(3-nitrophenyl)-N-{4-[(2-oxo-2H-1-benzopyran-7-yl)oxy]phenyl}-1,2-oxazole-3-carboxamide and 5-(3-chlorophenyl)-N-{4-[(2-oxo-2H-1-benzopyran-7-yl)oxy]phenyl}-1,2-oxazole-3-carboxamide confirmed desired interactions with those amino acid residues of the AChE and BChE, respectively.
Collapse
Affiliation(s)
- Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 14155, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, 14155, Tehran, Iran
| | - Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, 14155, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, 14155, Tehran, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, 14155, Tehran, Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, 14665, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 14155, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, 14155, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, 14155, Tehran, Iran
| |
Collapse
|
44
|
Liao L, Jiang C, Chen J, Shi J, Li X, Wang Y, Wen J, Zhou S, Liang J, Lao Y, Zhang J. Synthesis and biological evaluation of 1,2,4-triazole derivatives as potential neuroprotectant against ischemic brain injury. Eur J Med Chem 2020; 190:112114. [PMID: 32061962 DOI: 10.1016/j.ejmech.2020.112114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023]
Abstract
A series of 1,2,4-triazole derivatives 1-14 was synthesized to investigate their neuroprotective effects and mechanisms of action. Compounds 5-11 noticeably protected PC12 cells from the cytotoxicity of H2O2 or sodium nitroprusside (SNP). Compound 11 was the most effective derivative. Compound 11 chelated Fe (II) iron, scavenged reactive oxygen species (ROS), and restored the mitochondrial membrane potential (MMP). Moreover, it enhanced the activity of the antioxidant defense system by increasing the serum level of superoxide dismutase (SOD) and promoting the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Compound 11 caused certain improvements in behavior, the cerebral infarction area, and serum levels of biochemical indicators (TNF-α, IL-1β, SOD and MDA) in a rat MCAO model. The lethal dose (LD50) of compound 11 in mice receiving intraperitoneal injections was greater than 400 mg/kg. Meanwhile, pharmacokinetic experiments revealed high bioavailability of this compound after both oral and intravenous administration (F = 60.76%, CL = 0.014 mg/kg/h) and a longer half-life (4.26 and 5.11 h after oral and intravenous administration, respectively). Based on these findings, compound 11 may be a promising neuroprotectant for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Liping Liao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xinhua Li
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jin Wen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Shujia Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jie Liang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
45
|
Costa GP, Baldinotti RSM, Fronza MG, Nascimento JER, Dias ÍFC, Sonego MS, Seixas FK, Collares T, Perin G, Jacob RG, Savegnago L, Alves D. Synthesis, Molecular Docking, and Preliminary Evaluation of 2-(1,2,3-Triazoyl)benzaldehydes As Multifunctional Agents for the Treatment of Alzheimer's Disease. ChemMedChem 2020; 15:610-622. [PMID: 32012463 DOI: 10.1002/cmdc.201900622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/20/2020] [Indexed: 12/11/2022]
Abstract
We described here our results on the use of thiourea as a ligand in the copper catalysed azide-alkyne cycloaddition (CuAAC) of 2-azidobenzaldehyde with alkynes. Reactions were performed reacting 2-azidobenzaldehyde with a range of terminal alkynes using 10 mol % of copper iodide as a catalyst, 20 mol % of thiourea as a ligand, triethylamine as base, DMSO as solvent at 100 °C under nitrogen atmosphere. The corresponding 2-(1H-1,2,3-triazoyl)-benzaldehydes (2-TBH) were obtained in moderated to excellent yields and according our experiments, the use of thiourea decreases the formation of side products. The obtained compounds were screened for their binding affinity with multiple therapeutic targets of AD by molecular docking: β-secretase (BACE), glycogen synthase kinase (GSK-3β) and acetylcholinesterase (AChE). The three compounds with highest affinity, 5 a (2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzaldehyde), 5 b (2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzaldehyde), and 5 d (2-(4-(4-(tert-butyl)phenyl)-1H-1,2,3-triazol-1-yl)benzaldehyde) were selected and evaluated on its antioxidant effect, in view of select the most promising one to perform the in vivo validation. Due the antioxidant potential ally to the affinity with BACE, GSK-3β and AChE, compound 5 b was evaluated in a mouse model of AD induced by intracerebroventricular injection of streptozotocin (STZ). Our results indicate that 5 b (1 mg/kg) treatment during 20 days is able to reverse the cognitive and memory impairment induced by STZ trough the modulation of AChE activity, amyloid cascade and GSK-3β expression.
Collapse
Affiliation(s)
- Gabriel P Costa
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas RS, Brazil
| | - Rodolfo S M Baldinotti
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | - Mariana G Fronza
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | | | - Ítalo F C Dias
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas RS, Brazil
| | - Mariana Souza Sonego
- Grupo de Pesquisa em Oncologia, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | | | - Tiago Collares
- Grupo de Pesquisa em Oncologia, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas RS, Brazil
| | - Raquel G Jacob
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas RS, Brazil
| |
Collapse
|
46
|
Chigorina EA, Dotsenko VV. Novel reactions of 1-cyanoacetyl-3,5-dimethylpyrazole (microreview). Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Iraji A, Khoshneviszadeh M, Firuzi O, Khoshneviszadeh M, Edraki N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg Chem 2020; 97:103649. [PMID: 32101780 DOI: 10.1016/j.bioorg.2020.103649] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/05/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that effects 50 million people worldwide. In this review, AD pathology and the development of novel therapeutic agents targeting AD were fully discussed. In particular, common approaches to prevent Aβ production and/or accumulation in the brain including α-secretase activators, specific γ-secretase modulators and small molecules BACE1 inhibitors were reviewed. Additionally, natural-origin bioactive compounds that provide AD therapeutic advances have been introduced. Considering AD is a multifactorial disease, the therapeutic potential of diverse multi target-directed ligands (MTDLs) that combine the efficacy of cholinesterase (ChE) inhibitors, MAO (monoamine oxidase) inhibitors, BACE1 inhibitors, phosphodiesterase 4D (PDE4D) inhibitors, for the treatment of AD are also reviewed. This article also highlights descriptions on the regulator of serotonin receptor (5-HT), metal chelators, anti-aggregants, antioxidants and neuroprotective agents targeting AD. Finally, current computational methods for evaluating the structure-activity relationships (SAR) and virtual screening (VS) of AD drugs are discussed and evaluated.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
48
|
Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: review. RSC Adv 2020; 10:5610-5635. [PMID: 35497465 PMCID: PMC9049420 DOI: 10.1039/c9ra09510a] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The review lays emphasis on the significance of 1,2,3-triazoles synthesized via CuAAC reaction having potential to act as anti-microbial, anti-cancer, anti-viral, anti-inflammatory, anti-tuberculosis, anti-diabetic, and anti-Alzheimer drugs. The importance of click chemistry is due to its 'quicker' methodology that has the capability to create complex and efficient drugs with high yield and purity from simple and cheap starting materials. The activity of different triazolyl compounds was compiled considering MIC, IC50, and EC50 values against different species of microbes. In addition to this, the anti-oxidant property of triazolyl compounds have also been reviewed and discussed.
Collapse
Affiliation(s)
- Alisha Rani
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurjaspreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Akshpreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Ubair Maqbool
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 India
| | - Jandeep Singh
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| |
Collapse
|
49
|
Mouchlis VD, Melagraki G, Zacharia LC, Afantitis A. Computer-Aided Drug Design of β-Secretase, γ-Secretase and Anti-Tau Inhibitors for the Discovery of Novel Alzheimer's Therapeutics. Int J Mol Sci 2020; 21:E703. [PMID: 31973122 PMCID: PMC7038192 DOI: 10.3390/ijms21030703] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Aging-associated neurodegenerative diseases, which are characterized by progressive neuronal death and synapses loss in human brain, are rapidly growing affecting millions of people globally. Alzheimer's is the most common neurodegenerative disease and it can be caused by genetic and environmental risk factors. This review describes the amyloid-β and Tau hypotheses leading to amyloid plaques and neurofibrillary tangles, respectively which are the predominant pathways for the development of anti-Alzheimer's small molecule inhibitors. The function and structure of the druggable targets of these two pathways including β-secretase, γ-secretase, and Tau are discussed in this review article. Computer-Aided Drug Design including computational structure-based design and ligand-based design have been employed successfully to develop inhibitors for biomolecular targets involved in Alzheimer's. The application of computational molecular modeling for the discovery of small molecule inhibitors and modulators for β-secretase and γ-secretase is summarized. Examples of computational approaches employed for the development of anti-amyloid aggregation and anti-Tau phosphorylation, proteolysis and aggregation inhibitors are also reported.
Collapse
Affiliation(s)
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, Vari 16672, Greece;
| | - Lefteris C. Zacharia
- Department of Life and Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus
| |
Collapse
|
50
|
Sheikhhosseini E. One-pot Synthesis of Novel bisChroman-3, 4-dicarboxamides Containing Lipophilic Spacers. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2019.1697610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|