1
|
Yamashita M, Nakamori Y, Tsukamoto A, Furuno N, Iida A. Synthesis and structure-activity relationship studies of naphthoquinones as STAT3 inhibitors. Bioorg Med Chem 2023; 90:117331. [PMID: 37343498 DOI: 10.1016/j.bmc.2023.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Based on previous studies, we synthesized a novel class of ortho- and para-naphthoquinones derivatives bearing a phenolic hydroxy or sulfonamide moiety and evaluated their in vitro antiproliferative and signal transducer and activator of transcription-3 (STAT3) phosphorylation inhibitory activities. The biological evaluations of these naphthoquinones revealed that ortho-naphthoquinones containing a phenolic hydroxyl group exhibited greater antiproliferative activity compared to compounds without a phenolic hydroxyl group. Among the synthesized para-naphthoquinones, 21, which has a condensed sulfonamide structure, showed substantially higher antiproliferative activity than that of the parent compound, and was also found to inhibit the phosphorylation of STAT3(Y705) in a dose-dependent manner. A docking simulation using AutoDock Vina suggested that 21 could directly bind to the hinge region of STAT3.
Collapse
Affiliation(s)
- Mitsuaki Yamashita
- School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Yuto Nakamori
- School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Arisa Tsukamoto
- School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Nagisa Furuno
- School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Akira Iida
- School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
2
|
Nicolás-Hernández DS, Rodríguez-Expósito RL, López-Arencibia A, Bethencourt-Estrella CJ, Sifaoui I, Salazar-Villatoro L, Omaña-Molina M, Fernández JJ, Díaz-Marrero AR, Piñero JE, Lorenzo-Morales J. Meroterpenoids from Gongolaria abies-marina against Kinetoplastids: In Vitro Activity and Programmed Cell Death Study. Pharmaceuticals (Basel) 2023; 16:ph16040476. [PMID: 37111233 PMCID: PMC10146491 DOI: 10.3390/ph16040476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Leishmaniasis and Chagas disease affect millions of people worldwide. The available treatments against these parasitic diseases are limited and display multiple undesired effects. The brown alga belonging to the genus Gongolaria has been previously reported as a source of compounds with different biological activities. In a recent study from our group, Gongolaria abies-marine was proven to present antiamebic activity. Hence, this brown alga could be a promising source of interesting molecules for the development of new antiprotozoal drugs. In this study, four meroterpenoids were isolated and purified from a dichloromethane/ethyl acetate crude extract through a bioguided fractionation process targeting kinetoplastids. Moreover, the in vitro activity and toxicity were evaluated, and the induction of programmed cell death was checked in the most active and less toxic compounds, namely gongolarone B (2), 6Z-1'-methoxyamentadione (3) and 1'-methoxyamentadione (4). These meroterpenoids triggered mitochondrial malfunction, oxidative stress, chromatin condensation and alterations of the tubulin network. Furthermore, a transmission electron microscopy (TEM) image analysis showed that meroterpenoids (2-4) induced the formation of autophagy vacuoles and ER and Golgi complex disorganization. The obtained results demonstrated that the mechanisms of action at the cellular level of these compounds were able to induce autophagy as well as an apoptosis-like process in the treated parasites.
Collapse
Affiliation(s)
- Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Maritza Omaña-Molina
- Facultad de Estudios Superiores Iztacala, Medicina, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28006 Madrid, Spain
- Consorcio Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28006 Madrid, Spain
- Consorcio Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28006 Madrid, Spain
| |
Collapse
|
3
|
Rahman MM, Islam MR, Akash S, Shohag S, Ahmed L, Supti FA, Rauf A, Aljohani ASM, Al Abdulmonem W, Khalil AA, Sharma R, Thiruvengadam M. Naphthoquinones and derivatives as potential anticancer agents: An updated review. Chem Biol Interact 2022; 368:110198. [PMID: 36179774 DOI: 10.1016/j.cbi.2022.110198] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
One of the leading global causes of death is cancer; even though several treatment methods have improved survival rates, the incidence and fatality rates remain high. Naphthoquinones are a type of quinone that is found in nature and has vital biological roles. These chemicals have anticancer (antineoplastic), analgesic, anti-inflammatory, antimalarial, antifungal, antiviral, antitrypanosomal, antischistosomal, leishmanicidal, and anti-ulcerative effects. Direct addition of a substituent group to the 1,4-naphthoquinone ring can alter the naphthoquinone's oxidation/reduction and acid/base characteristics, and the activity can be altered. Because of their pharmacological properties, such as anticancer activity and probable therapeutic application, naphthoquinones have greatly interested the scientific community. Some chemicals having a quinone ring in malignant cells have been found to have antiproliferative effects. Naphthoquinones' deadly impact is connected with the inhibition of electron transporters, the uncoupling of oxidative phosphorylation, the creation of ROS, and the formation of protein adducts, notably with -SH enzyme groups. This review article aims to discuss naphthoquinones and their derivatives, which act against cancer and their future perspectives. This review covers several studies highlighting the potent anticancer properties of naphthoquinones. Further, various proposed mechanisms of anticancer actions of naphthoquinones have been summarized in this review.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Pakistan, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul 05029, South Korea; Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| |
Collapse
|
4
|
Rubio-Hernández M, Alcolea V, Pérez-Silanes S. Potential of sulfur-selenium isosteric replacement as a strategy for the development of new anti-chagasic drugs. Acta Trop 2022; 233:106547. [PMID: 35667455 DOI: 10.1016/j.actatropica.2022.106547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Current treatment for Chagas disease is based on only two drugs: benznidazole and nifurtimox. Compounds containing sulfur (S) in their structure have shown promising results in vitro and in vivo against Trypanosoma cruzi, the parasite causing Chagas disease. Notably, some reports show that the isosteric replacement of S by selenium (Se) could be an interesting strategy for the development of new compounds for the treatment of Chagas disease. To date, the activity against T. cruzi of three Se- containing groups has been compared with their S counterparts: selenosemicarbazones, selenoquinones, and selenocyanates. More studies are needed to confirm the positive results of Se compounds. Therefore, we have investigated S compounds described in the literature tested against T. cruzi. We focused on those tested in vivo that allowed isosteric replacement to propose their Se counterparts as promising compounds for the future development of new drugs against Chagas disease.
Collapse
|
5
|
Singh A, Basu A, Sharma A, Priya A, Kaur M, Kaur G, Banerjee B. Lawsone (2-hydroxy-1,4-naphthaquinone) derived anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
2-Hydroxy-1,4-naphthaquinone, commonly known as lawsone, represents an extremely important biologically active naturally occurring compound. It can easily be isolated from Lawsonia inermis (henna) tree leaf extract. Last decade has seen tremendous applications of lawsone as a starting component for the preparation of various organic scaffolds. Many of these synthesized scaffolds showed a wide range of biological activities including potential activities towards several cancer cell lines. This review deals with diverse synthetic methods of lawsone derived scaffolds and their screening against different anti-cancer cell lines along with promising results.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Amartya Basu
- Department of General Medicine , Kalinga Institute of Medical Sciences , Bhubaneswar , Odisha 751024 , India
| | - Aditi Sharma
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Anu Priya
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Manmmet Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Gurpreet Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Bubun Banerjee
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| |
Collapse
|
6
|
Detrimental Effect of Ozone on Pathogenic Bacteria. Microorganisms 2021; 10:microorganisms10010040. [PMID: 35056489 PMCID: PMC8779011 DOI: 10.3390/microorganisms10010040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Disinfection of medical devices designed for clinical use associated or not with the growing area of tissue engineering is an urgent need. However, traditional disinfection methods are not always suitable for some biomaterials, especially those sensitive to chemical, thermal, or radiation. Therefore, the objective of this study was to evaluate the minimal concentration of ozone gas (O3) necessary to control and kill a set of sensitive or multi-resistant Gram-positive and Gram-negative bacteria. The cell viability, membrane permeability, and the levels of reactive intracellular oxygen (ROS) species were also investigated; (2) Material and Methods: Four standard strains and a clinical MDR strain were exposed to low doses of ozone at different concentrations and times. Bacterial inactivation (cultivability, membrane damage) was investigated using colony counts, resazurin as a metabolic indicator, and propidium iodide (PI). A fluorescent probe (H2DCFDA) was used for the ROS analyses; (3) Results: No reduction in the count colony was detected after O3 exposure compared to the control group. However, the cell viability of E. coli (30%), P. aeruginosa (25%), and A. baumannii (15%) was reduced considerably. The bacterial membrane of all strains was not affected by O3 but presented a significant increase of ROS in E. coli (90 ± 14%), P. aeruginosa (62.5 ± 19%), and A. baumanni (52.6 ± 5%); (4) Conclusion: Low doses of ozone were able to interfere in the cell viability of most strains studied, and although it does not cause damage to the bacterial membrane, increased levels of reactive ROS are responsible for causing a detrimental effect in the lipids, proteins, and DNA metabolism.
Collapse
|
7
|
Yamashita M, Sawano J, Umeda R, Tatsumi A, Kumeda Y, Iida A. Structure-Activity Relationship Studies of Antimicrobial Naphthoquinones Derived from Constituents of Tabebuia avellanedae. Chem Pharm Bull (Tokyo) 2021; 69:661-673. [PMID: 34193715 DOI: 10.1248/cpb.c21-00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, based on our previous study, derivatives of naphtho[2,3-b]furan-4,9-diones were synthesized and their antimicrobial activities were evaluated. The screening of these naphthoquinones revealed that the fluorine-containing NQ008 compound exhibited potent and broad antimicrobial activities against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative bacteria, and fungi. The results of the ratio of the minimum bactericidal concentration (MBC) to the minimum inhibitory concentrations (MICs) and time-kill assays suggest that the mode of action of NQ008 is bactericidal. Additionally, the results of a drug resistance study revealed that NQ008 exhibited potent antibacterial activity and may delay the development of bacteria resistance. Furthermore, NQ008 exhibited preliminary antiviral activity against the swine influenza virus and Feline calicivirus.
Collapse
Affiliation(s)
| | - Jun Sawano
- School of Agriculture, Kindai University
| | | | | | - Yuko Kumeda
- Research Center for Microorganism Control, Osaka Prefecture University
| | - Akira Iida
- School of Agriculture, Kindai University
| |
Collapse
|
8
|
Dantas-Pereira L, Cunha-Junior EF, Andrade-Neto VV, Bower JF, Jardim GAM, da Silva Júnior EN, Torres-Santos EC, Menna-Barreto RFS. Naphthoquinones and Derivatives for Chemotherapy: Perspectives and Limitations of their Anti-trypanosomatids Activities. Curr Pharm Des 2021; 27:1807-1824. [PMID: 33167829 DOI: 10.2174/1381612826666201109111802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited, and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo is essential for the development of a novel, specific and safe derivative, minimizing adverse effects.
Collapse
Affiliation(s)
- Luíza Dantas-Pereira
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edézio F Cunha-Junior
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Valter V Andrade-Neto
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - John F Bower
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Guilherme A M Jardim
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eufrânio N da Silva Júnior
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo C Torres-Santos
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Insights of antiparasitic activity of sodium diethyldithiocarbamate against different strains of Trypanosoma cruzi. Sci Rep 2021; 11:11200. [PMID: 34045624 PMCID: PMC8159965 DOI: 10.1038/s41598-021-90719-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi and affects thousands of people. Drugs currently used in therapy are toxic and have therapeutic limitations. In addition, the genetic diversity of T. cruzi represents an important variable and challenge in treatment. Sodium diethyldithiocarbamate (DETC) is a compound with pharmacological versatility acting as metal chelators and ROS generation. Thus, the objective was to characterize the antiparasitic action of DETC against different strains and forms of T. cruzi and their mechanism. The different strains of T. cruzi were grown in LIT medium. To evaluate the antiparasitic activity of DETC, epimastigote and trypomastigote forms of T. cruzi were used by resazurin reduction methods and by counting. Different response patterns were obtained between the strains and an IC50 of DETC ranging from 9.44 ± 3,181 to 60.49 ± 7.62 µM. Cell cytotoxicity against 3T3 and RAW cell lines and evaluated by MTT, demonstrated that DETC in high concentration (2222.00 µM) presents low toxicity. Yet, DETC causes mitochondrial damage in T. cruzi, as well as disruption in parasite membrane. DETC has antiparasitic activity against different genotypes and forms of T. cruzi, therefore, representing a promising molecule as a drug for the treatment of Chagas disease.
Collapse
|
10
|
Gontijo TB, de Carvalho RL, Dantas-Pereira L, Menna-Barreto RFS, Rogge T, Ackermann L, da Silva Júnior EN. Ruthenium(II)- and Palladium(II)-catalyzed position-divergent CH oxygenations of arylated quinones: Identification of hydroxylated quinonoid compounds with potent trypanocidal activity. Bioorg Med Chem 2021; 40:116164. [PMID: 34020276 DOI: 10.1016/j.bmc.2021.116164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
A diversity-oriented synthesis of hydroxylated aryl-quinones via CH oxygenation reactions and their evaluation against Trypanosoma cruzi, the etiological agent of Chagas disease, was accomplished. With the use of ruthenium(II)- or palladium(II)-based catalysts, complementary regioselectivities were observed in the hydroxylation reactions and we have identified 9 compounds more potent than benznidazole (Bz) among these novel arylated and hydroxylated quinones. For instance, 5-hydroxy-2-[4-(trifluoromethyl)phenyl]-1,4-naphthoquinone (4h) with an IC50/24 h value of 22.8 µM is 4.5-fold more active than the state-of-the-art drug Bz. This article provides the first example of the application of CH activation for the position-selective hydroxylation of arylated quinones and the identification of these compounds as trypanocidal drug candidates.
Collapse
Affiliation(s)
- Talita B Gontijo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany; Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Renato L de Carvalho
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany; Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Luiza Dantas-Pereira
- Laboratory of Cellular Biology, IOC, FIOCRUZ, Rio de Janeiro, RJ 21045-900, Brazil
| | | | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Potsdamer Strasse 58, 10785 Berlin, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
In vitro study of the trypanocidal activity of anilinophenanthrolines against Trypanosoma cruzi. Parasitol Int 2021; 83:102338. [PMID: 33766741 DOI: 10.1016/j.parint.2021.102338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/07/2023]
Abstract
Chagas disease is present in Latin America, North America, Europe, and Asia, where between 6 and 7 million people are infected. This illness is transmitted mainly by the insect vector during blood feeding and by oral transmission. Chagas disease is treated with benznidazole and its effectiveness depends on which phase of the disease the treatment starts. Therefore, the identification of new compounds with anti-Chagas activities is important. Protozoan parasites present cysteine proteases, important for host cell infection and differentiation, which have been explored as valid targets against pathogenic parasites. In the present study, the effects of 10 new 1,10-phenanthroline derivatives were evaluated on T. cruzi. Three of them were effective against amastigotes (IC50 from 0.5 to 3 μM), epimastigotes (IC50 from 0.5 to at least 10 μM) and trypomastigotes (and LD50 from 1 to 10 μM), and they were not toxic to mammalian cells (CC50 ≥ 20 μM). These compounds also promoted the formation of autophagosomes, alter the level of heterochromatin condensation, caused the loss of kDNA topology, and the elongated cell body shape. Apart from ultrastructural alterations, an increased generation of ROS and decreased mitochondrial membrane potential were observed. Therefore, these drugs revealed potential trypanocidal effects and warrant further antiparasitic studies against Chagas disease.
Collapse
|
12
|
Ferreira VF, de Carvalho AS, da Rocha DR. Strategies for the Synthesis of Mono- and Bis-Thionaphthoquinones. Curr Org Synth 2021; 18:535-546. [PMID: 33655837 DOI: 10.2174/1570179418666210224124603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
The subclass of compounds that have the nucleus 1,4-naphthoquinone is the most diverse of the class of quinones, which have a large number of substances and several that have useful applications ranging from medicinal chemistry to application in materials with special properties. The introduction of one or two substituents with the sulfur heteroatom in the naphthoquinone nucleus generates products containing alkyl and aryl groups that amplify certain biological properties against bacteria, viruses and fungi. There are several methods of preparing these compounds, mainly from low molecular weight naphthoquinones with two electrophilic sites capable of reacting with sulfides generating diversity and new classes of compounds, including new sulfur heterocycles and sulfur heterocycles fused with naphthoquinones. These compounds have been shown to be bioactive against several biological targets. This review will describe the methods of their synthesis and, when applicable, their biological activities.
Collapse
Affiliation(s)
- Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, Rua Doutor Mário Viana, 523, Santa Rosa, 24241-000, Niterói-RJ. Brazil
| | - Alcione S de Carvalho
- Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Batista, s/n, Centro 24020-141 Niterói-RJ. Brazil
| | - David R da Rocha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Batista, s/n, Centro 24020-141 Niterói-RJ. Brazil
| |
Collapse
|
13
|
Zuma AA, de Souza W. Chagas Disease Chemotherapy: What Do We Know So Far? Curr Pharm Des 2021; 27:3963-3995. [PMID: 33593251 DOI: 10.2174/1381612827666210216152654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
Chagas disease is a Neglected Tropical Disease (NTD), and although endemic in Latin America, affects around 6-7 million people infected worldwide. The treatment of Chagas disease is based on benznidazole and nifurtimox, which are the only available drugs. However, they are not effective during the chronic phase and cause several side effects. Furthermore, BZ promotes cure in 80% of the patients in the acute phase, but the cure rate drops to 20% in adults in the chronic phase of the disease. In this review, we present several studies published in the last six years, which describes the antiparasitic potential of distinct drugs, from the synthesis of new compounds aiming to target the parasite, as well as the repositioning and the combination of drugs. We highlight several compounds for having shown results that are equivalent or superior to BZ, which means that they should be further studied, either in vitro or in vivo. Furthermore, we stand out the differences in the effects of BZ on the same strain of T. cruzi, which might be related to methodological differences such as parasite and cell ratios, host cell type and the time of adding the drug. In addition, we discuss the wide variety of strains and also the cell types used as a host cell, which makes it difficult to compare the trypanocidal effect of the compounds.
Collapse
Affiliation(s)
- Aline Araujo Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| |
Collapse
|
14
|
Rani R, Narasimhan B, Varma RS, Kumar R. Naphthoquinone derivatives exhibit apoptosis-like effect and anti-trypanosomal activity against Trypanosoma evansi. Vet Parasitol 2021; 290:109367. [PMID: 33516118 DOI: 10.1016/j.vetpar.2021.109367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
Trypanosoma evansi is an extracellular flagellate blood protozoan parasite and an etiological agent of animal trypanosomosis. Presently, only a few drugs are registered and have been used for the treatment of animal trypanosomosis, but they show severe toxic effects and also face the problem of drug resistance. Naphthoquinones (NTQ) are considered as fortunate structures in the field of medicinal chemistry as they have been reported for their antitrypanosomal potential against other trypanosomes-T. brucei and T. cruzi. In the present study, six naphthoquinones (NTQ1-NTQ6) derivatives were evaluated for anti-trypanosomal activity by demonstrating their growth inhibitory effect against T. evansi. All NTQs significantly (p < 0.001) exhibited activity against parasite growth and multiplication with IC50 values of 11.48 μM, 373.6 μM, 12.97 μM, 21.97 μM, 18.19 μM and 5.758 μM but NTQ1, NTQ3 and NTQ6 were selected based on their IC50 value for further studies. The dose-and time-dependent morphological effect on parasite was evaluated including the measurement of reactive oxygen species (ROS) by spectrofluorometery and measurement of apoptosis by flow cytometry. The selected NTQs exhibited a significant production of ROS and displayed a significant AV+ and PI+ labelled cells in the axenic culture of T. evansi than quinapyramine methyl sulphate (QPS), as reference control. NTQs also showed more cytotoxic effect on horse peripheral blood mononuclear cells as compare to QPS. Therefore, we confirmed the antitrypanosomal activity and apoptotic-like mechanism of NTQs in an axenic culture of T. evansi.
Collapse
Affiliation(s)
- Ruma Rani
- ICAR-National Research Centre on Equine, Hisar, 125001, Haryana, India
| | | | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| | - Rajender Kumar
- ICAR-National Research Centre on Equine, Hisar, 125001, Haryana, India.
| |
Collapse
|
15
|
Optimization of 1,4-Naphthoquinone Hit Compound: A Computational, Phenotypic, and In Vivo Screening against Trypanosoma cruzi. Molecules 2021; 26:molecules26020423. [PMID: 33467422 PMCID: PMC7829778 DOI: 10.3390/molecules26020423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022] Open
Abstract
Chagas disease (CD) still represents a serious public health problem in Latin America, even after more than 100 years of its discovery. Clinical treatments (nifurtimox and benznidazole) are considered inadequate, especially because of undesirable side effects and low efficacy in the chronic stages of the disease, highlighting the urgency for discovering new effective and safe drugs. A small library of compounds (1a–i and 2a–j) was designed based on the structural optimization of a Hit compound derived from 1,4-naphthoquinones (C2) previously identified. The biological activity, structure-activity relationship (SAR), and the in silico physicochemical profiles of the naphthoquinone derivatives were analyzed. Most modifications resulted in increased trypanocidal activity but some substitutions also increased toxicity. The data reinforce the importance of the chlorine atom in the thiophenol benzene ring for trypanocidal activity, highlighting 1g, which exhibit a drug-likeness profile, as a promising compound against Trypanosoma cruzi. SAR analysis also revealed 1g as cliff generator in the structure-activity similarity map (SAS maps). However, compounds C2 and 1g were unable to reduce parasite load, and did not prevent mouse mortality in T. cruzi acute infection. Phenotypic screening and computational analysis have provided relevant information to advance the optimization and design of new 1,4-naphthoquinone derivatives with a better pharmacological profile.
Collapse
|
16
|
Pereira PML, Camargo PG, Fernandes BT, Flores-Junior LAP, Dias LRS, Lima CHS, Pinge-Filho P, Lioni LMY, Yamada-Ogatta SF, Bispo MLF, Macedo F. In vitro evaluation of antitrypanosomal activity and molecular docking of benzoylthioureas. Parasitol Int 2020; 80:102225. [PMID: 33160050 DOI: 10.1016/j.parint.2020.102225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 02/02/2023]
Abstract
A series of sixteen benzoylthioureas derivatives were initially evaluated in vitro against the epimastigote form of Trypanosoma cruzi. All of the tested compounds inhibited the growth of this form of the parasite, and due to the promising anti-epimastigote activity from three of these compounds, they were also assayed against the trypomastigote and amastigote forms. ADMET-Tox in silico predictions and molecular docking studies with two main enzymatic targets (cruzain and CYP-51) were performed for the three compounds with the highest activity. The docking studies showed that these compounds can interact with the active site of cruzain by hydrogen bonds and can be coordinated with Fe-heme through the carbonyl oxygen atom of the CYP51. These findings can be considered an important starting point for the proposal of the benzoylthioureas as potent, selective, and multi-target antitrypanosomal agents.
Collapse
Affiliation(s)
- Patricia M L Pereira
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Priscila G Camargo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Bruna T Fernandes
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Luiz A P Flores-Junior
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Luiza R S Dias
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Camilo H S Lima
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Phileno Pinge-Filho
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Brazil
| | - Lucy M Y Lioni
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Sueli F Yamada-Ogatta
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Marcelle L F Bispo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Fernando Macedo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
17
|
Ranu BC, Ghosh T, Adak L. Recent Progress on Carbon-chalcogen Bond Formation Reaction Under Microwave Irradiation. CURRENT MICROWAVE CHEMISTRY 2020. [DOI: 10.2174/2213335607666200214130544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carbon-chalcogen bond formation is of much importance as organochalcogenides scaffold,
and in general, it shows by organochalcogenide scaffolds, in general, show promising biological
activities and many compounds containing chalcogenide units are currently used as drugs, agrochemicals
and useful materials. Thus, a plethora of methods has been developed for the formation of carbonchalcogen
bonds. This review covers the recent developments on the formation of carbon-chalcogen
bonds under microwave irradiation and synthesis of useful chalcogenides by employing this process.
Collapse
Affiliation(s)
- Brindaban C. Ranu
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Tubai Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Laksmikanta Adak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
18
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
19
|
Aminin D, Polonik S. 1,4-Naphthoquinones: Some Biological Properties and Application. Chem Pharm Bull (Tokyo) 2020; 68:46-57. [DOI: 10.1248/cpb.c19-00911] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University
| | - Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science
| |
Collapse
|
20
|
Synthesis, in-vitro antiprotozoal activity and molecular docking study of isothiocyanate derivatives. Bioorg Med Chem 2020; 28:115185. [DOI: 10.1016/j.bmc.2019.115185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 11/22/2022]
|
21
|
Novais JS, Rosandiski AC, de Carvalho CM, de Saules Silva LS, Dos S Velasco de Souza LC, Santana MV, Martins NRC, Castro HC, Ferreira VF, Gonzaga DTG, de Resende GO, de C da Silva F. Efficient Synthesis and Antibacterial Profile of Bis(2-hydroxynaphthalene- 1,4-dione). Curr Top Med Chem 2019; 20:121-131. [PMID: 31820692 DOI: 10.2174/1568026619666191210160342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antibacterial resistance is a serious public health problem infecting millions in the global population. Currently, there are few antimicrobials on the market against resistant bacterial infections. Therefore, there is an urgent need for new therapeutic options against these strains. OBJECTIVE In this study, we synthesized and evaluated ten Bis(2-hydroxynaphthalene-1,4-dione) against Gram-positive strains, including a hospital Methicillin-resistant (MRSA), and Gram-negative strains. METHODS The compounds were prepared by condensation of aldehydes and lawsone in the presence of different L-aminoacids as catalysts in very good yields. The compounds were submitted to antibacterial analysis through disk diffusion and Minimal Inhibitory Concentration (MIC) assays. RESULTS L-aminoacids have been shown to be efficient catalysts in the preparation of Bis(2- hydroxynaphthalene-1,4-dione) from 2-hydroxy-1,4-naphthoquinones and arylaldehydes in excellent yields of up to 96%. The evaluation of the antibacterial profile against Gram-positive strains (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. epidermidis ATCC 12228) also including a hospital Methicillin-resistant S. aureus (MRSA) and Gram-negative strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Klebsiella pneumoniae ATCC 4352), revealed that seven compounds showed antibacterial activity within the Clinical and Laboratory Standards Institute (CLSI) levels mainly against P. aeruginosa ATCC 27853 (MIC 8-128 µg/mL) and MRSA (MIC 32-128 µg/mL). In addition, the in vitro toxicity showed all derivatives with no hemolytic effects on healthy human erythrocytes. Furthermore, the derivatives showed satisfactory theoretical absorption, distribution, metabolism, excretion, toxicity (ADMET) parameters, and a similar profile to antibiotics currently in use. Finally, the in silico evaluation pointed to a structure-activity relationship related to lipophilicity for these compounds. This feature may help them in acting against Gram-negative strains, which present a rich lipid cell wall selective for several antibiotics. CONCLUSION Our data showed the potential of this series for exploring new and more effective antibacterial activities in vivo against other resistant bacteria.
Collapse
Affiliation(s)
- Juliana S Novais
- Universidade Federal Fluminense, Hospital Universitario Antonio Pedro, Programa de Pos-graduacao em Patologia, 24033-900, Niteroi-RJ, Brazil
| | - Aline C Rosandiski
- Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, Unidade Maracana, 20270-021, Rio de Janeiro-RJ, Brazil
| | - Carolina M de Carvalho
- Universidade Federal Fluminense, Hospital Universitario Antonio Pedro, Programa de Pos-graduacao em Patologia, 24033-900, Niteroi-RJ, Brazil
| | - Letícia S de Saules Silva
- Universidade Federal Fluminense, Hospital Universitario Antonio Pedro, Programa de Pos-graduacao em Patologia, 24033-900, Niteroi-RJ, Brazil
| | - Lais C Dos S Velasco de Souza
- Universidade Federal Fluminense, Instituto Biomedico, Programa de Posgraduacao em Microbiologia e Parasitologia Aplicadas, Niteroi, RJ, 24210-130, Brazil
| | - Marcos V Santana
- Instituto de Biologia, Programa de Pos-graduacao em Ciencias e Biotecnologia, Universidade Federal Fluminense, 24210-130, Niteroi-RJ, Brazil
| | - Nathalia R C Martins
- Universidade Federal Fluminense, Hospital Universitario Antonio Pedro, Programa de Pos-graduacao em Patologia, 24033-900, Niteroi-RJ, Brazil
| | - Helena C Castro
- Universidade Federal Fluminense, Hospital Universitario Antonio Pedro, Programa de Pos-graduacao em Patologia, 24033-900, Niteroi-RJ, Brazil.,Instituto de Biologia, Programa de Pos-graduacao em Ciencias e Biotecnologia, Universidade Federal Fluminense, 24210-130, Niteroi-RJ, Brazil
| | - Vitor F Ferreira
- Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, Universidade Federal Fluminense, 24241- 000, Niteroi-RJ, Brazil
| | - Daniel T G Gonzaga
- Fundacao Centro Universitario Estadual da Zona Oeste, Unidade de Farmacia, 23070-200, Rio de Janeiro-RJ, Brazil
| | - Gabriel O de Resende
- Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, Unidade Maracana, 20270-021, Rio de Janeiro-RJ, Brazil
| | - Fernando de C da Silva
- Instituto de Quimica, Departamento de Quimica Organica, Universidade Federal Fluminense, 24210-141, Niteroi-RJ, Brazil
| |
Collapse
|
22
|
Monteiro M, Lechuga G, Lara L, Souto B, Viganó M, Bourguignon S, Calvet C, Oliveira F, Alves C, Souza-Silva F, Santos M, Pereira M. Synthesis, structure-activity relationship and trypanocidal activity of pyrazole-imidazoline and new pyrazole-tetrahydropyrimidine hybrids as promising chemotherapeutic agents for Chagas disease. Eur J Med Chem 2019; 182:111610. [DOI: 10.1016/j.ejmech.2019.111610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
|
23
|
Ravichandiran P, Masłyk M, Sheet S, Janeczko M, Premnath D, Kim AR, Park B, Han M, Yoo DJ. Synthesis and Antimicrobial Evaluation of 1,4-Naphthoquinone Derivatives as Potential Antibacterial Agents. ChemistryOpen 2019; 8:589-600. [PMID: 31098338 PMCID: PMC6507621 DOI: 10.1002/open.201900077] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
1,4-Naphthoquinones are an important class of compounds present in a number of natural products. In this study, a new series of 1,4-naphthoquinone derivatives were synthesized. All the synthesized compounds were tested for in vitro antimicrobial activity. In this present investigation, two Gram-positive and five Gram-negative bacterial strains and one pathogenic yeast strain were used to determine the antibacterial activity. Naphthoquinones tested for its antibacterial potencies, among seven of them displayed better antimicrobial activity against Staphylococcus aureus (S. aureus; 30-70 μg/mL). Some of the tested compounds showed moderate to low antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Salmonella bongori (S. bongori; 70-150 μg/mL). In addition, most active compounds against S. aureus were evaluated for toxicity to human blood cells using a hemolysis assay. For better understanding, reactive oxygen species (ROS) generation, time-kill kinetic study, and apoptosis, necrosis responses were investigated for three representative compounds.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life SciencesChonbuk National University, 567 Baekje-daero, Deokjin-guJeonju-si561-756, Jeollabuk-doRepublic of Korea
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Dhanraj Premnath
- Department of BiotechnologyKarunya Institute of Technology and ScienceSchool of Agriculture and Biosciences, Karunya NagarCoimbatore641114, Tamil NaduIndia
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center, Department of Bioenvironmental ChemistryChonbuk National University, Jeollabuk-do54896Republic of Korea.
| | - Byung‐Hyun Park
- Department of BiochemistryChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Myung‐Kwan Han
- Department of MicrobiologyChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| |
Collapse
|
24
|
Teixeira RI, Goulart JS, Corrêa RJ, Garden SJ, Ferreira SB, Netto-Ferreira JC, Ferreira VF, Miro P, Marin ML, Miranda MA, de Lucas NC. A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives. RSC Adv 2019; 9:13386-13397. [PMID: 35519567 PMCID: PMC9063979 DOI: 10.1039/c9ra01939a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023] Open
Abstract
The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives (1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by l-tryptophan methyl ester hydrochloride, l-tyrosine methyl ester hydrochloride, N-acetyl-l-tryptophan methyl ester and N-acetyl-l-tyrosine methyl ester, substituted phenols and indole (k q ∼109 L mol-1 s-1). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps.
Collapse
Affiliation(s)
- Rodolfo I Teixeira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Juliana S Goulart
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Rodrigo J Corrêa
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Simon J Garden
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Sabrina B Ferreira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | | | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmaceûtica Niterói Santa Rosa Brazil
| | - Paula Miro
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - M Luisa Marin
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Nanci C de Lucas
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| |
Collapse
|
25
|
1,4-Naphthoquinone Analogues: Potent Antibacterial Agents and Mode of Action Evaluation. Molecules 2019; 24:molecules24071437. [PMID: 30979056 PMCID: PMC6480589 DOI: 10.3390/molecules24071437] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
1,4-Naphthoquinones have antibacterial activity and are a promising new class of compound that can be used to treat bacterial infections. The goal was to improve effective antibacterial agents; therefore, we synthesized a new class of naphthoquinone hybrids, which contain phenylamino-phenylthio moieties as significant counterparts. Compound 4 was modified as a substituted aryl amide moiety, which enhanced the antibacterial activity of earlier compounds 3 and 4. In this study, five bacterial strains Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae) were used to evaluate the antibacterial potency of synthesized naphthoquinones using the minimal inhibitory concentration (MIC) method. Most of the studied naphthoquinones demonstrated major antibacterial activity with a MIC of 15.6 µg/mL–500 µg/mL. Selected compounds (5a, 5f and 5x) were studied for the mode of action, using intracellular ROS generation, determination of apoptosis by the Annexin V-FITC/PI assay, a bactericidal kinetic study and in silico molecular modelling. Additionally, the redox potentials of the specified compounds were confirmed by cyclic voltammetry (CV).
Collapse
|
26
|
Ravichandiran P, Subramaniyan SA, Kim SY, Kim JS, Park BH, Shim KS, Yoo DJ. Synthesis and Anticancer Evaluation of 1,4-Naphthoquinone Derivatives Containing a Phenylaminosulfanyl Moiety. ChemMedChem 2019; 14:532-544. [DOI: 10.1002/cmdc.201800749] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School and Hydrogen and Fuel Cell Research Center; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Sivakumar Allur Subramaniyan
- Department of Animal Biotechnology, College of Agriculture and Life Sciences; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute; 111-27, Wonjangdong-gil, Deokjin-gu Jeonju Jeonbuk 54810 Republic of Korea
| | - Jong-Soo Kim
- Division of Chemical Engineering; College of Engineering; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry; Chonbuk National University Medical School; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School and Hydrogen and Fuel Cell Research Center; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
27
|
Wang Y, Luo YH, Piao XJ, Shen GN, Meng LQ, Zhang Y, Wang JR, Li JQ, Wang H, Xu WT, Liu Y, Zhang Y, Zhang T, Wang SN, Sun HN, Han YH, Jin MH, Zang YQ, Zhang DJ, Jin CH. Novel 1,4‑naphthoquinone derivatives induce reactive oxygen species‑mediated apoptosis in liver cancer cells. Mol Med Rep 2018; 19:1654-1664. [PMID: 30592276 PMCID: PMC6390020 DOI: 10.3892/mmr.2018.9785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Derivatives of 1,4-naphthoquinone have excellent anti-cancer effects, but their use has been greatly limited due to their serious side effects. To develop compounds with decreased side effects and improved anti-cancer activity, two novel types of 1,4-naphthoquinone derivatives, 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (EPDMNQ) and 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (ENDMNQ) were synthesized and their anti-tumor activities were investigated. The effects of EPDMNQ and ENDMNQ on cell viability, apoptosis and accumulation of reactive oxygen species (ROS) in liver cancer cells were determined by MTT cell viability assay and flow cytometry. The expression levels of mitochondrial, mitogen activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathway-associated proteins in Hep3B liver cancer cells were analyzed by western blot analysis. The results demonstrated that EPDMNQ and ENDMNQ inhibited the proliferation of liver cancer Hep3B, HepG2, and Huh7 cell lines but not that of normal liver L-02, normal lung IMR-90 and stomach GES-1 cell lines. The number of apoptotic cells and ROS levels were significantly increased following treatment with EPDMNQ and ENDMNQ, and these effects were blocked by the ROS inhibitor N-acetyl-L-cysteine (NAC) in Hep3B cells. EPDMNQ and ENDMNQ induced apoptosis by upregulating the protein expression of p38 MAPK and c-Jun N-terminal kinase and downregulating extracellular signal-regulated kinase and STAT3; these effects were inhibited by NAC. The results of the present study demonstrated that EPDMNQ and ENDMNQ induced apoptosis through ROS-modulated MAPK and STAT3 signaling pathways in Hep3B cells. Therefore, these novel 1,4-naphthoquinone derivatives may be useful as anticancer agents for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ling-Qi Meng
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Shi-Nong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hao Han
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Mei-Hua Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yan-Qing Zang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Jie Zhang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
28
|
Saini V, Khungar B. Recyclable imidazolium ion-tagged nickel catalyst for microwave-assisted C–S cross-coupling in water using sulfonyl hydrazide as the sulfur source. NEW J CHEM 2018. [DOI: 10.1039/c8nj00904j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recyclable nickel(ii) catalyst promoted sulfenylation of aryl halides with sulfonyl hydrazides in water using microwave irradiation under mild conditions is reported.
Collapse
Affiliation(s)
- Vaishali Saini
- Department of Chemistry
- Birla Institute of Technology and Science Pilani Pilani Campus
- Pilani
- India
| | - Bharti Khungar
- Department of Chemistry
- Birla Institute of Technology and Science Pilani Pilani Campus
- Pilani
- India
| |
Collapse
|