1
|
Ma Y, Sun Y, Tu Q, Lin F, Mei F, Chen Q, Fu T, Yang L, Lai X, Yang M, Yin T, Lu G, Qi J, Lin H, Wen Z, Yang Y, Han H. Novel Phenoxyacetic Acid (4-Aminophenoacetic Acid) Shikonin Ester Kills KRAS Mutant Colon Cancer Cells via Targeting the Akt Allosteric Site. Chem Biol Drug Des 2025; 105:e70125. [PMID: 40395209 DOI: 10.1111/cbdd.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 04/28/2025] [Accepted: 05/11/2025] [Indexed: 05/22/2025]
Abstract
The PI3K-Akt axis is abnormally activated in KRAS-mutated colorectal cancer and is considered to be a potential therapeutic target. A novel series of phenoxyacetic acid (4-aminophenoacetic acid) shikonin esters was designed by computer-aided drug design (CADD) and synthesized as Akt allosteric inhibitors. Most compounds exhibited greater anti-proliferative activity compared to the positive control MK2206, while also demonstrating lower cytotoxicity against normal cells than shikonin. One of the promising candidates, L8, was selected for further biological evaluation. Docking studies indicated that L8 effectively bound to the allosteric site of Akt through hydrophobic and hydrogen interactions. Enzyme activity and kinetics assessments revealed that L8 bound to Akt with a Kd of 2.07 × 10-6 M and inhibited its activity. Further intracellular assays, including western blotting, enzyme activity assay, flow cytometry, etc., verified that L8 mediated the death of two KRAS-mutant colon cancer cell lines HCT116 (KRASG13D) and HCT-8 (KRASG12A) cells by inactivating Akt, causing tumor cell apoptosis, cell cycle arrest, and interfering with tumor cell invasion and metabolism. A 3D-QSAR model was constructed to understand the relationship between the structure of the shikonin derivatives and their anti-proliferative activity. The in silico ADMET and toxicity prediction studies revealed a few undesired pharmacokinetic attributes of our compounds.
Collapse
Affiliation(s)
- Yudi Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuqian Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qingqing Tu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Faxiang Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Feng Mei
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ting Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Liu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaohui Lai
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| |
Collapse
|
2
|
Yakkala PA, Kamal A. Dual-targeting inhibitors involving tubulin for the treatment of cancer. Bioorg Chem 2025; 156:108116. [PMID: 39823818 DOI: 10.1016/j.bioorg.2024.108116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/20/2025]
Abstract
Combination therapies play a pivotal role in cancer treatment due to the intricate nature of the disease. Tubulin, a protein crucial for cellular functions, is a prime target in tumor therapy as it regulates microtubule dynamics. Combining tubulin inhibitors with other different inhibitors as dual targeting inhibitors has shown synergistic anti-tumor effects, amplifying therapeutic outcomes. Despite clinical approval of several tubulin inhibitors, their efficacy is hampered by drug resistance and toxic side effects. Dual targeting inhibitors of tubulin and other cancer-related pathways have emerged as vital components in cancer therapy, with promising prospects in both market availability and ongoing clinical trials. The rational design of hybrid inhibitors targeting both pathways presents an innovative approach to combatting cancer. However, despite the potent anti-tumor activity exhibited by several compounds, research on their anti-angiogenic potential remains limited. This review emphasizes the significance of tubulin based dual-target inhibitors, elucidating their mechanisms of action. Recent advances in exploring therapeutic efficacy, toxicity profiles, and challenges such as MDR are discussed. By presenting the research progress of tubulin based dual-target inhibitors as potential anticancer agents, this study delivers valuable insights for the development of more efficient drugs for cancer therapy.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Human Nutrition and Analytical Chemistry, Human Nutrition Program, The Ohio State University, Columbus, OH 43212, United States of America; Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, 500078 TS, India.
| |
Collapse
|
3
|
Deng R, Zong GF, Wang X, Yue BJ, Cheng P, Tao RZ, Li X, Wei ZH, Lu Y. Promises of natural products as clinical applications for cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189241. [PMID: 39674416 DOI: 10.1016/j.bbcan.2024.189241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Cancer represents a substantial threat to human health and mortality, necessitating the development of novel pharmacological agents with innovative mechanisms of action. Consequently, extensive research has been directed toward discovering new anticancer compounds derived from natural sources, including plants, microbes, and marine organisms. This review offers a comprehensive analysis of natural anticancer agents that are either currently undergoing clinical trials or have been integrated into clinical practice. A comprehensive understanding of the historical origins of natural anticancer agents, alongside traditional targets for tumor treatment and the distinct characteristics of cancer, can significantly facilitate researchers in the discovery and development of innovative anticancer drugs for clinical use. Furthermore, the exploration of microbial and marine sources is currently a prominent area of focus in the clinical application and advancement of new anticancer therapies. Detailed classification and elucidation of the functions and antitumor properties of these natural products are essential. It is imperative to comprehensively summarize and comprehend the natural anticancer drugs that have been and continue to be utilized in clinical settings.
Collapse
Affiliation(s)
- Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Nanjing Integrated Traditional Chinese And Western Medicine Hospital, Nanjing 210018. China
| | - Gang-Fan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Bing-Jie Yue
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Rui-Zhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Hong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Zeng F, Lai Y, Huang Y, Zhu F, Gao J, Chen Z, Zeng L, Feng M, Qiu P, Yuan S, Deng G. Shikonin from lithospermum erythrorhizon induces pyroptosis in trophoblast cells by activating the CTSB-NLRP3 inflammasome. Ann Med 2024; 56:2394584. [PMID: 39183455 PMCID: PMC11348813 DOI: 10.1080/07853890.2024.2394584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND With the decline of global fertility, drug therapeutic of ectopic pregnancy is of great significance. Lithospermum erythrorhizon is using for embryo killing as herbal medicine. Shikonin is the critical nucleus of Lithospermum erythrorhizon; however, the mechanism is still unclear. The study aimed to explore the mechanism of shikonin against ectopic pregnancy. MATERIAL AND METHODS In this study, we examined the viability and LDH release of HTR-8/SVneo cells by assays, observed pore formation in cell membranes by microscopy imaging and PI staining, and IL-1β release by WB and ELISA assay kit. Then, we used network pharmacology to analyse the potential interaction between shikonin, ectopic pregnancy and pyroptosis and used molecular docking techniques to verify interactions between shikonin and core common targets. Finally, western blotting and immunofluorescence assay were used to explore the mechanism of shikonin-inducing pyroptosis of HTR-8/SVneo cells. RESULTS Shikonin could cause a significant inhibition of HTR-8/SVneo cell viability in a concentration- and time-dependent manner. In HTR-8/SVneo cells, shikonin-induced cell swelling, bubble formation, an increase in the release of lactate dehydrogenase (LDH) and up-regulation of several pyroptosis-associated factors. And network pharmacology showed that The main targets of shikonin-ectopic pregnancy-pyroptosis were IL-1β and caspase-1, and molecular docking results showed that shikonin can closely bind to IL-1β, caspase-1 and GSDMD. Additionally, the necroptosis inhibitor GSK'872 could not suppress the expression of mature-IL-1β and prevent the pyroptosis phenotype from developing. However, the nucleotide oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inhibitor MCC-950 could downregulate the expression of pyroptosis-associated factors and prevent the pyroptosis phenotype from developing. Shikonin led to an elevation in the expression of cathepsin B (CTSB), and the CTSB inhibitor CA-074 abolished pyroptosis induced by shikonin; however, the NLRP3 inhibitor MCC-950 could not inhibit the expression of CTSB. CONCLUSIONS Our results suggest that shikonin activates CTSB to induce NLRP3-dependent pyroptosis in HTR-8/SVneo cells. This study has important clinical implications for the treatment of ectopic pregnancy.
Collapse
Affiliation(s)
- Fuling Zeng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gynecology, Guangzhou Baiyun District Maternal and Child Health Hospital, Guangzhou, China
| | - Yuling Lai
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, China
| | - Yanxi Huang
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangfang Zhu
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jie Gao
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenyue Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lihua Zeng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Feng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pin Qiu
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuo Yuan
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaopi Deng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhang L, Li Y, Hu W, Gao S, Tang Y, Sun L, Jiang N, Xiao Z, Han L, Zhou W. Computational identification of mitochondrial dysfunction biomarkers in severe SARS-CoV-2 infection: Facilitating therapeutic applications of phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155784. [PMID: 38878325 DOI: 10.1016/j.phymed.2024.155784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 04/13/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Currently, SARS-CoV-2 has not disappeared and continues to prevail worldwide, with the ongoing risk of mutations and the potential for severe COVID-19. The impairment of monocyte mitochondrial function caused by SARS-CoV-2, leading to a metabolic and immune dysregulation, is a crucial factor in the development of severe COVID-19. PURPOSE Discover effective phytomedicines based on mitochondrial-related biomarkers in severe SARS-CoV-2 infection. METHODS Firstly, differential gene analysis and gene set enrichment analysis (GSEA) were conducted on monocytes datasets to identify genes and pathways distinguishing severe patients from uninfected individuals. Then, GO and KEGG enrichment analysis on the differentially expressed genes (DEGs) obtained. Take the DEGs and intersect them with the MitoCarta 3.0 gene set to obtain the differentially expressed mitochondrial-related genes (DE-MRGs). Subsequently, machine learning algorithms were employed to screen potential mitochondrial dysfunction biomarkers for severe COVID-19 based on score values. ROC curves were then plotted to assess the distinguish capability of the biomarkers, followed by validation using two additional independent datasets. Next, the effects of the identified biomarkers on metabolic pathways and immune cells were explored through Gene Set Variation Analysis (GSVA) and CIBERSORT. Finally, potential nature products for severe COVID-19 were screened from the expression profile dataset based on dysregulated mitochondrial-related genes, followed by in vitro experimental validation. RESULTS There are 1812 DEGs and 17 dysregulated mitochondrial processes between severe COVID-19 patients and uninfected individuals. A total of 77 DE-MRGs were identified, and the potential biomarkers were identified as RECQL4, PYCR1, PIF1, POLQ, and GLDC. In both the training and validation sets, the area under the ROC curve (AUC) for these five biomarkers was greater than 0.9. And they did not show significant changes in mild to moderate patients (p > 0.05), indicating their ability to effectively distinguish severe COVID-19. These biomarkers exhibit a highly significant correlation with the dysregulated metabolic processes (p < 0.05) and immune cell imbalance (p < 0.05) in severe patients, as demonstrated by GSVA and CIBERSORT algorithms. Curcumin has the highest score in the predictive model based on transcriptomic data from 496 natural compounds (p = 0.02; ES = 0.90). Pre-treatment with curcumin for 8 h has been shown to alleviate mitochondrial membrane potential damage caused by the SARS-CoV-2 S1 protein (p < 0.05) and reduce elevated levels of reactive oxygen species (ROS) (p < 0.01). CONCLUSION The results of this study indicate a significant correlation between severe SARS-CoV-2 infection and mitochondrial dysfunction. The proposed mitochondrial dysfunction biomarkers identified in this study are associated with the disease progression, metabolic and immune changes in severe SARS-CoV-2 infected patients. Curcumin has a potential role in preventing severe COVID-19 by protecting mitochondrial function. Our findings provide new strategies for predicting the prognosis and enabling early intervention in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lihui Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yuehan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Wanting Hu
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Shengqiao Gao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yiran Tang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Lei Sun
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Lu Han
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Wenxia Zhou
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
6
|
Liu Q, Chen X, Tan Y, Liu J, Zhu M, Li D, Zhou Y, Zhang T, Yin QZ. Natural products as glycolytic inhibitors for cervical cancer treatment: A comprehensive review. Biomed Pharmacother 2024; 175:116708. [PMID: 38723515 DOI: 10.1016/j.biopha.2024.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
Cervical cancer, a prevalent gynaecological malignancy, presents challenges in late-stage treatment efficacy. Aerobic glycolysis, a prominent metabolic trait in cervical cancer, emerges as a promising target for novel drug discovery. Natural products, originating from traditional medicine, represent a significant therapeutic avenue and primary source for new drug development. This review explores the regulatory mechanisms of glycolysis in cervical cancer and summarises natural compounds that inhibit aerobic glycolysis as a therapeutic strategy. The glycolytic phenotype in cervical cancer is regulated by classical molecules such as HIF-1, HPV virulence factors and specificity protein 1, which facilitate the Warburg effect in cervical cancer. Various natural products, such as artemisinin, shikonin and kaempferol, exert inhibitory effects by downregulating key glycolytic enzymes through signalling pathways such as PI3K/AKT/HIF-1α and JAK2/STAT3. Despite challenges related to drug metabolism and toxicity, these natural compounds provide novel insights and promising avenues for cervical cancer treatment.
Collapse
Affiliation(s)
- Qun Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiuhan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yurong Tan
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jiao Liu
- Nantong University, Nantong 226019, China
| | - Mingya Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Delin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yijie Zhou
- Anyue County Traditional Chinese Medicine Hospital, Ziyang 610072, China.
| | - Tiane Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Qiao Zhi Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
7
|
Han H, Yang M, Wen Z, Wang X, Lai X, Zhang Y, Fang R, Yin T, Yang X, Wang X, Zhao Q, Qi J, Chen H, Lin H, Yang Y. A modified natural small molecule inhibits triple-negative breast cancer growth by interacting with Tubb3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:154894. [PMID: 38377719 DOI: 10.1016/j.phymed.2023.154894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a malignant tumor without specific therapeutic targets and a poor prognosis. Chemotherapy is currently the first-line therapeutic option for TNBC. However, due to the heterogeneity of TNBC, not all of TNBC patients are responsive to chemotherapeutic agents. Therefore, the demand for new targeted agents is critical. β-tubulin isotype III (Tubb3) is a prognostic factor associated with cancer progression, including breast cancer, and targeting Tubb3 may lead to improve TNBC disease control. Shikonin, the active compound in the roots of Lithospermun erythrorhizon suppresses the growth of various types of tumors, and its efficacy can be improved by altering its chemical structure. PURPOSE In this work, the anti-TNBC effect of a shikonin derivative (PMMB276) was investigated, and its mechanism was also investigated. STUDY DESIGN/METHODS This study combines flow cytometry, immunofluorescence staining, immunoblotting, immunoprecipitation, siRNA silencing, and the iTRAQ proteomics assay to analyze the inhibition potential of PMMB276 on TNBC. In vivo study was performed, Balb/c female murine models with or without the small molecule treatments. RESULTS Herein, we screened 300 in-house synthesized analogs of shikonin against TNBC and identified a novel small molecule, PMMB276; it suppressed cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase, suggesting that it could have a tumor suppressive role in TNBC. Tubb3 was identified as the target of PMMB276 using proteomic and biological activity analyses. Meanwhile, PMMB276 regulated microtubule dynamics in vitro by inducing microtubule depolymerization and it could act as a tubulin stabilizer by a different process than that of paclitaxel. Moreover, suppressing or inhibiting Tubb3 with PMMB276 reduced the growth of breast cancer in an experimental mouse model, indicating that Tubb3 plays a significant role in TNBC progression. CONCLUSION The findings support the therapeutic potential of PMMB276, a Tubb3 inhibitor, as a treatment for TNBC. Our findings might serve as a foundation for the utilization of shikonin and its derivatives in the development of anti-TNBC.
Collapse
Affiliation(s)
- Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohui Lai
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; School of Biology and Geography Science, Yili Normal University, Yining, 835000, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yahan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Rongjun Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaorong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; School of Biology and Geography Science, Yili Normal University, Yining, 835000, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Quan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongyuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
9
|
Cui Y, Zhang J, Zhang G. The Potential Strategies for Overcoming Multidrug Resistance and Reducing Side Effects of Monomer Tubulin Inhibitors for Cancer Therapy. Curr Med Chem 2024; 31:1874-1895. [PMID: 37349994 DOI: 10.2174/0929867330666230622142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Tubulin is an essential target in tumor therapy, and this is attributed to its ability to target MT dynamics and interfere with critical cellular functions, including mitosis, cell signaling, and intracellular trafficking. Several tubulin inhibitors have been approved for clinical application. However, the shortcomings, such as drug resistance and toxic side effects, limit its clinical application. Compared with single-target drugs, multi-target drugs can effectively improve efficacy to reduce side effects and overcome the development of drug resistance. Tubulin protein degraders do not require high concentrations and can be recycled. After degradation, the protein needs to be resynthesized to regain function, which significantly delays the development of drug resistance. METHODS Using SciFinder® as a tool, the publications about tubulin-based dual-target inhibitors and tubulin degraders were surveyed with an exclusion of those published as patents. RESULTS This study presents the research progress of tubulin-based dual-target inhibitors and tubulin degraders as antitumor agents to provide a reference for developing and applying more efficient drugs for cancer therapy. CONCLUSION The multi-target inhibitors and protein degraders have shown a development prospect to overcome multidrug resistance and reduce side effects in the treatment of tumors. Currently, the design of dual-target inhibitors for tubulin needs to be further optimized, and it is worth further clarifying the detailed mechanism of protein degradation.
Collapse
Affiliation(s)
- Yingjie Cui
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Guifang Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
10
|
Yang YS, Wang B, Liu J, Li Q, Jiao QC, Qin P. Discovery of coumaric acid derivatives hinted by coastal marine source to seek for uric acid lowering agents. J Enzyme Inhib Med Chem 2023; 38:2163241. [PMID: 36629443 PMCID: PMC9848256 DOI: 10.1080/14756366.2022.2163241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this work, a series of novel compounds Spartinin C1-C24 were screened, synthesised and evaluated for inhibiting xanthine oxidase thus lowering serum uric acid level. The backbones were derived from the components of coastal marine source Spartina alterniflora and marketed drugs. The top hits Spartinin C10 & C22 suggested high inhibition percentages (78.54 and 93.74) at 10 μM dosage, which were higher than the positive control Allopurinol. They were low cytotoxic onto human normal hepatocyte cells. Treatment with Spartinin C10 could lower the serum uric acid level to 440.0 μM in the hyperuricemic model mice (723.0 μM), comparable with Allopurinol (325.8 μM). Spartinin C10 was more appreciated than Allopurinol on other serum indexes. The preliminary pharmacokinetics evaluation indicated that the rapid absorption, metabolism and elimination of Spartinin C10 should be further improved. The discovery of pharmaceutical molecules from coastal marine source here might inspire the inter-disciplinary investigations on public health.
Collapse
Affiliation(s)
- Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China,Research and Development Center, Nanjing Shibeitai Biotechnology Co., Ltd., Nanjing, China,Yu-Shun Yang State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qin-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China,CONTACT Qin-Cai Jiao
| | - Pei Qin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China,Research and Development Center, Nanjing Shibeitai Biotechnology Co., Ltd., Nanjing, China,Pei Qin
| |
Collapse
|
11
|
Dai ZQ, Gao F, Zhang ZJ, Lu MJ, Luo YJ, Zhang T, Shang BX, Gu YH, Zeng Q, Gao S, Guo ZQ, Xu B, Lei HM. Anti-tumor effects of novel alkannin derivatives with potent selectivity on comprehensive analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154912. [PMID: 37295023 DOI: 10.1016/j.phymed.2023.154912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
BACKGROUND Therapeutic approaches based on glycolysis and energy metabolism of tumor cells are new promising strategies for the treatment of cancer. Currently, researches on the inhibition of pyruvate kinase M2, a key rate limiting enzyme in glycolysis, have been corroborated as an effective cancer therapy. Alkannin is a potent pyruvate kinase M2 inhibitor. However, its non-selective cytotoxicity has affected its subsequent clinical application. Thus, it needs to be structurally modified to develop novel derivatives with high selectivity. PURPOSE Our study aimed to ameliorate the toxicity of alkannin through structural modification and elucidate the mechanism of the superior derivative 23 in lung cancer therapy. METHODS On the basis of the principle of collocation, different amino acids and oxygen-containing heterocycles were introduced into the hydroxyl group of the alkannin side chain. We examined the cell viability of all derivatives on three tumor cells (HepG2, A549 and HCT116) and two normal cells (L02 and MDCK) by MTT assay. Besides, the effect of derivative 23 on the morphology of A549 cells as observed by Giemsa and DAPI staining, respectively. Flow cytometry was performed to assess the effects of derivative 23 on apoptosis and cell cycle arrest. To further assess the effect of derivative 23 on the Pyruvate kinase M2 in glycolysis, an enzyme activity assay and western blot assay were performed. Finally, in vivo the antitumor activity and safety of the derivative 23 were evaluated by using Lewis mouse lung cancer xenograft model. RESULTS Twenty-three novel alkannin derivatives were designed and synthesized to improve the cytotoxicity selectivity. Among these derivatives, derivative 23 showed the highest cytotoxicity selectivity between cancer and normal cells. The anti-proliferative activity of derivative 23 on A549 cells (IC50 = 1.67 ± 0.34 μM) was 10-fold higher than L02 cells (IC50 = 16.77 ± 1.44 μM) and 5-fold higher than MDCK cells (IC50 = 9.23 ± 0.29 μM) respectively. Subsequently, fluorescent staining and flow cytometric analysis showed that derivative 23 was able to induce apoptosis of A549 cells and arrest the cell cycle in the G0/G1 phase. In addition, the mechanistic studies suggested derivative 23 was an inhibitor of pyruvate kinase; it could regulate glycolysis by inhibiting the activation of the phosphorylation of PKM2/STAT3 signaling pathway. Furthermore, studies in vivo demonstrated derivative 23 significantly inhibited the growth of xenograft tumor. CONCLUSION In this study, alkannin selectivity is reported to be significantly improved following structural modification, and derivative 23 is first shown to be able to inhibit lung cancer growth via the PKM2/STAT3 phosphorylation signaling pathway in vitro, indicating the potential value of derivative 23 in treating lung cancer.
Collapse
Affiliation(s)
- Zi-Qi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zi-Jie Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ming-Jun Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yu-Jin Luo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Bing-Xian Shang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yu-Hao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qi Zeng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shan Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhuo-Qian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
12
|
Lin H, Han H, Yang M, Wen Z, Chen Q, Ma Y, Wang X, Wang C, Yin T, Wang X, Lu G, Chen H, Qi J, Yang Y. PKM2/PDK1 dual-targeted shikonin derivatives restore the sensitivity of EGFR-mutated NSCLC cells to gefitinib by remodeling glucose metabolism. Eur J Med Chem 2023; 249:115166. [PMID: 36731272 DOI: 10.1016/j.ejmech.2023.115166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Pyruvate kinase 2 (PKM2) and pyruvate dehydrogenase kinase 1 (PDK1) are two key enzymes in tumor glucose metabolism pathway that not only promote tumor growth and proliferation through accelerating aerobic glycolysis, but also contribute to drug resistance of non-small cell lung cancer (NSCLC). Considering that targeting PKM2 or PDK1 alone seems insufficient to remodel abnormal glucose metabolism to achieve significant antitumor activity, we proposed a "two-step approach" that regulates PKM2 and PDK1 synchronously. Firstly, we found that the combination of ML265 (PKM2 activator) and AZD7545 (PDK1 inhibitor) could synergistically inhibit proliferation and induce apoptosis in H1299 cells. Base on this, we designed a series of novel shikonin (SK) thioether derivatives as PKM2/PDK1 dual-target agents, among which the most potent compound E5 featuring a 2-methyl substitution on the benzene ring exerted significantly increased inhibitory activity toward EGFR mutant NSCLC cell H1975 (IC50 = 1.51 μmol/L), which was 3 and 17-fold more active than the lead compound SK (IC50 = 4.56 μmol/L) and the positive control gefitinib (IC50 = 25.56 μmol/L), respectively. Additionally, E5 also showed good anti-tumor activity in xenografted mouse models, with significantly lower toxicity side effects than SK. Moreover, E5 also inhibited the entry of PKM2 into nucleus to regulate the transcriptional activation of oncogenes, thus restoring the sensitivity of H1975 cell to gefitinib. Collectively, these data demonstrate that E5, a dual inhibitor of PKM2/PDK1, may be a promising adjunct to gefitinib in the treatment of EGFR-TKIs resistant NSCLC, deserving further investigation.
Collapse
Affiliation(s)
- Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yudi Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongyuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
13
|
Man RJ, Lu T, Zheng CC, Li T, Wu MK, Li DD, He XM. Discovery of pyrazole-carbohydrazide with indole moiety as tubulin polymerization inhibitors and anti-tumor candidates. Drug Dev Res 2023; 84:110-120. [PMID: 36433708 DOI: 10.1002/ddr.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
In this work, a series of indole-containing pyrazole-carbohydrazide derivatives A1-A25 were synthesized, and their biological activity on tubulin polymerization inhibition and mitotic catastrophe was evaluated. For introducing indole group to CA-4 pattern, the carbohydrazide linker was used for the first time. As the top hit, A18 suggested notable antiproliferation efficacy and tubulin polymerization inhibitory activity. Inferring comparable antitubulin effect with the positive control Colchicine, A18 indicated obviously lower cyto-toxicity. The cell scratch test showed that A18 could block the cell migration, while the confocal imaging depicted that A18 could induce the mitotic catastrophe via a Colchicine-like approach. The docking simulation visualized the probable binding pattern of A18. With the information in this work, some new hints on modification might be involved in further tubulin-related investigations.
Collapse
Affiliation(s)
- Ruo-Jun Man
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, China
| | - Tian Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, China.,Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Chi-Chong Zheng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, China.,Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Tong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, China.,Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Meng-Ke Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, China.,Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dong-Dong Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xue-Mei He
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| |
Collapse
|
14
|
Chen Q, Han H, Lin F, Yang L, Feng L, Lai X, Wen Z, Yang M, Wang C, Ma Y, Yin T, Lu G, Lin H, Qi J, Yang Y. Novel shikonin derivatives suppress cell proliferation, migration and induce apoptosis in human triple-negative breast cancer cells via regulating PDK1/PDHC axis. Life Sci 2022; 310:121077. [DOI: 10.1016/j.lfs.2022.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
15
|
Yang YS, Man RJ, Xu JF, Wang CY, Wang X, Li DD, Zhu HL. Discovery of novel 1,3-diaryl pyrazolyl ester derivatives as COX-2 inhibitory candidates with anti-tumor effect. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Peng J, Hu X, Fan S, Zhou J, Ren S, Sun R, Chen Y, Shen X, Chen Y. Inhibition of Mitochondrial Biosynthesis Using a "Right-Side-Out" Membrane-Camouflaged Micelle to Facilitate the Therapeutic Effects of Shikonin on Triple-Negative Breast Cancer. Adv Healthc Mater 2022; 11:e2200742. [PMID: 35818932 DOI: 10.1002/adhm.202200742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Indexed: 01/27/2023]
Abstract
The mitochondria represent a potential target for the treatment of triple-negative breast cancer (TNBC) and shikonin (SK) has shown remarkable therapeutic effects on TNBC. Herein, it is found that SK possesses potent inhibitory effects on mitochondrial biogenesis via targeting polymerase gamma (POLG). However, its application is restricted by its poor aqueous solubility and stability, and therefore, a biomimetic micelle to aid with tumor lesion accumulation and mitochondria-targeted delivery of SK is designed. A folic acid (FA) conjugated polyethylene glycol derivative (FA-PEG-FA) is inserted onto the external membranes of red blood cells (FP-RBCm) to prepare a "right-side-out" RBCm-camouflaged cationic micelle (ThTM/SK@FP-RBCm). Both FP-RBCm coating and a triphenylphosphine (TPP) moiety on the periphery of micelles contribute to tumor lesion distribution, receptor-mediated cellular uptake, and electrostatic attraction-dependent mitochondrial targeting, thereby maximizing inhibitory effects on mitochondrial biosynthesis in TNBC cells. Intravenous administration of ThTM/SK@FP-RBCm leads to profound inhibition of tumor growth and lung metastasis in a TNBC mouse model with no obvious toxicity. This work highlights the mitochondria-targeted delivery of SK using a "right-side-out" membrane-camouflaged micelle for the inhibition of mitochondrial biogenesis and enhanced therapeutic effects on TNBC.
Collapse
Affiliation(s)
- Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- Translational Medicine Research Center of Guizhou Medical University, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoxia Hu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- Translational Medicine Research Center of Guizhou Medical University, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Shuangqin Fan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- Translational Medicine Research Center of Guizhou Medical University, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jia Zhou
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- Translational Medicine Research Center of Guizhou Medical University, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Shuang Ren
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- Translational Medicine Research Center of Guizhou Medical University, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Runbin Sun
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Yi Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- Translational Medicine Research Center of Guizhou Medical University, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- Translational Medicine Research Center of Guizhou Medical University, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yan Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- Translational Medicine Research Center of Guizhou Medical University, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
17
|
Mancini I, Vigna J, Sighel D, Defant A. Hybrid Molecules Containing Naphthoquinone and Quinolinedione Scaffolds as Antineoplastic Agents. Molecules 2022; 27:molecules27154948. [PMID: 35956896 PMCID: PMC9370406 DOI: 10.3390/molecules27154948] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022] Open
Abstract
In recent decades, molecular hybridization has proven to be an efficient tool for obtaining new synthetic molecules to treat different diseases. Based on the core idea of covalently combining at least two pharmacophore fragments present in different drugs and/or bioactive molecules, the new hybrids have shown advantages when compared with the compounds of origin. Hybridization could be successfully applied to anticancer drug discovery, where efforts are underway to develop novel therapeutics which are safer and more effective than those currently in use. Molecules presenting naphthoquinone moieties are involved in redox processes and in other molecular mechanisms affecting cancer cells. Naphthoquinones have been shown to inhibit cancer cell growth and are considered privileged structures and useful templates in the design of hybrids. The present work aims at summarizing the current knowledge on antitumor hybrids built using 1,4- and 1,2-naphthoquinone (present in natural compounds as lawsone, napabucasin, plumbagin, lapachol, α-lapachone, and β -lapachone), and the related quinolone- and isoquinolinedione scaffolds reported in the literature up to 2021. In detail, the design and synthetic approaches adopted to produce the reported compounds are highlighted, the structural fragments considered in hybridization and their biological activities are described, and the structure–activity relationships and the computational analyses applied are underlined.
Collapse
Affiliation(s)
- Ines Mancini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, 38123 Trento, Italy; (J.V.); (A.D.)
- Correspondence:
| | - Jacopo Vigna
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, 38123 Trento, Italy; (J.V.); (A.D.)
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Denise Sighel
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Andrea Defant
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, 38123 Trento, Italy; (J.V.); (A.D.)
| |
Collapse
|
18
|
Yadav S, Sharma A, Nayik GA, Cooper R, Bhardwaj G, Sohal HS, Mutreja V, Kaur R, Areche FO, AlOudat M, Shaikh AM, Kovács B, Mohamed Ahmed AE. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front Pharmacol 2022; 13:905755. [PMID: 35847041 PMCID: PMC9283906 DOI: 10.3389/fphar.2022.905755] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Shikonin and its derivatives, isolated from traditional medicinal plant species of the genus Lithospermum, Alkanna, Arnebia, Anchusa, Onosma, and Echium belonging to the Boraginaceae family, have numerous applications in foods, cosmetics, and textiles. Shikonin, a potent bioactive red pigment, has been used in traditional medicinal systems to cure various ailments and is well known for its diverse pharmacological potential such as anticancer, antithrombotic, neuroprotective, antidiabetic, antiviral, anti-inflammatory, anti-gonadotropic, antioxidants, antimicrobial and insecticidal. Herein, updated research on the natural sources, pharmacology, toxicity studies, and various patents filed worldwide related to shikonin and approaches to shikonin’s biogenic and chemical synthesis are reviewed. Furthermore, recent studies to establish reliable production systems to meet market demand, functional identification, and future clinical development of shikonin and its derivatives against various diseases are presented.
Collapse
Affiliation(s)
- Snehlata Yadav
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Chandigarh- Ludhiana Highway, Mohali, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian, Srinagar, India
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Garima Bhardwaj
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, India
| | | | - Vishal Mutreja
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ramandeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Mohannad AlOudat
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences, Budapset, Hungary
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Abdelhakam Esmaeil Mohamed Ahmed,
| |
Collapse
|
19
|
Development of New Thiophene-Containing Triaryl Pyrazoline Derivatives as PI3Kγ Inhibitors. Molecules 2022; 27:molecules27082404. [PMID: 35458602 PMCID: PMC9027920 DOI: 10.3390/molecules27082404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
A series of new thiophene-containing triaryl pyrazoline derivatives, 3a–3t, were synthesized and evaluated regarding PI3K inhibition activity and anti-tumor potency based on a trial of introducing significant moieties, including pyrazoline and thiophene, and simplifying the parallel ring structures. Most of the tested compounds indicated potent PI3K inhibitory potency, with this series of compounds showing more potency for PI3Kγ than PI3Kα. The top hit 3s seemed more potent than the positive control LY294002 on inhibiting PI3Kγ (IC50 values: 0.066 μM versus 0.777 μM) and more selective from PI3Kα (Index values: 645 versus 1.74). It could be inferred that the combination of para- and meta-, as well as the modification of the electron-donating moieties, led to the improvement in potency. The anti-proliferation inhibitory activity and the enzymatic inhibition potency indicated consistent tendencies. The top hit 3s could inhibit the phosphorylation of Akt by inhibiting PI3K through the PI3K-Akt-mTOR pathway. The molecular docking simulation indicated that the binding pattern of 3s into PI3Kγ was preferable than that of PI3Kα, with more hydrogen bond, more π-involved interactions, and fewer π-sulfur interactions. The information in this work is referable for the further development of selective inhibitors for specific isoforms of PI3K.
Collapse
|
20
|
Valipour M. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action. Eur J Med Chem 2022; 235:114314. [DOI: 10.1016/j.ejmech.2022.114314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
|
21
|
Feng W, Shi W, Liu S, Liu H, Liu Y, Ge P, Zhang H. Fe(III)-Shikonin Supramolecular Nanomedicine for Combined Therapy of Tumor via Ferroptosis and Necroptosis. Adv Healthc Mater 2022; 11:e2101926. [PMID: 34738742 DOI: 10.1002/adhm.202101926] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Indexed: 01/15/2023]
Abstract
Most of the antitumor chemotherapeutic drugs execute the therapeutic performance upon eliciting tumor cell apoptosis, which may cause chemoresistance of tumors. Design of novel drugs to eradicate apoptosis-resistant tumors via non-apoptotic cell death pathways is promising for improving the long-term chemotherapeutic efficacy. Herein, a Fe(III)-Shikonin metal-polyphenol-coordinated supramolecular nanomedicine for combined therapy of tumor via ferroptosis and necroptosis is designed. The construction of the nanomedicine based on the coordinated self-assembly between Fe3+ and Shikonin not only overcomes the shortcomings of Shikonin including its low bioavailability and high toxicity toward normal tissues, but also integrates the theranostics functions of Fe ions. Under the exposure of the high concentration of glutathione (GSH) in tumor cells, the as-prepared nanomedicine will disassemble into Fe2+ and Shikonin, followed by stimulating the tumor cell death through ferroptosis and necroptosis. In addition, benefiting from the stealth effect of polyethylene glycol (PEG) and the targeting ability of cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGD) to αv β3 -integrin, NH2 -PEG-cRGD-modified nanomedicine exhibits a GSH-responsive therapy toward 4T1 tumor in vivo and self-enhanced longitudinal relaxation (T1 )-weighted imaging property. Since the self-assembly of natural Shikonin and human body-necessary Fe element is facile and feasible, the work may provide a promising supramolecular nanomedicine for next-generation chemotherapeutic applications.
Collapse
Affiliation(s)
- Wenjie Feng
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Wanrui Shi
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Shuwei Liu
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Huiwen Liu
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Pengfei Ge
- Department of Neurosurgery The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| |
Collapse
|
22
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
23
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
24
|
Zhang J, Wang M, Wang H, Xu H, Chen J, Guo Z, Ma B, Ban SR, Dai HX. Construction of 2-alkynyl aza-spiro[4,5]indole scaffolds via sequential C-H activations for modular click chemistry libraries. Chem Commun (Camb) 2021; 57:8656-8659. [PMID: 34373875 DOI: 10.1039/d1cc02798k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, we have developed a strategy of sequential C-H activations of indole to construct novel 2-alkynyl aza-spiro[4,5]indole scaffolds, which incorporated both alkyne and spiro-units into indole. Gram-scale synthesis and a one-pot, three-step synthesis demonstrated the utility of this protocol. Hybrid conjugates with an oseltamivir derivative further offered a powerful tool for the construction of a versatile spiroindole-containing library via click chemistry.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang B, Zhou J, Wang F, Hu XW, Shi Y. Pyrazoline derivatives as tubulin polymerization inhibitors with one hit for Vascular Endothelial Growth Factor Receptor 2 inhibition. Bioorg Chem 2021; 114:105134. [PMID: 34246970 DOI: 10.1016/j.bioorg.2021.105134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023]
Abstract
In this work, to check the effect of the transposition of the rings in typical patterns, a series of pyrazoline derivatives 3a-3t bearing the characteristic 3,4,5-trimethoxy phenyl and thiophene moieties were synthesized and evaluated as tubulin polymerization inhibitors. Basically, as the concise output of our design, a majority of the synthesized compounds showed potency in inhibiting the tubulin polymerization. The top hit, 3q, exhibited potent anti-proliferation activity on cancer cell lines. It was comparable on tubulin-polymerization inhibition with the positive control Colchicine but lower toxic. The VEGFR2 inhibitory potency was introduced occasionally. The flow cytometry assay confirmed the apoptotic procedure and the confocal imaging revealed the tubulin-microtubule dynamics pattern. The anti-cancer mechanism of 3q was similar to Colchicine but not exactly the same on forming multi-polar spindles. The docking simulation visualized the possible binding patterns of 3q into tubulin and VEGFR2, respectively. The results inferred that further investigations on the transposition of the rings might lead to the improvement of tubulin polymerization inhibitory activity and the steadily introduction of the VEGFR2 inhibition.
Collapse
Affiliation(s)
- Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jiahua Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Fa Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Wei Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Yujun Shi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
26
|
Ma Y, Yang X, Han H, Wen Z, Yang M, Zhang Y, Fu J, Wang X, Yin T, Lu G, Qi J, Lin H, Wang X, Yang Y. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem 2021; 111:104872. [PMID: 33838560 DOI: 10.1016/j.bioorg.2021.104872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) has an unfavorable prognosis attribute to its low differentiation, rapid proliferation and high distant metastasis rate. PI3K/Akt/mTOR as an intracellular signaling pathway plays a key role in the cell proliferation, migration, invasion, metabolism and regeneration. In this work, we designed and synthesized a series of anilide (dicarboxylic acid) shikonin esters targeting PI3K/Akt/mTOR signaling pathway, and assessed their antitumor effects. Through three rounds of screening by computer-aided drug design method (CADD), we preliminarily obtained sixteen novel anilide (dicarboxylic acid) shikonin esters and identified them as excellent compounds. CCK-8 assay results demonstrated that compound M9 exhibited better antiproliferative activities against MDA-MB-231, A549 and HeLa cell lines than shikonin (SK), especially for MDA-MB-231 (M9: IC50 = 4.52 ± 0.28 μM; SK: IC50 = 7.62 ± 0.26 μM). Moreover, the antiproliferative activity of M9 was better than that of paclitaxel. Further pharmacological studies showed that M9 could induce apoptosis of MDA-MB-231 cells and arrest the cell cycle in G2/M phase. M9 also inhibited the migration of MDA-MB-231 cells by inhibiting Wnt/β-catenin signaling pathway. In addition, western blot results showed that M9 could inhibit cell proliferation and migration by down-regulating PI3K/Akt/mTOR signaling pathway. Finally, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was also constructed to provide a basis for further development of shikonin derivatives as potential antitumor drugs through structure-activity relationship analysis. To sum up, M9 could be a potential candidate for TNBC therapy.
Collapse
Affiliation(s)
- Yingying Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaorong Yang
- School of Biology and Geography Science, Yili Normal University, Yining 835000, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yahan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiangyan Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
27
|
Han H, Sun W, Feng L, Wen Z, Yang M, Ma Y, Fu J, Ma X, Xu X, Wang Z, Yin T, Wang XM, Lu GH, Qi JL, Lin H, Yang Y. Differential relieving effects of shikonin and its derivatives on inflammation and mucosal barrier damage caused by ulcerative colitis. PeerJ 2021; 9:e10675. [PMID: 33505807 PMCID: PMC7797173 DOI: 10.7717/peerj.10675] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ulcerative colitis (UC) is one of the most challenging human diseases. Natural shikonin (SK) and its derivatives (with have higher accumulation) isolated from the root of Lithospermum erythrorhizon have numerous beneficial effects, such as wound healing and anti-inflammatory activities. Some researchers have reported that hydroxynaphthoquinone mixture (HM) and SK attenuate the acute UC induced by dextran sulfate sodium (DSS). However, no existing study has systemically investigated the effectiveness of SK and other hydroxynaphthoquinone natural derivative monomers on UC. Methods In this study, mice were treated with SK and its derivatives (25 mg/kg) and mesalazine (200 mg/kg) after DSS administration daily for one week. Disease progression was monitored daily by observing the changes in clinical signs and body weight. Results Intragastric administration natural single naphthoquinone attenuated the malignant symptoms induced by DSS. SK or its derivatives remarkably suppressed the serum levels of pro-inflammatory cytokines while increasing the inflammatory cytokine interleukin (IL)-10 . Additionally, both SK and alkanin restrained the activities of cyclooxygenase-2 (COX-2), myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) in serum and colonic tissues. SK and its derivatives inhibited the activation of nucleotide binding oligomerization domain-like receptors (NLRP3) inflammasome and NF-κB signaling pathway, thereby relieving the DSS-induced disruption of epithelial tight junction (TJ) in colonic tissues. Conclusions Our findings shed more lights on the pharmacological efficacy of SK and its derivatives in UC against inflammation and mucosal barrier damage.
Collapse
Affiliation(s)
- Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Wenxue Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Lu Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Yingying Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Jiangyan Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Xiaopeng Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Xinhong Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Zhaoyue Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
28
|
Xia LY, Zhang YL, Yang R, Wang ZC, Lu YD, Wang BZ, Zhu HL. Tubulin Inhibitors Binding to Colchicine-Site: A Review from 2015 to 2019. Curr Med Chem 2021; 27:6787-6814. [PMID: 31580244 DOI: 10.2174/0929867326666191003154051] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022]
Abstract
Due to the three domains of the colchicine-site which is conducive to the combination with small molecule compounds, colchicine-site on the tubulin has become a common target for antitumor drug development, and accordingly, a large number of tubulin inhibitors binding to the colchicine-site have been reported and evaluated over the past years. In this study, tubulin inhibitors targeting the colchicine-site and their application as antitumor agents were reviewed based on the literature from 2015 to 2019. Tubulin inhibitors were classified into ten categories according to the structural features, including colchicine derivatives, CA-4 analogs, chalcone analogs, coumarin analogs, indole hybrids, quinoline and quinazoline analogs, lignan and podophyllotoxin derivatives, phenothiazine analogs, N-heterocycle hybrids and others. Most of them displayed potent antitumor activity, including antiproliferative effects against Multi-Drug-Resistant (MDR) cell lines and antivascular properties, both in vitro and in vivo. In this review, the design, synthesis and the analysis of the structure-activity relationship of tubulin inhibitors targeting the colchicine-site were described in detail. In addition, multi-target inhibitors, anti-MDR compounds, and inhibitors bearing antitumor activity in vivo are further listed in tables to present a clear picture of potent tubulin inhibitors, which could be beneficial for medicinal chemistry researchers.
Collapse
Affiliation(s)
- Lin-Ying Xia
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Ya-Liang Zhang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Rong Yang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Zhong-Chang Wang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Ya-Dong Lu
- Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing 210008, P.R. China
| | - Bao-Zhong Wang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Hai-Liang Zhu
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China
| |
Collapse
|
29
|
Zhu T, Wang SH, Li D, Wang SY, Liu X, Song J, Wang YT, Zhang SY. Progress of tubulin polymerization activity detection methods. Bioorg Med Chem Lett 2021; 37:127698. [PMID: 33468346 DOI: 10.1016/j.bmcl.2020.127698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
Tubulin, an important target in tumor therapy, is one of the hotspots in the field of antineoplastic drugs in recent years, and it is of great significance to design and screen new inhibitors for this target. Natural products and chemical synthetic drugs are the main sources of tubulin inhibitors. However, due to the variety of compound structure types, it has always been difficult for researchers to screen out polymerization inhibitors with simple operation, high efficiency and low cost. A large number of articles have reported the screening methods of tubulin inhibitors and their biological activity. In this article, the biological activity detection methods of tubulin polymerization inhibitors are reviewed. Thus, it provides a theoretical basis for the further study of tubulin polymerization inhibitors and the selection of methods for tubulin inhibitors.
Collapse
Affiliation(s)
- Ting Zhu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Hui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Yu Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xu Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ting Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
30
|
Özdemir Ö, Marinelli L, Cacciatore I, Ciulla M, Emsen B, Di Stefano A, Mardinoglu A, Turkez H. Anticancer effects of novel NSAIDs derivatives on cultured human glioblastoma cells. ACTA ACUST UNITED AC 2020; 76:329-335. [PMID: 32889798 DOI: 10.1515/znc-2020-0093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022]
Abstract
Several epidemiologic, clinical and experimental reports indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) could have a potential as anticancer agents. The aim of this study was the evaluation of cytotoxic potential in human glioblastoma cells of novel synthesized NSAID derivatives, obtained by linking, through a spacer, α-lipoic acid (ALA) to anti-inflammatory drugs, such as naproxen (AL-3, 11 and 17), flurbiprofen (AL-6, 13 and 19) and ibuprofen (AL-9, 15 and 21). The effects on the level of gene expression were also determined using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. According to our results, NSAID derivatives exhibited concentration dependent cytotoxic effects on U87-MG cell line when compared with the control group. Moreover, treatment of the most active compounds (AL-3, AL-6 and AL-9) caused upregulation of tumor suppressor gene PTEN and downregulation of some oncogenes such as AKT1, RAF1 and EGFR. In conclusion, our results revealed that AL-3, AL-6 and AL-9 could be suitable candidates for further investigation to develop new pharmacological strategies for the prevention of cancer.
Collapse
Affiliation(s)
- Özlem Özdemir
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Lisa Marinelli
- Department of Pharmacology, G. D'Annunzio University, Chieti, Italy
| | - Ivana Cacciatore
- Department of Pharmacology, G. D'Annunzio University, Chieti, Italy
| | - Michele Ciulla
- Department of Pharmacology, G. D'Annunzio University, Chieti, Italy
| | - Bugrahan Emsen
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | | | - Adil Mardinoglu
- Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, SE1 9RT, UK
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Hasan Turkez
- Department of Pharmacology, G. D'Annunzio University, Chieti, Italy
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
31
|
Ahmadi ES, Tajbakhsh A, Iranshahy M, Asili J, Kretschmer N, Shakeri A, Sahebkar A. Naphthoquinone Derivatives Isolated from Plants: Recent Advances in Biological Activity. Mini Rev Med Chem 2020; 20:2019-2035. [PMID: 32811411 DOI: 10.2174/1389557520666200818212020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
Naturally occurring naphthoquinones (NQs) comprising highly reactive small molecules are the subject of increasing attention due to their promising biological activities such as antioxidant, antimicrobial, apoptosis-inducing activities, and especially anticancer activity. Lapachol, lapachone, and napabucasin belong to the NQs and are in phase II clinical trials for the treatment of many cancers. This review aims to provide a comprehensive and updated overview on the biological activities of several new NQs isolated from different species of plants reported from January 2013 to January 2020, their potential therapeutic applications and their clinical significance.
Collapse
Affiliation(s)
- Esmaeil Sheikh Ahmadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Shikonin derivatives for cancer prevention and therapy. Cancer Lett 2019; 459:248-267. [PMID: 31132429 DOI: 10.1016/j.canlet.2019.04.033] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022]
Abstract
Phytochemicals gained considerable interest during the past years as source to develop new treatment options for chemoprevention and cancer therapy. Motivated by the fact that a majority of established anticancer drugs are derived in one way or another from natural resources, we focused on shikonin, a naphthoquinone with high potentials to be further developed as preventive or therapeutic drug to fight cancer. Shikonin is the major chemical component of Lithospermum erythrorhizon (Purple Cromwell) roots. Traditionally, the root extract has been applied to cure dermatitis, burns, and wounds. Over the past three decades, the anti-inflammatory and anticancer effects of root extracts, isolated shikonin as well as semi-synthetic and synthetic derivatives and nanoformulations have been described. In vitro and in vivo experiments were conducted to understand the effect of shikonin at cellular and molecular levels. Preliminary clinical trials indicate the potential of shikonin for translation into clinical oncology. Shikonin exerts additive and synergistic interactions in combination with established chemotherapeutics, immunotherapeutic approaches, radiotherapy and other treatment modalities, which further underscores the potential of this phytochemical to be integrated into standard treatment regimens.
Collapse
|
33
|
Wang F, Yao X, Zhang Y, Tang J. Synthesis, biological function and evaluation of Shikonin in cancer therapy. Fitoterapia 2019; 134:329-339. [DOI: 10.1016/j.fitote.2019.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022]
|
34
|
Di Yang M, Shen XB, Hu YS, Chen YY, Liu XH. Novel naphthalene-enoates: Design and anticancer activity through regulation cell autophagy. Biomed Pharmacother 2019; 113:108747. [PMID: 30849638 DOI: 10.1016/j.biopha.2019.108747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022] Open
Abstract
Eleven dihydroxy-2-(1-hydroxy-4-methylpent-3-enyl)naphthalene derivatives as anticancer agents through regulating cell autophagy were designed and synthesized. The anticancer activity results indicated that most compounds manifested obvious un-toxic effect on GES-1 and L-02 with IC50 from 0.58 to 1.41 mM. Among them, (S,Z)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 4-(3,4- dihydroisoquinolin-2(1 H)-yl)-4-oxobut-2-enoate (compound 4i) could induce cancer cells apoptosis. Further experiments showed that autophagy played an important role in the pro-apoptotic effect of this compound. Preliminary mechanism indicated that this compound could inhibit phosphoinositide 3-kinase/protein kinase B and the mammalian target of rapamycin (PI3K/AKT/mTOR) pathway by mediating apoptosis in an autophagy-dependent manner.
Collapse
Affiliation(s)
- Meng Di Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China
| | - Xiao Bao Shen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China
| | - Yang Sheng Hu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China
| | - Yan Yan Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; School of Material Science Chemical Engineering, ChuZhou University, ChuZhou, 239000, PR China.
| |
Collapse
|
35
|
Arnst KE, Banerjee S, Chen H, Deng S, Hwang DJ, Li W, Miller DD. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med Res Rev 2019; 39:1398-1426. [PMID: 30746734 DOI: 10.1002/med.21568] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/25/2022]
Abstract
Microtubule (MT)-targeting agents are highly successful drugs as chemotherapeutic agents, and this is attributed to their ability to target MT dynamics and interfere with critical cellular functions, including, mitosis, cell signaling, intracellular trafficking, and angiogenesis. Because MT dynamics vary in the different stages of the cell cycle, these drugs tend to be the most effective against mitotic cells. While this class of drug has proven to be effective against many cancer types, significant hurdles still exist and include overcoming aspects such as dose limited toxicities and the development of resistance. Newer generations of developed drugs attack these problems and alternative approaches such as the development of dual tubulin and kinase inhibitors are being investigated. This approach offers the potential to show increased efficacy and lower toxicities. This review covers different categories of MT-targeting agents, recent advances in dual inhibitors, and current challenges for this drug target.
Collapse
Affiliation(s)
- Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Souvik Banerjee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
36
|
Synthesis of Novel Shikonin Derivatives and Pharmacological Effects of Cyclopropylacetylshikonin on Melanoma Cells. Molecules 2018; 23:molecules23112820. [PMID: 30380765 PMCID: PMC6278577 DOI: 10.3390/molecules23112820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Despite much research in the last centuries, treatment of malignant melanoma is still challenging because of its mostly unnoticeable metastatic spreading and aggressive growth rate. Therefore, the discovery of novel drug leads is an important goal. In a previous study, we have isolated several shikonin derivatives from the roots of Onosma paniculata Bureau & Franchet (Boraginaceae) which evolved as promising anticancer candidates. β,β-Dimethylacrylshikonin (1) was the most cytotoxic derivative and exhibited strong tumor growth inhibitory activity, in particular, towards melanoma cells. In this study, we synthesized eighteen novel shikonin derivatives in order to obtain compounds which exhibit a higher cytotoxicity than 1. We investigated their cytotoxic potential against various melanoma cell lines and juvenile skin fibroblasts. The most active compound was (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl cyclopropylacetate (cyclopropylacetylshikonin) (6). It revealed significant stronger tumor growth inhibitory activity towards two melanoma cell lines derived from metastatic lesions (WM164 and MUG-Mel2). Further investigations have shown that 6 induced apoptosis caspase-dependently, increased the protein levels of cleaved PARP, and led to double-stranded DNA breaks as shown by phosphorylation of H2AX. Cell membrane damage and cell cycle arrest were not observed.
Collapse
|
37
|
Guo S, Zhen Y, Guo M, Zhang L, Zhou G. Design, synthesis and antiproliferative evaluation of novel sulfanilamide-1,2,3-triazole derivatives as tubulin polymerization inhibitors. Invest New Drugs 2018; 36:1147-1157. [PMID: 30019099 DOI: 10.1007/s10637-018-0632-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/27/2018] [Indexed: 11/29/2022]
Abstract
Microtubule as an important target in the cancer therapy was used to design novel tubulin polymerization inhibitors. Sulfanilamide-1,2,3-triazole hybrids were designed by a molecular hybridization strategy and their antiproliferative activity against three selected cancer cell lines (BGC-823, MGC-803 and SGC-7901) were evaluated. All sulfanilamide-1,2,3-triazole hybrids displayed potent inhibitory activity against all cell lines. In particular, compound 10b showed the most excellent inhibitory effect against MGC-803 cells, with an IC50 value of 0.4 μM. Cellular mechanism studies elucidated that 10b induced apoptosis by decreasing the expression level of Bcl-2 and Parp and increasing the expression level of BAX. 10b inhibited the epithelial-mesenchymal transition process by up-regulating E-cadherin and down-regulating N-cadherin. Furthermore, the tubulin polymerization inhibitory activity in vitro of 10b was 2.4 μM. In vivo anticancer assay, 10b effectively inhibited MGC-803 xenograft tumor growth without causing significant loss of body weight. These sulfanilamide-1,2,3-triazole hybrids as potent tubulin polymerization inhibitors might be used as promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Shewei Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yingwei Zhen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mengguo Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Longzhou Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guosheng Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|