1
|
Eissa IH, El-Haggar R, Dahab MA, Ahmed MF, Mahdy HA, Alsantali RI, Elwan A, Masurier N, Fatahala SS. Design, synthesis, molecular modeling and biological evaluation of novel Benzoxazole-Benzamide conjugates via a 2-Thioacetamido linker as potential anti-proliferative agents, VEGFR-2 inhibitors and apoptotic inducers. J Enzyme Inhib Med Chem 2022; 37:1587-1599. [PMID: 35637622 PMCID: PMC9176662 DOI: 10.1080/14756366.2022.2081844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A novel series of 2-thioacetamide linked benzoxazole-benzamide conjugates 1-15 was designed as potential inhibitors of the vascular endothelial growth factor receptor-2 (VEGFR-2). The prepared compounds were evaluated for their potential antitumor activity and their corresponding selective cytotoxicity was estimated using normal human fibroblast (WI-38) cells. Compounds 1, 9-12 and 15 showed good selectivity and displayed excellent cytotoxic activity against both HCT-116 and MCF-7 cancer cell lines compared to sorafenib, used as a reference compound. Furthermore, compounds 1 and 11 showed potent VEGFR-2 inhibitory activity. The cell cycle progression assay showed that 1 and 11 induced cell cycle arrest at G2/M phase, with a concomitant increase in the pre-G1 cell population. Further pharmacological studies showed that 1 and 11 induced apoptosis and inhibited the expression of the anti-apoptotic Bcl-2 and Bcl-xL proteins in both cell lines. Therefore, compounds 1 and 11 might serve as promising candidates for future anticancer therapy development.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Marwa F Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Samar S Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Inhibitory Effect of Lithospermic Acid on the HIV-1 Nucleocapsid Protein. Molecules 2020; 25:molecules25225434. [PMID: 33233563 PMCID: PMC7699738 DOI: 10.3390/molecules25225434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a desirable target in antiretroviral therapy due to its high conservation among HIV-1 strains, and to its multiple and crucial roles in the HIV-1 replication cycle. Natural products represent a valuable source of NC inhibitors, with the catechol group being a privileged scaffold in NC inhibition. By coupling molecular modeling with NMR spectroscopy and fluorescence-based assays, we disclosed lithospermic acid, a catechol derivative extracted from Salvia miltiorrhizza, as a potent and chemically stable non-covalent inhibitor of the NC. Being different from other catechol derivative reported so far, lithospermic acid does not undergo spontaneous oxidation in physiological conditions, thus becoming a profitable starting point for the development of efficient NC inhibitors.
Collapse
|
3
|
Malancona S, Mori M, Fezzardi P, Santoriello M, Basta A, Nibbio M, Kovalenko L, Speziale R, Battista MR, Cellucci A, Gennari N, Monteagudo E, Di Marco A, Giannini A, Sharma R, Pires M, Real E, Zazzi M, Dasso Lang MC, De Forni D, Saladini F, Mely Y, Summa V, Harper S, Botta M. 5,6-Dihydroxypyrimidine Scaffold to Target HIV-1 Nucleocapsid Protein. ACS Med Chem Lett 2020; 11:766-772. [PMID: 32435383 DOI: 10.1021/acsmedchemlett.9b00608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/19/2020] [Indexed: 01/27/2023] Open
Abstract
The HIV-1 nucleocapsid (NC) protein is a small basic DNA and RNA binding protein that is absolutely necessary for viral replication and thus represents a target of great interest to develop new anti-HIV agents. Moreover, the highly conserved sequence offers the opportunity to escape the drug resistance (DR) that emerged following the highly active antiretroviral therapy (HAART) treatment. On the basis of our previous research, nordihydroguaiaretic acid 1 acts as a NC inhibitor showing moderate antiviral activity and suboptimal drug-like properties due to the presence of the catechol moieties. A bioisosteric catechol replacement approach led us to identify the 5-dihydroxypyrimidine-6-carboxamide substructure as a privileged scaffold of a new class of HIV-1 NC inhibitors. Hit validation efforts led to the identification of optimized analogs, as represented by compound 28, showing improved NC inhibition and antiviral activity as well as good ADME and PK properties.
Collapse
Affiliation(s)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Paola Fezzardi
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | | | - Andreina Basta
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | - Martina Nibbio
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | - Lesia Kovalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | | | | | | | - Nadia Gennari
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | | | | | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 50100 Siena, Italy
| | - Rajhans Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Manuel Pires
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Eleonore Real
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 50100 Siena, Italy
| | - Maria Chiara Dasso Lang
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | | | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 50100 Siena, Italy
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Vincenzo Summa
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | - Steven Harper
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
4
|
Ciaco S, Humbert N, Real E, Boudier C, Francesconi O, Roelens S, Nativi C, Seguin-Devaux C, Mori M, Mély Y. A Class of Potent Inhibitors of the HIV-1 Nucleocapsid Protein Based on Aminopyrrolic Scaffolds. ACS Med Chem Lett 2020; 11:698-705. [PMID: 32435373 DOI: 10.1021/acsmedchemlett.9b00558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
The HIV-1 nucleocapsid protein 7 (NC) is a potential target for effective antiretroviral therapy due to its central role in virus replication, mainly linked to nucleic acid (NA) chaperone activity, and low susceptibility to drug resistance. By screening a compounds library, we identified the aminopyrrolic compound CN14_17, a known carbohydrate binding agent, that inhibits the NC chaperone activity in the low micromolar range. Different from most of available NC inhibitors, CN14_17 fully prevents the NC-induced annealing of complementary NA sequences. Using fluorescence assays and isothermal titration calorimetry, we found that CN14_17 competes with NC for the binding to NAs, preferentially targeting single-stranded sequences. Molecular dynamics simulations confirmed that binding to cTAR occurs preferably within the guanosine-rich single stranded sequence. Finally, CN14_17 exhibited antiretroviral activity in the low micromolar range, although with a moderate therapeutic index. Overall, CN14_17 might be the progenitor of a new promising class of NC inhibitors.
Collapse
Affiliation(s)
- Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Eléonore Real
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Oscar Francesconi
- Dipartimento di Chimica “Ugo Schiff” and INSTM, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Stefano Roelens
- Dipartimento di Chimica “Ugo Schiff” and INSTM, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Cristina Nativi
- Dipartimento di Chimica “Ugo Schiff” and INSTM, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
5
|
Mori M, Manetti F, Botta B, Tafi A. In Memory of Maurizio Botta: His Contribution to the Development of Computer-Aided Drug Design. J Chem Inf Model 2019; 59:4961-4967. [PMID: 31804073 DOI: 10.1021/acs.jcim.9b01043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 , University of Siena , via Aldo Moro 2 , 53100 Siena , Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 , University of Siena , via Aldo Moro 2 , 53100 Siena , Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018-2022 , Sapienza University of Rome , Piazzale Aldo Moro 5 , 00185 Rome , Italy
| | - Andrea Tafi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 , University of Siena , via Aldo Moro 2 , 53100 Siena , Italy
| |
Collapse
|
6
|
Ku T, Lopresti N, Shirley M, Mori M, Marchant J, Heng X, Botta M, Summers MF, Seley-Radtke KL. Synthesis of distal and proximal fleximer base analogues and evaluation in the nucleocapsid protein of HIV-1. Bioorg Med Chem 2019; 27:2883-2892. [PMID: 31126822 PMCID: PMC6556414 DOI: 10.1016/j.bmc.2019.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 11/29/2022]
Abstract
Anti-HIV-1 drug design has been notably challenging due to the virus’ ability to mutate and develop immunity against commercially available drugs. The aims of this project were to develop a series of fleximer base analogues that not only possess inherent flexibility that can remain active when faced with binding site mutations, but also target a non-canonical, highly conserved target: the nucleocapsid protein of HIV (NC). The compounds were predicted by computational studies not to function via zinc ejection, which would endow them with significant advantages over non-specific and thus toxic zinc-ejectors. The target fleximer bases were synthesized using palladium-catalyzed cross-coupling techniques and subsequently tested against NC and HIV-1. The results of those studies are described herein.
Collapse
Affiliation(s)
- Therese Ku
- University of Maryland, Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Natalie Lopresti
- University of Maryland, Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Matthew Shirley
- University of Maryland, Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Mattia Mori
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, via Aldo Moro 2, 53100 Siena, Italy
| | - Jan Marchant
- University of Maryland, Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Xiao Heng
- University of Maryland, Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Maurizio Botta
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, via Aldo Moro 2, 53100 Siena, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg., Suite 333, 1900 N 12th Street, Philadelphia, PA 19122, USA
| | - Michael F Summers
- University of Maryland, Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA; Howard Hughes Medical Institute, USA
| | - Katherine L Seley-Radtke
- University of Maryland, Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
7
|
Mori M, Dasso Lang MC, Saladini F, Palombi N, Kovalenko L, De Forni D, Poddesu B, Friggeri L, Giannini A, Malancona S, Summa V, Zazzi M, Mely Y, Botta M. Synthesis and Evaluation of Bifunctional Aminothiazoles as Antiretrovirals Targeting the HIV-1 Nucleocapsid Protein. ACS Med Chem Lett 2019; 10:463-468. [PMID: 30996780 DOI: 10.1021/acsmedchemlett.8b00506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Small molecule inhibitors of the HIV-1 nucleocapsid protein (NC) are considered as promising agents in the treatment of HIV/AIDS. In an effort to exploit the privileged 2-amino-4-phenylthiazole moiety in NC inhibition, here we conceived, synthesized, and tested in vitro 18 NC inhibitors (NCIs) bearing a double functionalization. In these NCIs, one part of the molecule is deputed to interact noncovalently with the NC hydrophobic pocket, while the second portion is designed to interact with the N-terminal domain of NC. This binding hypothesis was verified by molecular dynamics simulations, while the linkage between these two pharmacophores was found to enhance antiretroviral activity both on the wild-type virus and on HIV-1 strains with resistance to currently licensed drugs. The two most interesting compounds 6 and 13 showed no cytotoxicity, thus becoming valuable leads for further investigations.
Collapse
Affiliation(s)
- Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Maria Chiara Dasso Lang
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 53100 Siena, Italy
| | - Nastasja Palombi
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Lesia Kovalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Faculté
de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Davide De Forni
- ViroStatics S.r.l., Viale Umberto I 46, 07100 Sassari, Italy
| | - Barbara Poddesu
- ViroStatics S.r.l., Viale Umberto I 46, 07100 Sassari, Italy
| | - Laura Friggeri
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 53100 Siena, Italy
| | - Savina Malancona
- IRBM Science Park S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy
| | - Vincenzo Summa
- IRBM Science Park S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 53100 Siena, Italy
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Faculté
de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg., Suite
333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
- Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, 53019 Castelnuovo, Berardenga, Italy
| |
Collapse
|
8
|
MS methods to study macromolecule-ligand interaction: Applications in drug discovery. Methods 2018; 144:152-174. [PMID: 29890284 DOI: 10.1016/j.ymeth.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction of small compounds (i.e. ligands) with macromolecules or macromolecule assemblies (i.e. targets) is the mechanism of action of most of the drugs available today. Mass spectrometry is a popular technique for the interrogation of macromolecule-ligand interactions and therefore is also widely used in drug discovery and development. Thanks to its versatility, mass spectrometry is used for multiple purposes such as biomarker screening, identification of the mechanism of action, ligand structure optimization or toxicity assessment. The evolution and automation of the instruments now allows the development of high throughput methods with high sensitivity and a minimized false discovery rate. Herein, all these approaches are described with a focus on the methods for studying macromolecule-ligand interaction aimed at defining the structure-activity relationships of drug candidates, along with their mechanism of action, metabolism and toxicity.
Collapse
|