1
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru 28292, Indonesia.
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Esty Octiana Sari
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
2
|
Bakun P, Wysocki M, Stachowiak M, Musielak M, Dlugaszewska J, Mlynarczyk DT, Sobotta L, Suchorska WM, Goslinski T. Quaternized Curcumin Derivative-Synthesis, Physicochemical Characteristics, and Photocytotoxicity, Including Antibacterial Activity after Irradiation with Blue Light. Molecules 2024; 29:4536. [PMID: 39407467 PMCID: PMC11478334 DOI: 10.3390/molecules29194536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Over the past few years, numerous bacterial strains have become resistant to selected drugs from various therapeutic groups. A potential tool in the fight against these strains is antimicrobial photodynamic therapy (APDT). APDT acts in a non-specific manner by generating reactive oxygen species and radicals, thereby inducing multidimensional intracellular effects. Importantly, the chance that bacteria will develop defense mechanisms against APDT is considered to be low. In our research, we performed the synthesis and physicochemical characterization of curcumin derivatives enriched with morpholine motifs. The obtained compounds were assessed regarding photostability, singlet oxygen generation, aggregation, and acute toxicity toward prokaryotic Aliivibrio fischeri cells in the Microtox® test. The impact of the compounds on the survival of eukaryotic cells in the MTT assay was also tested (WM266-4, WM115-melanoma, MRC-5-lung fibroblasts, and PHDF-primary human dermal fibroblasts). Initial studies determining the photocytotoxicity, and thus the potential APDT usability, were conducted with the following microbial strains: Candida albicans, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa. It was noted that the exposure of bacteria to LED light at 470 nm (fluence: 30 J/cm2) in the presence of quaternized curcumin derivatives at the conc. of 10 µM led to a reduction in Staphylococcus aureus survival of over 5.4 log.
Collapse
Affiliation(s)
- Pawel Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
| | - Marcin Wysocki
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Magdalena Stachowiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Marika Musielak
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| |
Collapse
|
3
|
Cebrián R, Lucas R, Fernández-Cantos MV, Slot K, Peñalver P, Martínez-García M, Párraga-Leo A, de Paz MV, García F, Kuipers OP, Morales JC. Synthesis and antimicrobial activity of aminoalkyl resveratrol derivatives inspired by cationic peptides. J Enzyme Inhib Med Chem 2023; 38:267-281. [PMID: 36600674 PMCID: PMC9828810 DOI: 10.1080/14756366.2022.2146685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance is a global concern, far from being resolved. The need of new drugs against new targets is imminent. In this work, we present a family of aminoalkyl resveratrol derivatives with antibacterial activity inspired by the properties of cationic amphipathic antimicrobial peptides. Surprisingly, the newly designed molecules display modest activity against aerobically growing bacteria but show surprisingly good antimicrobial activity against anaerobic bacteria (Gram-negative and Gram-positive) suggesting specificity towards this bacterial group. Preliminary studies into the action mechanism suggest that activity takes place at the membrane level, while no cross-resistance with traditional antibiotics is observed. Actually, some good synergistic relations with existing antibiotics were found against Gram-negative pathogens. However, some cytotoxicity was observed, despite their low haemolytic activity. Our results show the importance of the balance between positively charged moieties and hydrophobicity to improve antimicrobial activity, setting the stage for the design of new drugs based on these molecules.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands,Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Clínico San Cecilio, Granada, Spain,CONTACT Rubén Cebrián University Hospital San Cecilio,Clinical Microbiology Department, Av. de la Innovación s/n, 18061, Granada, Spain
| | - Ricardo Lucas
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - María Victoria Fernández-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Koen Slot
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Armilla, Granada, Spain
| | - Marta Martínez-García
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Antonio Párraga-Leo
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - María Violante de Paz
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Clínico San Cecilio, Granada, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands,Oscar P. Kuipers University of Groningen, Faculty of Science and Engineering, Department of Genetics, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Armilla, Granada, Spain,Juan Carlos Morales Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento 17, Armilla, 18016Granada, Spain
| |
Collapse
|
4
|
Chen L, Zhao Y, Wu W, Zeng Q, Wang JJ. New trends in the development of photodynamic inactivation against planktonic microorganisms and their biofilms in food system. Compr Rev Food Sci Food Saf 2023; 22:3814-3846. [PMID: 37530552 DOI: 10.1111/1541-4337.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
The photodynamic inactivation (PDI) is a novel and effective nonthermal inactivation technology. This review provides a comprehensive overview on the bactericidal ability of endogenous photosensitizers (PSs)-mediated and exogenous PSs-mediated PDI against planktonic bacteria and their biofilms, as well as fungi. In general, the PDI exhibited a broad-spectrum ability in inactivating planktonic bacteria and fungi, but its potency was usually weakened in vivo and for eradicating biofilms. On this basis, new strategies have been proposed to strengthen the PDI potency in food system, mainly including the physical and chemical modification of PSs, the combination of PDI with multiple adjuvants, adjusting the working conditions of PDI, improving the targeting ability of PSs, and the emerging aggregation-induced emission luminogens (AIEgens). Meanwhile, the mechanisms of PDI on eradicating mono-/mixed-species biofilms and preserving foods were also summarized. Notably, the PDI-mediated antimicrobial packaging film was proposed and introduced. This review gives a new insight to develop the potent PDI system to combat microbial contamination and hazard in food industry.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Weiliang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| |
Collapse
|
5
|
Photodynamic inactivation of Salmonella enterica and Listeria monocytogenes inoculated onto stainless steel or polyurethane surfaces. Food Microbiol 2023; 110:104174. [DOI: 10.1016/j.fm.2022.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
6
|
Eckl DB, Landgraf N, Hoffmann AK, Eichner A, Huber H, Bäumler W. Photodynamic Inactivation of Bacteria in Ionic Environments Using the Photosensitizer SAPYR and the Chelator Citrate. Photochem Photobiol 2022; 99:716-731. [PMID: 36004389 DOI: 10.1111/php.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022]
Abstract
Many studies show that photodynamic inactivation (PDI) is a powerful tool for the fight against pathogenic, multi-resistant bacteria and the closing of hygiene gaps. However, PDI studies have been frequently performed under standardized in vitro conditions comprising artificial laboratory settings. Under real life conditions, however, PDI encounters substances like ions, proteins, amino acids, and fatty acids, potentially hampering the efficacy PDI to an unpredictable extent. Thus, we investigated PDI with the phenalene-1-one based photosensitizer SAPYR against Escherichia coli and Staphylococcus aureus in the presence of calcium or magnesium ions, which are ubiquitous in potential fields of PDI applications like in tap water or on tissue surfaces. The addition of citrate should elucidate the potential as a chelator. The results indicate that PDI is clearly affected by such ubiquitous ions depending on its concentration and the type of bacteria. The application of citrate enhanced PDI especially for Gram-negative bacteria at certain ionic concentrations (e.g. CaCl2 or MgCl2 : 7.5 to 75 mmol l-1 ). Citrate also improved PDI efficacy in tap water (especially for Gram-negative bacteria) and synthetic sweat solution (especially for Gram-positive bacteria). In conclusion, the use of chelating agents like citrate may facilitate the application of PDI under real life conditions.
Collapse
Affiliation(s)
- Daniel B Eckl
- University of Regensburg, Institute for Microbiology and Archaea Centre, Universitätsstrasse 31, 93053, Regensburg.,University Hospital Regensburg, Department of Dermatology, Franz-Josef-Strauss-Allee 11, 93053, Regensburg
| | - Nicole Landgraf
- University of Regensburg, Institute for Microbiology and Archaea Centre, Universitätsstrasse 31, 93053, Regensburg
| | - Anja K Hoffmann
- University of Regensburg, Institute for Microbiology and Archaea Centre, Universitätsstrasse 31, 93053, Regensburg
| | - Anja Eichner
- University Hospital Regensburg, Department of Dermatology, Franz-Josef-Strauss-Allee 11, 93053, Regensburg
| | - Harald Huber
- University of Regensburg, Institute for Microbiology and Archaea Centre, Universitätsstrasse 31, 93053, Regensburg
| | - Wolfgang Bäumler
- University Hospital Regensburg, Department of Dermatology, Franz-Josef-Strauss-Allee 11, 93053, Regensburg
| |
Collapse
|
7
|
Gu W, Liu D, Sun J. Co-crystallization of curcumin for improved photodynamic inactivation of Vibrio parahaemolyticus and its application for the preservation of cooked clams. Int J Food Microbiol 2022; 378:109816. [PMID: 35749911 DOI: 10.1016/j.ijfoodmicro.2022.109816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Curcumin (CUR) is a natural active product widely used as photosensitizer in photodynamic inactivation (PDI) due to low toxicity and low cost. However, the main challenge that limit the efficacy of CUR in PDI are its low solubility in water medium and hence low bioavailability. The co-crystallization is a novel process enables improvements in physicochemical properties such as solubility and bioavailability of water insoluble compound by the incidence of molecular interactions between the active pharmaceutical ingredient and conformer. The main objective of this work is to produce CUR-d-Tyr co-crystal (CDC) by co-crystallization technique using d-Tyrosine (d-Tyr) as the conformer in order to increase CUR water solubility as well as antimicrobial photodynamic activity. CDC presented a different crystalline structure compared with pure CUR. The solubility of CDC in water medium was about 16.5 times greater than pure CUR. The co-crystallization process increased CUR-mediated photodynamic inactivation efficacy of Vibrio parahaemolyticus (V. parahaemolyticus), probably due to alterations in its bioavailability. Moreover, cell membrane damage and production of cytotoxic singlet oxygen (1O2) was proved as main photosensitization mechanism. Furthermore, the application of CDC-mediated PDI on cooked clam reduced weightlessness of cooked clams, inhibited lipid oxidation, and maintained a better appearance, serving as a promising preservation techniques in food industry.
Collapse
Affiliation(s)
- Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
8
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
9
|
Simonetti O, Rizzetto G, Radi G, Molinelli E, Cirioni O, Giacometti A, Offidani A. New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing. Antibiotics (Basel) 2021; 10:antibiotics10111377. [PMID: 34827315 PMCID: PMC8615132 DOI: 10.3390/antibiotics10111377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/31/2022] Open
Abstract
Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.
Collapse
Affiliation(s)
- Oriana Simonetti
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0-715-963-494
| | - Giulio Rizzetto
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Giulia Radi
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| |
Collapse
|
10
|
Schamberger B, Plaetzer K. Photofungizides Based on Curcumin and Derivates Thereof against Candida albicans and Aspergillus niger. Antibiotics (Basel) 2021; 10:1315. [PMID: 34827253 PMCID: PMC8614998 DOI: 10.3390/antibiotics10111315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Fungal infections in humans, contamination of food and structural damage to buildings by fungi are associated with high costs for the general public. In addition, the increase in antifungal resistance towards conventional treatment raises the demand for new fungicidal methods. Here, we present the antifungal use of Photodynamic Inactivation (PDI) based on the natural photosensitizer curcumin and a water-soluble positively charged derivative thereof (SA-CUR 12a) against two different model organisms; Candida albicans grown in a liquid culture and photo treated with a 435 nm LED light followed by counting of the colony-forming units and photoinactivation of tissue-like hyphal spheres of Aspergillus niger (diameter ~5 mm) with subsequent monitoring of colony growth. Curcumin (50 µM, no incubation period, i.p.) supplemented with 10% or 0.5% DMSO as well as SA-CUR 12a (50 µM no i.p or 5 min i.p.) triggered a photoantifungal effect of >4 log units towards C. albicans. At 100 µM, SA-CUR 12a (0 min or 5 min i.p.) achieved a reduction of >6 log units. Colonies of A. niger shrunk significantly during PDI treatment. Photoinactivation with 50 µM or 100 µM curcumin (+0.5% DMSO) resulted in complete growth inhibition. PDI using 20, 50 or 100 µM SA-CUR 12a (with or without 10% DMSO) also showed a significant reduction in colony area compared to the control after 48 h, although less pronounced compared to curcumin. In summary, PDI using curcumin or SA-CUR 12a against C. albicans or A. niger is a promising alternative to currently used fungicides, with the advantage of being very unlikely to induce resistance.
Collapse
Affiliation(s)
- Barbara Schamberger
- Laboratory of Photodynamic Inactivation of Microorganisms, Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria;
- Morphophysics Group, Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Kristjan Plaetzer
- Laboratory of Photodynamic Inactivation of Microorganisms, Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria;
| |
Collapse
|
11
|
Martins Antunes de Melo WDC, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 2021; 12:2247-2272. [PMID: 34496717 PMCID: PMC8437467 DOI: 10.1080/21505594.2021.1960105] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Currently, microbial biofilms have been the cause of a wide variety of infections in the human body, reaching 80% of all bacterial and fungal infections. The biofilms present specific properties that increase the resistance to antimicrobial treatments. Thus, the development of new approaches is urgent, and antimicrobial photodynamic therapy (aPDT) has been shown as a promising candidate. aPDT involves a synergic association of a photosensitizer (PS), molecular oxygen and visible light, producing highly reactive oxygen species (ROS) that cause the oxidation of several cellular components. This therapy attacks many components of the biofilm, including proteins, lipids, and nucleic acids present within the biofilm matrix; causing inhibition even in the cells that are inside the extracellular polymeric substance (EPS). Recent advances in designing new PSs to increase the production of ROS and the combination of aPDT with other therapies, especially pulsed electric fields (PEF), have contributed to enhanced biofilm inhibition. The PEF has proven to have antimicrobial effect once it is known that extensive chemical reactions occur when electric fields are applied. This type of treatment kills microorganisms not only due to membrane rupture but also due to the formation of reactive compounds including free oxygen, hydrogen, hydroxyl and hydroperoxyl radicals. So, this review aims to show the progress of aPDT and PEF against the biofilms, suggesting that the association of both methods can potentiate their effects and overcome biofilm infections.
Collapse
Affiliation(s)
- Wanessa de Cassia Martins Antunes de Melo
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Raimonda Celiešiūtė-Germanienė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
12
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
13
|
Wu J, Sha J, Zhang C, Liu W, Zheng X, Wang P. Recent advances in theranostic agents based on natural products for photodynamic and sonodynamic therapy. VIEW 2020; 1. [DOI: 10.1002/viw.20200090] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2025] Open
Abstract
AbstractThe integration of diagnosis and therapy based on natural products has been receiving considerable attention in recent years because nature can contribute many fantastic functional molecules with good biocompatibility and low toxicity. Diagnostic and therapeutic agents combined with the technique of photodynamic therapy (PDT) and sonodynamic therapy (SDT) have been extensively developed thanks to the advantages of PDT and SDT, such as good selectivity, low toxicity, and noninvasive treatment for cancers and other diseases compared with traditional treatments. In this review, we summarize the recent advances in theranostic agents for natural products categorized as porphyrins, perylenequinone, curcumin, and others. Some representative examples of disease diagnosis in fluorescence/photoacoustic imaging and disease treatment in PDT/SDT were introduced. Potential limitations and future perspectives of these natural products for theranostic agents were also discussed.
Collapse
Affiliation(s)
- Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
| | - Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing P.R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing P.R. China
| |
Collapse
|
14
|
Dharmaratne P, Sapugahawatte DN, Wang B, Chan CL, Lau KM, Lau CB, Fung KP, Ng DK, Ip M. Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review. Eur J Med Chem 2020; 200:112341. [PMID: 32505848 DOI: 10.1016/j.ejmech.2020.112341] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Abstract
The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.
Collapse
Affiliation(s)
- Priyanga Dharmaratne
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | | | - Baiyan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | - Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kit-Man Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Clara Bs Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kwok Pui Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; CUHK-Zhejiang University Joint Laboratory on Natural Products and Toxicology Research, China.
| | - Dennis Kp Ng
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
15
|
Eckl DB, Huber H, Bäumler W. First Report on Photodynamic Inactivation of Archaea Including a Novel Method for High-Throughput Reduction Measurement. Photochem Photobiol 2020; 96:883-889. [PMID: 32073658 DOI: 10.1111/php.13229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
Archaea are considered third, independent domain of living organisms besides eukaryotic and bacterial cells. To date, no report is available of photodynamic inactivation (PDI) of any archaeal cells. Two commercially available photosensitizers (SAPYR and TMPyP) were used to investigate photodynamic inactivation of Halobacterium salinarum. In addition, a novel high-throughput method was tested to evaluate microbial reduction in vitro. Due to the high salt content of the culture medium, the physical and chemical properties of photosensitizers were analyzed via spectroscopy and fluorescence-based DPBF assays. Attachment or uptake of photosensitizers to or in archaeal cells was investigated. The photodynamic inactivation of Halobacterium salinarum was evaluated via growth curve method allowing a high throughput of samples. The presented results indicate that the photodynamic mechanisms are working even in high salt environments. Either photosensitizer inactivated the archaeal cells with a reduction of 99.9% at least. The growth curves provided a fast and precise measurement of cell viability. The results show for the first time that PDI can kill not only bacterial cells but also robust archaea. The novel method for generating high-throughput growth curves provides benefits for future research regarding antimicrobial substances in general.
Collapse
Affiliation(s)
- Daniel B Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Harald Huber
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Wolfgang Bäumler
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Affiliation(s)
- Tim Maisch
- Department of DermatologyUniversity Medical Center Regensburg Regensburg Germany
| |
Collapse
|
17
|
Shabangu SM, Babu B, Soy RC, Managa M, Sekhosana KE, Nyokong T. Photodynamic antimicrobial chemotherapy of asymmetric porphyrin-silver conjugates towards photoinactivation of Staphylococcus aureus. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1739273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Samuel M. Shabangu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Rodah C. Soy
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Kutloano E. Sekhosana
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| |
Collapse
|
18
|
Mirzahosseinipour M, Khorsandi K, Hosseinzadeh R, Ghazaeian M, Shahidi FK. Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagnosis Photodyn Ther 2020; 29:101639. [DOI: 10.1016/j.pdpdt.2019.101639] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022]
|
19
|
Aroso RT, Calvete MJ, Pucelik B, Dubin G, Arnaut LG, Pereira MM, Dąbrowski JM. Photoinactivation of microorganisms with sub-micromolar concentrations of imidazolium metallophthalocyanine salts. Eur J Med Chem 2019; 184:111740. [DOI: 10.1016/j.ejmech.2019.111740] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
|
20
|
Siewert B, Stuppner H. The photoactivity of natural products - An overlooked potential of phytomedicines? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152985. [PMID: 31257117 DOI: 10.1016/j.phymed.2019.152985] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Photoactivity, though known for centuries, is only recently shifting back into focus as a treatment option against cancer and microbial infections. The external factor light is the ingenious key-component of this therapy: Since light activates the drug locally, a high level of selectivity is reached and side effects are avoided. The first reported photoactive medicines were plant extracts. Synthetic entities (so-called photosensitizers PSs), however, paved the route towards the clinical approval of the so-called photodynamic therapy (PDT), and thus natural PSs took a backseat in the past. HYPOTHESIS Many isolated bioactive phytochemicals hold a hidden photoactive potential, which is overlooked due to the reduced common awareness of photoactivity. METHODS A systematic review of reported natural PSs and their supposed medicinal application was conducted by employing PubMed, Scifinder, and Web of Science. The identified photoactive natural products were compiled including information about their natural sources, their photoyield, and their pharmacological application. Furthermore, the common chemical scaffolds of natural PS are shown to enable the reader to recognize potentially overlooked natural PSs. RESULTS The literature review revealed over 100 natural PS, excluding porphyrins. The PSs were classified according to their scaffold. Thereby it was shown that some PS-scaffolds were analyzed in a detailed way, while other classes were only scarcely investigated, which leaves space for future discoveries. In addition, the literature revealed that many PSs are phytoalexins, thus the selection of the starting material significantly matters in order to find new PSs. CONCLUSION Photoactive principles are ubiquitous and can be found in various plant extracts. With the increasing availability of light-irradiation setups for the identification of photoactive natural products, we anticipate the discovery of many new natural PSs in the near future. With the accumulation of chemically diverse PSs, PDT itself might finally reach its clinical breakthrough as a promising alternative treatment against multi-resistant microbes and cancer types.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| |
Collapse
|
21
|
Shakeri A, Panahi Y, Johnston TP, Sahebkar A. Biological properties of metal complexes of curcumin. Biofactors 2019; 45:304-317. [PMID: 31018024 DOI: 10.1002/biof.1504] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Curcumin, a naturally occurring phenolic compound isolated from Curcuma longa, has different pharmacological effects, including antiinflammatory, antimicrobial, antioxidant, and anticancer properties. However, curcumin has been found to have a limited bioavailability because of its hydrophobic nature, low-intestinal absorption, and rapid metabolism. Therefore, there is a need for enhancing the bioavailability and its solubility in water in order to increase the pharmacological effects of this bioactive compound. One strategy is curcumin complexation with transition metals to circumvent the abovementioned problems. Curcumin can undergo chelation with various metal ions to form metallo-complexes of curcumin, which may show greater effects as compared with curcumin alone. Promising results with metal curcumin complexes have been observed with regard to antioxidant, anticancer, and antimicrobial activity, as well as in treatment of Alzheimer's disease. The present review provides a concise summary of the characterization and biological properties of curcumin-metal complexes. © 2019 BioFactors, 45(3):304-317, 2019.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T. Antimicrobial photodynamic therapy - what we know and what we don't. Crit Rev Microbiol 2018; 44:571-589. [PMID: 29749263 DOI: 10.1080/1040841x.2018.1467876] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Considering increasing number of pathogens resistant towards commonly used antibiotics as well as antiseptics, there is a pressing need for antimicrobial approaches that are capable of inactivating pathogens efficiently without the risk of inducing resistances. In this regard, an alternative approach is the antimicrobial photodynamic therapy (aPDT). The antimicrobial effect of aPDT is based on the principle that visible light activates a per se non-toxic molecule, the so-called photosensitizer (PS), resulting in generation of reactive oxygen species that kill bacteria unselectively via an oxidative burst. During the last 10-20 years, there has been extensive in vitro research on novel PS as well as light sources, which is now to be translated into clinics. In this review, we aim to provide an overview about the history of aPDT, its fundamental photochemical and photophysical mechanisms as well as photosensitizers and light sources that are currently applied for aPDT in vitro. Furthermore, the potential of resistances towards aPDT is extensively discussed and implications for proper comparison of in vitro studies regarding aPDT as well as for potential application fields in clinical practice are given. Overall, this review shall provide an outlook on future research directions needed for successful translation of promising in vitro results in aPDT towards clinical practice.
Collapse
Affiliation(s)
- Fabian Cieplik
- a Department of Conservative Dentistry and Periodontology , University Medical Center Regensburg , Regensburg , Germany.,b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Dongmei Deng
- b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Wim Crielaard
- b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Wolfgang Buchalla
- a Department of Conservative Dentistry and Periodontology , University Medical Center Regensburg , Regensburg , Germany
| | - Elmar Hellwig
- c Department of Operative Dentistry and Periodontology, Faculty of Medicine , Center for Dental Medicine, University of Freiburg , Freiburg , Germany
| | - Ali Al-Ahmad
- c Department of Operative Dentistry and Periodontology, Faculty of Medicine , Center for Dental Medicine, University of Freiburg , Freiburg , Germany
| | - Tim Maisch
- d Department of Dermatology , University Medical Center Regensburg , Regensburg , Germany
| |
Collapse
|
23
|
Jalde SS, Chauhan AK, Lee JH, Chaturvedi PK, Park JS, Kim YW. Synthesis of novel Chlorin e6-curcumin conjugates as photosensitizers for photodynamic therapy against pancreatic carcinoma. Eur J Med Chem 2018; 147:66-76. [PMID: 29421571 DOI: 10.1016/j.ejmech.2018.01.099] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Curcumin (cur) has been comprehensively studied for its various biological properties, more precisely for its antitumor potential and it has shown the promising results as well. On the other hand, Chlorin e6 (Ce6) has mostly been used as a photosensitizer in photodynamic therapy (PDT) against a variety of carcinomas. In the present study, we have synthesized a series of Chlorin e6-curcumin (Ce6-cur) conjugates and investigated their photosensitizing potential against pancreatic cancer cell lines. All the synthesized compounds were characterized by UV, 1H NMR, 13C NMR and LC-MS. These Ce6-cur conjugates showed better physicochemical properties and higher singlet oxygen generation capability. The cellular uptake was studied in AsPC-1 cells using fluorescence-activated cell sorting (FACS). Compound 17 was rapidly internalized within 30 min and sustained for 24 h. Compound 17 showed excellent PDT efficacy with IC50 of 40, 35 and 41 nM against AsPC-1, MIA PaCa-2 and PANC-1 respectively with exceptional dark/phototoxicity ratio in the range of 2371-7500. Moreover, the treatment of compound 17 upregulated the expression of BAX, Cytochrome-C and cleaved caspase 9 while downregulating the Bcl-2 expression an anti-apoptotic protein marker. These results demonstrate outstanding capability of compound 17 as a potent photosensitizer which could improve the PDT efficacy in pancreatic cancer patients.
Collapse
Affiliation(s)
- Shivakumar S Jalde
- Daegu Cancer Center, Research and Development Unit of Dongsung Pharmaceuticals Daegu, 41061, Republic of Korea
| | - Anil Kumar Chauhan
- Daegu Cancer Center, Research and Development Unit of Dongsung Pharmaceuticals Daegu, 41061, Republic of Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation Daegu, 41061, Republic of Korea
| | - Pankaj Kumar Chaturvedi
- Department of Radiation Oncology, Chungbuk National University, College of Medicine, Cheongju, 361-763, Republic of Korea
| | - Joon-Suk Park
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yong-Wan Kim
- Daegu Cancer Center, Research and Development Unit of Dongsung Pharmaceuticals Daegu, 41061, Republic of Korea.
| |
Collapse
|