1
|
Ramli AH, Mohd Faudzi SM. Diarylpentanoids, the privileged scaffolds in antimalarial and anti-infectives drug discovery: A review. Arch Pharm (Weinheim) 2023; 356:e2300391. [PMID: 37806761 DOI: 10.1002/ardp.202300391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Asia is a hotspot for infectious diseases, including malaria, dengue fever, tuberculosis, and the pandemic COVID-19. Emerging infectious diseases have taken a heavy toll on public health and the economy and have been recognized as a major cause of morbidity and mortality, particularly in Southeast Asia. Infectious disease control is a major challenge, but many surveillance systems and control strategies have been developed and implemented. These include vector control, combination therapies, vaccine development, and the development of new anti-infectives. Numerous newly discovered agents with pharmacological anti-infective potential are being actively and extensively studied for their bioactivity, toxicity, selectivity, and mode of action, but many molecules lose their efficacy over time due to resistance developments. These facts justify the great importance of the search for new, effective, and safe anti-infectives. Diarylpentanoids, a curcumin derivative, have been developed as an alternative with better bioavailability and metabolism as a therapeutic agent. In this review, the mechanisms of action and potential targets of antimalarial drugs as well as the classes of antimalarial drugs are presented. The bioactivity of diarylpentanoids as a potential scaffold for a new class of anti-infectives and their structure-activity relationships are also discussed in detail.
Collapse
Affiliation(s)
- Amirah H Ramli
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti M Mohd Faudzi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Oliveira TZ, Fonseca DP, Dos Santos AH, da Silva TR, Lazarin-Bidóia D, Din ZU, Filho BPD, Nakamura CV, Rodrigues-Filho E, Ueda-Nakamura T. Synthetic dibenzylideneketones as promising anti-herpes simplex virus type 1 agents. Arch Virol 2023; 168:153. [PMID: 37140819 DOI: 10.1007/s00705-023-05777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
New antiviral agents for the treatment of herpes simplex virus type 1 (HSV-1) infection, which causes a highly prevalent and incurable disease, are needed. Here, we report for the first time the in vitro anti-HSV-1 activity of two dibenzylideneketone compounds: DBK1 and DBK2. DBK1 demonstrated virucidal activity, and high-resolution scanning electron microscopy showed that it caused morphological changes in the HSV-1 envelope. DBK2 was able to reduce HSV-1 plaque size in vitro. The DBKs are promising anti-HSV-1 candidates, as they exhibit low toxicity and exert an antiviral effect by acting at the early stages of HSV-1-host cell interaction.
Collapse
Affiliation(s)
- Thalita Zago Oliveira
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Dyenefer Pereira Fonseca
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - André Henrique Dos Santos
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Thays Rosa da Silva
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Danielle Lazarin-Bidóia
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Zia Ud Din
- Laboratory of Micromolecular Biochemistry of Microorganisms, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Benedito Prado Dias Filho
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Celso Vataru Nakamura
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Edson Rodrigues-Filho
- Laboratory of Micromolecular Biochemistry of Microorganisms, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Tania Ueda-Nakamura
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
3
|
Ugbe FA, Shallangwa GA, Uzairu A, Abdulkadir I. Computational design, molecular properties, ADME, and toxicological analysis of substituted 2,6-diarylidene cyclohexanone analogs as potent pyridoxal kinase inhibitors. In Silico Pharmacol 2023; 11:6. [PMID: 36968686 PMCID: PMC10033787 DOI: 10.1007/s40203-023-00142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/12/2023] [Indexed: 03/25/2023] Open
Abstract
Leishmaniasis is one of the tropical diseases which affects over 12 million people mainly in the tropical regions of the world and is caused by the leishmanial parasites transmitted by the female sand fly. The lack of vaccines to prevent leishmaniasis, as well as limitations of existing therapies necessitated this study which was focused on a combined virtual docking screening and 3-D QSAR modeling approach to design some diarylidene cyclohexanone analogs, while also performing pharmacokinetic analysis and Molecular Dynamic (MD) simulation to ascertain their drug-ability. As a result, the built 3-D QSAR model was found to satisfy the requirement of a good model with R2 = 0.9777, SDEC = 0.0593, F-test = 105.028, and Q2 LOO = 0.6592. The template (compound 9, MolDock score = - 161.064) and all seven newly designed analogs were found to possess higher docking scores than the reference drug (Pentamidine, Moldock score = - 137.827). The results of the pharmacokinetic analysis suggest 9 and the new molecules (9a, b, c, e, and f) as orally bioavailable with good ADME and safe toxicological profiles. These molecules also showed good binding interactions with the receptor (pyridoxal kinase). Additionally, the MD simulation result confirmed the stability of the tested protein-ligand complexes, with an estimated ∆G binding (MM/GBSA) of - 65.2177 kcal/mol and - 58.433 kcal/mol for 9_6K91 and 9a_6K91 respectively. Hence, the new compounds, especially 9a could be considered potential anti-leishmanial inhibitors.
Collapse
Affiliation(s)
- Fabian Audu Ugbe
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| | - Gideon Adamu Shallangwa
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| | - Ibrahim Abdulkadir
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| |
Collapse
|
4
|
da Silva UP, Ferreira BW, de Sousa BL, Barreto RW, Martins FT, de A Neto JH, Vaz BG, da Silva RR, Martins TVF, de Oliveira Mendes TA, Varejão EVV. Synthesis of bis(ylidene) cyclohexanones and their antifungal activity against selected plant pathogenic fungi. Mol Divers 2023; 27:281-297. [PMID: 35441971 DOI: 10.1007/s11030-022-10431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/31/2022] [Indexed: 02/08/2023]
Abstract
Botrytis cinerea, Rhizoctonia solani and Hemileia vastatrix are three species of phytopathogenic fungi behind major crop losses worldwide. These have been selected as target models for testing the fungicide potential of a series of bis(ylidene) cyclohexanones. Although some compounds of this chemical class are known to have inhibitory activity against human pathogens, they have never been explored for the control of phytopathogens until now. In the present work, bis(ylidene) cyclohexanones were synthesized through simple, fast and low-cost base- or acid-catalyzed aldol condensation reaction and tested in vitro against B. cinerea, R. solani and H. vastatrix. bis(pyridylmethylene) cyclohexanones showed the highest activity against the target fungi. When tested at 200 nmol per mycelial plug against R. solani., these compounds completely inhibited the mycelial growth, and the most active bis(pyridylmethylene) cyclohexanone compound had an IC50 of 155.5 nmol plug-1. Additionally, bis(pyridylmethylene) cyclohexanones completely inhibited urediniospore germination of H. vastatrix, at 125 μmol L-1. The most active bis(pyridylmethylene) cyclohexanone had an IC50 value of 4.8 µmol L-1, which was estimated as approximately 2.6 times lower than that found for the copper oxychloride-based fungicide, used as control. Additionally, these substances had a low cytotoxicity against the mammalian Vero cell line. Finally, in silico calculations indicated that these compounds present physicochemical parameters regarded as suitable for agrochemicals. Bis(ylidene) cyclohexanones may constitute promising candidates for the development of novel antifungal agents for the control of relevant fungal diseases in agriculture.
Collapse
Affiliation(s)
- Ueveton Pimentel da Silva
- Department of Chemistry, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Bruno Wesley Ferreira
- Department of Phytopathology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Bianca Lana de Sousa
- Department of Chemistry, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Robert Weingart Barreto
- Department of Phytopathology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Felipe Terra Martins
- Institute of Chemistry, Universidade Federal de Goiás, Av Esperança, sn, Samambaia, Goiânia, 74.690-900, Brazil
| | - João Honorato de A Neto
- Department of Chemistry, Universidade Federal de São Carlos, Rodovia Washington Luís s/n Km 235, Sao Carlos, SP, 74.690-900, Brazil
| | - Boniek Gontijo Vaz
- Institute of Chemistry, Universidade Federal de Goiás, Av Esperança, sn, Samambaia, Goiânia, 74.690-900, Brazil
| | - Rodolfo Rodrigues da Silva
- Institute of Chemistry, Universidade Federal de Goiás, Av Esperança, sn, Samambaia, Goiânia, 74.690-900, Brazil
| | - Thaís Viana Fialho Martins
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | | |
Collapse
|
5
|
Ali A, Din ZU, Ibrahim M, Ashfaq M, Muhammad S, Gull D, Tahir MN, Rodrigues-Filho E, Al-Sehemi AG, Suleman M. Acid catalyzed one-pot approach towards the synthesis of curcuminoid systems: unsymmetrical diarylidene cycloalkanones, exploration of their single crystals, optical and nonlinear optical properties. RSC Adv 2023; 13:4476-4494. [PMID: 36760294 PMCID: PMC9892888 DOI: 10.1039/d2ra07681k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
In the present study crystalline unsymmetrical diarylidene ketone derivatives BNTP and BDBC have been prepared by two sequential acid catalyzed aldol condensation reactions in a one pot manner. The crystal structures of both compounds were confirmed by single crystal X-ray diffraction analysis which revealed the presence of H-bonding interactions of type C-H⋯O, along with weak C-H⋯π and weak π⋯π stacking interactions that are involved in the crystal stabilization of both organic compounds. Hirshfeld surface analysis is carried out for the broad investigation of the intermolecular interactions in both compounds. The quantum chemical investigation was performed on the optimized molecular geometries of BNTP and BDBC to calculate optical and nonlinear optical (NLO) properties. The density functional theory (DFT) study showed that the third-order NLO polarizabilities of compounds BNTP and BDBC are found to be 226.45 × 10-36 esu and 238.72 × 10-36 esu, respectively, which indicates noticeable good NLO response properties. Additionally, the BNTP and BDBC molecules also showed the HOMO-LUMO orbital gaps of 5.96 eV and 6.06 eV, respectively. Furthermore, the computation of UV-visible spectra of the titled compounds indicated a limited and/or no absorption above the 400 nm region, directing a good transparency and NLO property trade-off for both synthesized compounds that may play a significant contribution in the future for optoelectronic technologies.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Government College University Faisalabad, 38000-FaisalabadPakistan
| | - Zia Ud Din
- LaBioMMi, Departamento de Química, Universidade Federal de São CarlosCP 676, São CarlosSP 13.565-905Brazil
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad Pakistan
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha Sargodha Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid UniversityP.O. Box 9004Abha 61413Saudi Arabia
| | - Dania Gull
- Department of Chemistry, Government College University Faisalabad, 38000-FaisalabadPakistan
| | | | - Edson Rodrigues-Filho
- LaBioMMi, Departamento de Química, Universidade Federal de São CarlosCP 676, São CarlosSP 13.565-905Brazil
| | - Abdullah G. Al-Sehemi
- Department of Chemistry, College of Science, King Khalid UniversityP.O. Box 9004Abha 61413Saudi Arabia
| | - Muhammad Suleman
- Department of Chemistry, Riphah International University Faisalabad CampusPakistan
| |
Collapse
|
6
|
Bethencourt-Estrella CJ, Delgado-Hernández S, López-Arencibia A, San Nicolás-Hernández D, Tejedor D, García-Tellado F, Lorenzo-Morales J, Piñero JE. In vitro activity and cell death mechanism induced by acrylonitrile derivatives against Leishmania amazonensis. Bioorg Chem 2022; 124:105872. [DOI: 10.1016/j.bioorg.2022.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
|
7
|
Khrustaleva A, Batalin S. PEG-400 assisted synthesis of 2-(R-benzylidene)-5-(R-cinnamylidene)cyclopentanones. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alexandra Khrustaleva
- Institute of Chemistry, Department of Organic and Bioorganic Chemistry, National Research Saratov State University named after N.G Chernyshevsky, Saratov, Russian Federation
| | | |
Collapse
|
8
|
Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorg Med Chem 2022; 58:116577. [DOI: 10.1016/j.bmc.2021.116577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
|
9
|
Chen J, Wen K, Wu Y, Deng J, Chen H, Yao X, Tang X. Synthesis of 3,4,5‐Triarylcyclohexanones from Dienones and 2‐Methylquinolines Based on a [5+1] Annulation. ChemistrySelect 2021. [DOI: 10.1002/slct.202103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Hongyue Chen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| |
Collapse
|
10
|
Pyrazol(in)e derivatives of curcumin analogs as a new class of anti- Trypanosoma cruzi agents. Future Med Chem 2021; 13:701-714. [PMID: 33648346 DOI: 10.4155/fmc-2020-0349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: We report the synthesis and biological evaluation of a small library of 15 functionalized 3-styryl-2-pyrazolines and pyrazoles, derived from curcuminoids, as trypanosomicidal agents. Methods & results: The compounds were prepared via a cyclization reaction between the corresponding curcuminoids and the appropriate hydrazines. All of the derivatives synthesized were investigated for their trypanosomicidal activities. Compounds 4a and 4e showed significant activity against epimastigotes of Trypanosoma cruzi, with IC50 values of 5.0 and 4.2 μM, respectively, accompanied by no toxicity to noncancerous mammalian cells. Compound 6b was found to effectively inhibit T. cruzi triosephosphate isomerase. Conclusion: The up to 16-fold higher potency of these derivatives compared with their curcuminoid precursors makes them a promising new family of T. cruzi inhibitors.
Collapse
|
11
|
Nossa González DL, Gómez Castaño JA, Rozo Núñez WE, Duchowicz PR. Antiprotozoal QSAR modelling for trypanosomiasis (Chagas disease) based on thiosemicarbazone and thiazole derivatives. J Mol Graph Model 2020; 103:107821. [PMID: 33333422 DOI: 10.1016/j.jmgm.2020.107821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, remains a neglected endemic infection that affects around 8 million people worldwide and causes 12,000 premature deaths per year. Traditional chemotherapy is limited to the nitro-antiparasitic drugs Benznidazole and Nifurtimox, which present serious side effects and low long-term efficacy. Several research efforts have been made over the last decade to find new chemical structures with better effectiveness and tolerance than standard anti-Chagas drugs. Among these, new sets of thiosemicarbazone and thiazole derivatives have exhibited potent in vitro activity against T. cruzi, especially for its extracellular forms (epimastigote and trypomastigote). In this work, we have developed three antiprotozoal quantitative structure-relationship (QSAR) models for Chagas disease based on the in vitro activity data reported as IC50 (μM) and CC50 (μM) over the last decade, particularly by Lima-Leite's group in Brazil. The models were developed using the replacement method (RM), a technique based on Multivariable Linear Regression (MLR), and external and internal validation methodologies, like the use of a test set, Leave-one-Out (LOO) cross-validation and Y-Randomization. Two of these QSAR models were developed for trypomastigotes form of the parasite Trypanosoma cruzi, one based on IC50 and the other on CC50 data; while the third QSAR model was developed for its epimastigotes form based on CC50 activity. Our models presented sound statistical parameters that endorses their prediction capability. Such capability was tested for a set of 13 hitherto-unknown structurally related aromatic cyclohexanone derivatives.
Collapse
Affiliation(s)
- Diana L Nossa González
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central Del Norte, Tunja, Boyacá, Colombia.
| | - Jovanny A Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central Del Norte, Tunja, Boyacá, Colombia.
| | - Wilson E Rozo Núñez
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central Del Norte, Tunja, Boyacá, Colombia
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (CONICET- Universidad Nacional de La Plata), Diagonal 113 y calle 64, C.C. 16, Sucursal 4, 1900, La Plata, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
12
|
de Paula JC, Bakoshi ABK, Lazarin-Bidóia D, Ud Din Z, Rodrigues-Filho E, Ueda-Nakamura T, Nakamura CV. Antiproliferative activity of the dibenzylideneacetone derivate (E)-3-ethyl-4-(4-nitrophenyl)but‑3-en-2-one in Trypanosoma cruzi. Acta Trop 2020; 211:105653. [PMID: 32777226 DOI: 10.1016/j.actatropica.2020.105653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/18/2023]
Abstract
Chagas disease is one of the most prevalent neglected diseases in the world. The illness is caused by Trypanosoma cruzi, a protozoan parasite with a complex life cycle and three morphologically distinct developmental stages. Nowadays, the only treatment is based on two nitro-derivative drugs, benznidazole and nifurtimox, which cause serious side effects. Since the treatment is limited, the search for new treatment options for patients with Chagas disease is highly necessary. In this study we analyzed the substance A11K3, a dibenzylideneacetone (DBA). DBAs have an acyclic dienone attached to aryl groups in both β-positions and studies have shown that they have biological activity against tumors cells, bacteria, and protozoa such as T. cruzi and Leishmania spp. Here we show that A11K3 is active against all three T. cruzi evolutionary forms: the epimastigote (IC50 = 3.3 ± 0.8), the trypomastigote (EC50 = 24 ± 4.3) and the intracellular amastigote (IC50 = 9.3 ± 0.5 µM). A cytotoxicity assay in LLCMK2 cells showed a CC50 of 239.2 ± 15.7 µM giving a selectivity index (CC50/IC50) of 72.7 for epimastigotes, 9.9 for trypomastigotes and 25.9 for intracellular amastigotes. Morphological and ultrastructural analysis of the parasites treated with A11K3 by TEM and SEM revealed alterations in the Golgi complex, mitochondria, plasma membrane and cell body, with an increase of autophagic vacuoles and lipid bodies. Biochemical assays of A11K3-treated T. cruzi showed an increase of ROS, plasma membrane ruptures, lipid peroxidation, mitochondrial membrane depolarization with a decrease in ATP and accumulation of autophagic vacuoles. The results lead to the hypothesis that A11K3 causes death of the protozoan through events such as plasma membrane and mitochondrial alterations and autophagy, characteristic of cell collapse.
Collapse
Affiliation(s)
- Jéssica Carreira de Paula
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Amanda Beatriz Kawano Bakoshi
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Danielle Lazarin-Bidóia
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Zia Ud Din
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP 13.565-905, Brazil
| | - Edson Rodrigues-Filho
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP 13.565-905, Brazil
| | - Tania Ueda-Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil.
| |
Collapse
|
13
|
Khalid M, Ali A, Adeel M, Din ZU, Tahir MN, Rodrigues-Filho E, Iqbal J, Khan MU. Facile preparation, characterization, SC-XRD and DFT/DTDFT study of diversely functionalized unsymmetrical bis-aryl-α, β-unsaturated ketone derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127755] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Bakhshi R, Zeynizadeh B, Mousavi H. Green, rapid, and highly efficient syntheses of
α
,
α′
‐bis[(aryl or allyl)idene]cycloalkanones and 2‐[(aryl or allyl)idene]‐1‐indanones as potentially biologic compounds via solvent‐free microwave‐assisted Claisen–Schmidt condensation catalyzed by MoCl
5. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Reza Bakhshi
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| |
Collapse
|
15
|
Anti-Leishmanial and Cytotoxic Activities of a Series of Maleimides: Synthesis, Biological Evaluation and Structure-Activity Relationship. Molecules 2018; 23:molecules23112878. [PMID: 30400596 PMCID: PMC6278306 DOI: 10.3390/molecules23112878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/18/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023] Open
Abstract
In the present study, 45 maleimides have been synthesized and evaluated for anti-leishmanial activities against L. donovani in vitro and cytotoxicity toward THP1 cells. All compounds exhibited obvious anti-leishmanial activities. Among the tested compounds, there were 10 maleimides with superior anti-leishmanial activities to standard drug amphotericin B, and 32 maleimides with superior anti-leishmanial activities to standard drug pentamidine, especially compounds 16 (IC50 < 0.0128 μg/mL) and 42 (IC50 < 0.0128 μg/mL), which showed extraordinary efficacy in an in vitro test and low cytotoxicities (CC50 > 10 μg/mL). The anti-leishmanial activities of 16 and 42 were 10 times better than that of amphotericin B. The structure and activity relationship (SAR) studies revealed that 3,4-non-substituted maleimides displayed the strongest anti-leishmanial activities compared to those for 3-methyl-maleimides and 3,4-dichloro-maleimides. 3,4-dichloro-maleimides were the least cytotoxic compared to 3-methyl-maleimides and 3,4-non-substituted maleimides. The results show that several of the reported compounds are promising leads for potential anti-leishmanial drug development.
Collapse
|