1
|
Andrade JCO, do Vale TM, Gomes RLM, Forezi LDSM, de Souza MCBV, Batalha PN, Boechat FDCS. Exploring 4-quinolone-3-carboxamide derivatives: A versatile framework for emerging biological applications. Bioorg Chem 2025; 157:108240. [PMID: 39923393 DOI: 10.1016/j.bioorg.2025.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/11/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
4-Quinolones are a pivotal class of compounds derived from the quinoline core, recognized for their broad therapeutic applications. Originating from the synthesis of chloroquine, their discovery led to nalidixic acid, the first quinolone analog to exhibit antibacterial activity, catalyzing the development of fluoroquinolones. Beyond their role as antibiotics, 4-quinolone derivatives have emerged as versatile scaffolds with demonstrated antitumor, antiviral, and antiparasitic activities, among others. Concurrently, the carboxamide functional group has gained prominence in medicinal chemistry due to its structural versatility and bioisosteric potential. Its unique properties, such as conformational stability and dual hydrogen bond capabilities, enable diverse pharmacodynamic interactions. The combination of these two structural fragments has proven to be a powerful tool for the discovery of new bioactive prototypes. This review consolidates advancements in the exploration of 4-quinolone-3-carboxamide derivatives, emphasizing their multifaceted biological activities and the innovative strategies driving their optimization. Key highlights include their potential as kinase inhibitors, antiviral agents, and anticancer therapeutics. By synthesizing insights from recent studies, this review underscores the relevance of this framework in addressing contemporary medicinal challenges.
Collapse
Affiliation(s)
- Joice C O Andrade
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil.
| | - Thiago M do Vale
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil
| | - Rodrigo L M Gomes
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil
| | - Luana da S M Forezi
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil
| | | | - Pedro N Batalha
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil.
| | | |
Collapse
|
2
|
Weinmann J, Kirchner L, Engstler M, Meinel L, Holzgrabe U. Design, synthesis and biological evaluations of quinolone amides against African trypanosomiasis with improved solubility. Eur J Med Chem 2023; 250:115176. [PMID: 36805945 DOI: 10.1016/j.ejmech.2023.115176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
The human African trypanosomiasis is a devastating parasitic infection, which is caused by the protozoan Trypanosoma brucei and transmitted by the bite of the tsetse fly. An untreated infection usually results in death and only few drugs with significant drawbacks are currently available for treatment. Previous investigations revealed the quinolone amide MB007 as a lead compound with an excellent selectivity for T. b. brucei. Here, new quinolone amides were synthesized for deeper insights into the structure-activity relationship. Furthermore, the aqueous solubility of the compounds was analyzed, as the poor solubility of previous quinolone amides impeded in vivo studies for target identification. The biological evaluation led to the new lead structure 9f, which exhibits a promising in vitro activity against T. b. brucei (IC50 = 22 nM) and showed no cytotoxicity against macrophages. Moreover, compounds 10b and 10c were discovered, which possessed an improved solubility combined with a decent selectivity.
Collapse
Affiliation(s)
- Joshua Weinmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lukas Kirchner
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
3
|
Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021; 26:7153. [PMID: 34885734 PMCID: PMC8658791 DOI: 10.3390/molecules26237153] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
Broad antibacterial spectrum, high oral bioavailability and excellent tissue penetration combined with safety and few, yet rare, unwanted effects, have made the quinolones class of antimicrobials one of the most used in inpatients and outpatients. Initially discovered during the search for improved chloroquine-derivative molecules with increased anti-malarial activity, today the quinolones, intended as antimicrobials, comprehend four generations that progressively have been extending antimicrobial spectrum and clinical use. The quinolone class of antimicrobials exerts its antimicrobial actions through inhibiting DNA gyrase and Topoisomerase IV that in turn inhibits synthesis of DNA and RNA. Good distribution through different tissues and organs to treat Gram-positive and Gram-negative bacteria have made quinolones a good choice to treat disease in both humans and animals. The extensive use of quinolones, in both human health and in the veterinary field, has induced a rise of resistance and menace with leaving the quinolones family ineffective to treat infections. This review revises the evolution of quinolones structures, biological activity, and the clinical importance of this evolving family. Next, updated information regarding the mechanism of antimicrobial activity is revised. The veterinary use of quinolones in animal productions is also considered for its environmental role in spreading resistance. Finally, considerations for the use of quinolones in human and veterinary medicine are discussed.
Collapse
Affiliation(s)
- Ana R. Millanao
- Facultad de Ciencias, Instituto de Farmacia, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Aracely Y. Mora
- Programa de Doctorado en Bioquímica, Universidad de Chile, Santiago 8380544, Chile;
| | - Nicolás A. Villagra
- Escuela de Tecnología Médica, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Sergio A. Bucarey
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago 8370071, Chile
| |
Collapse
|
6
|
Bhattacharya A, Corbeil A, do Monte-Neto RL, Fernandez-Prada C. Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes (Basel) 2020; 11:genes11070722. [PMID: 32610603 PMCID: PMC7397081 DOI: 10.3390/genes11070722] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis (Leishmania species), sleeping sickness (Trypanosoma brucei), and Chagas disease (Trypanosoma cruzi) are devastating and globally spread diseases caused by trypanosomatid parasites. At present, drugs for treating trypanosomatid diseases are far from ideal due to host toxicity, elevated cost, limited access, and increasing rates of drug resistance. Technological advances in parasitology, chemistry, and genomics have unlocked new possibilities for novel drug concepts and compound screening technologies that were previously inaccessible. In this perspective, we discuss current models used in drug-discovery cascades targeting trypanosomatids (from in vitro to in vivo approaches), their use and limitations in a biological context, as well as different examples of recently discovered lead compounds.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Department of Microbiology, Adamas University, Kolkata, West Bengal 700 126, India;
| | - Audrey Corbeil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence: ; Tel.: +1-450-773-8521 (ext. 32802)
| |
Collapse
|
7
|
Garai S, Kulkarni PM, Schaffer PC, Leo LM, Brandt AL, Zagzoog A, Black T, Lin X, Hurst DP, Janero DR, Abood ME, Zimmowitch A, Straiker A, Pertwee RG, Kelly M, Szczesniak AM, Denovan-Wright EM, Mackie K, Hohmann AG, Reggio PH, Laprairie RB, Thakur GA. Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. J Med Chem 2020; 63:542-568. [PMID: 31756109 DOI: 10.1021/acs.jmedchem.9b01142] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cannabinoid 1 receptor (CB1R) allosteric ligands hold a far-reaching therapeutic promise. We report the application of fluoro- and nitrogen-walk approaches to enhance the drug-like properties of GAT211, a prototype CB1R allosteric agonist-positive allosteric modulator (ago-PAM). Several analogs exhibited improved functional potency (cAMP, β-arrestin 2), metabolic stability, and aqueous solubility. Two key analogs, GAT591 (6r) and GAT593 (6s), exhibited augmented allosteric-agonist and PAM activities in neuronal cultures, improved metabolic stability, and enhanced orthosteric agonist binding (CP55,940). Both analogs also exhibited good analgesic potency in the CFA inflammatory-pain model with longer duration of action over GAT211 while being devoid of adverse cannabimimetic effects. Another analog, GAT592 (9j), exhibited moderate ago-PAM potency and improved aqueous solubility with therapeutic reduction of intraocular pressure in murine glaucoma models. The SAR findings and the enhanced allosteric activity in this class of allosteric modulators were accounted for in our recently developed computational model for CB1R allosteric activation and positive allosteric modulation.
Collapse
Affiliation(s)
- Sumanta Garai
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Pushkar M Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Peter C Schaffer
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Luciana M Leo
- Center for Substance Abuse Research, Lewis Katz School of Medicine , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Asher L Brandt
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Tallan Black
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Xiaoyan Lin
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Dow P Hurst
- Center for Drug Discovery , University of North Carolina Greensboro , Greensboro , North Carolina 27402 , United States
| | - David R Janero
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Department of Chemistry and Chemical Biology, College of Science, and Health Sciences Entrepreneurs , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Anaelle Zimmowitch
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Alex Straiker
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences , University of Aberdeen , Aberdeen AB25 2ZD , Scotland, U.K
| | - Melanie Kelly
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Anna-Maria Szczesniak
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Eileen M Denovan-Wright
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Ken Mackie
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Andrea G Hohmann
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Patricia H Reggio
- Center for Drug Discovery , University of North Carolina Greensboro , Greensboro , North Carolina 27402 , United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada.,Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
8
|
Yang Y, Luo G, Li Y, Tong X, He M, Zeng H, Jiang Y, Liu Y, Zheng Y. Nickel-Catalyzed Reductive Coupling for Transforming Unactivated Aryl Electrophiles into β-Fluoroethylarenes. Chem Asian J 2020; 15:156-162. [PMID: 31755237 DOI: 10.1002/asia.201901490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Indexed: 01/24/2023]
Abstract
We report herein a facile synthetic method for converting unactivated (hetero)aryl electrophiles into β-fluoroethylated (hetero)arenes via nickel-catalyzed reductive cross-couplings. This coupling reaction features the involvement of FCH2 CH2 radical intermediate rather than β-fluoroethyl manganese species which provides effective solutions to the problematic β-fluoride side eliminations. The practical value of this protocol is further demonstrated by the late-stage modification of several complex ArCl or ArOH-derived bioactive molecules.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Gen Luo
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Youlin Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Xia Tong
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Mengmeng He
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Hongyao Zeng
- College of Chemistry, Leshan Normal University, 778 Binghe Road, Leshan, Sichuan, 614000, China
| | - Yan Jiang
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Yingle Liu
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Yubin Zheng
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| |
Collapse
|