1
|
Chniti S, Kollár L, Bényei A, Dörnyei Á, Takács A. A Facile Route to Flavone-3-Carboxamides and Flavone-3-Carboxylates via Palladium-Catalyzed Amino- and Aryloxy-Carbonylation Reactions. Int J Mol Sci 2024; 25:10128. [PMID: 39337616 PMCID: PMC11432944 DOI: 10.3390/ijms251810128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
A library of C-3 functionalized flavones was successfully provided via palladium-catalyzed amino- and aryloxycarbonylation reactions of 3-iodoflavone (1), under mild conditions. This methodology showed good functional group tolerance using a variety of amines and phenols, under an atmospheric pressure of carbon monoxide as a carbonyl source. While the flavone-3-carboxamides (2a-t) were produced in 22-79%, the flavone-3-carboxylates (4a'-l') were obtained in excellent yields (up to 88%), under identical reaction conditions, just by switching N-nucleophiles to O-nucleophiles. The convenient availability of the involved starting materials confers simplicity to this approach to design new C-3-substituted flavones of biological relevance. The solid-state structures of flavone-3-carboxamide (2r) and flavone-3-ester (4f') were further studied by single-crystal XRD analysis.
Collapse
Affiliation(s)
- Sami Chniti
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság útja 6., H-7624 Pécs, Hungary
| | - László Kollár
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság útja 6., H-7624 Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, Ifjúság útja 6., H-7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20., H-7624 Pécs, Hungary
| | - Attila Bényei
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Ágnes Dörnyei
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20., H-7624 Pécs, Hungary
- Department of Analytical and Environmental Chemistry, University of Pécs, Ifjúság útja 6., H-7624 Pécs, Hungary
| | - Attila Takács
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, Ifjúság útja 6., H-7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20., H-7624 Pécs, Hungary
| |
Collapse
|
2
|
Leonte D, Ungureanu D, Zaharia V. Flavones and Related Compounds: Synthesis and Biological Activity. Molecules 2023; 28:6528. [PMID: 37764304 PMCID: PMC10535985 DOI: 10.3390/molecules28186528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review focuses on the synthesis and biological activity of flavones and their related flavonoidic compounds, namely flavonols and aurones. Among the biological activities of natural and synthetic flavones and aurones, their anticancer, antioxidant, and antimicrobial properties are highlighted and detailed in this review. Starting from the structures of natural flavones acting on multiple anticancer targets (myricetin, genkwanin, and other structurally related compounds), new flavone analogs were recently designed and evaluated for their anticancer activity. The most representative compounds and their anticancer activity are summarized in this review. Natural flavones recognized for their antimicrobial properties (baicalein, luteolin, quercetol, apigenin, kaempferol, tricin) have been recently derivatized or structurally modulated by chemical synthetic methods in order to obtain new effective antimicrobial flavonoidic derivatives with improved biological properties. The most promising antimicrobial agents are systematically highlighted in this review. The most applied method for the synthesis of flavones and aurones is based on the oxidative cyclization of o-hydroxychalcones. Depending on the reaction conditions and the structure of the precursor, in some cases, several cyclization products result simultaneously: flavones, flavanones, flavonols, and aurones. Based on the literature data and the results obtained by our research group, our aim is to highlight the most promising methods for the synthesis of flavones, as well as the synthetic routes for the other structurally related cyclization products, such as hydroxyflavones and aurones, while considering that, in practice, it is difficult to predict which is the main or exclusive cyclization product of o-hydroxychalcones under certain reaction conditions.
Collapse
Affiliation(s)
| | | | - Valentin Zaharia
- Department of Organic Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, Victor Babeş 41, RO-400012 Cluj-Napoca, Romania; (D.L.); (D.U.)
| |
Collapse
|
3
|
Tajiani F, Ahmadi S, Lotfi S, Kumar P, Almasirad A. In-silico activity prediction and docking studies of some flavonol derivatives as anti-prostate cancer agents based on Monte Carlo optimization. BMC Chem 2023; 17:87. [PMID: 37496005 PMCID: PMC10373329 DOI: 10.1186/s13065-023-00999-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
The QSAR models are employed to predict the anti-proliferative activity of 81 derivatives of flavonol against prostate cancer using the Monte Carlo algorithm based on the index of ideality of correlation (IIC) criterion. CORAL software is employed to design the QSAR models. The molecular structures of flavonols are demonstrated using the simplified molecular input line entry system (SMILES) notation. The models are developed with the hybrid optimal descriptors i.e. using both SMILES and hydrogen-suppressed molecular graph (HSG). The QSAR model developed for split 3 is selected as a prominent model ([Formula: see text]= 0.727, [Formula: see text]= 0.628, [Formula: see text]= 0.642, and [Formula: see text]=0.615). The model is interpreted mechanistically by identifying the characteristics responsible for the promoter of the increase or decrease. The structural attributes as promoters of increase of pIC50 were aliphatic carbon atom connected to double-bound (C…=…, aliphatic oxygen atom connected to aliphatic carbon (O…C…), branching on aromatic ring (c…(…), and aliphatic nitrogen (N…). The pIC50 of eight natural flavonols with pIC50 more than 4.0, were predicted by the best model. The molecular docking is also performed for natural flavonols on the PC-3 cell line using the protein (PDB: 3RUK).
Collapse
Affiliation(s)
- Faezeh Tajiani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahin Ahmadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shahram Lotfi
- Department of Chemistry, Payame Noor University (PNU), Tehran, 19395-4697, Iran
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Ali Almasirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Chen YY, Liang JJ, Wang DL, Chen JB, Cao JP, Wang Y, Sun CD. Nobiletin as a chemopreventive natural product against cancer, a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:6309-6329. [PMID: 35089821 DOI: 10.1080/10408398.2022.2030297] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a leading cause of death, second only to heart disease, cancer has always been one of the burning topics in medical research. When targeting multiple signal pathways in tumorigenesis chemoprevention, using natural or synthetic anti-cancer drugs is a vital strategy to reduce cancer damage. However, toxic effects, multidrug resistance (MDR) as well as cancer stem cells (CSCs) all prominently limited the clinical application of conventional anticancer drugs. With low side effects, strong biological activity, unique mechanism, and wide range of targets, natural products derived from plants are considered significant sources for new drug development. Nobiletin is one of the most attractive compounds, a unique flavonoid primarily isolated from the peel of citrus fruits. Numerous studies in vitro and in vivo have suggested that nobiletin and its derivatives possess the eminent potential to become effective cancer chemoprevention agents through various cellular and molecular levels. This article aims to comprehensively review the anticancer efficacy and specific mechanisms of nobiletin, enhancing our understanding of its chemoprevention properties and providing the latest research findings. At the end of this review, we also give some discussion and future perspectives regarding the challenges and opportunities in nobiletin efficient exploitation.
Collapse
Affiliation(s)
- Yun-Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Deng-Liang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Ince T, Serttas R, Demir B, Atabey H, Seferoglu N, Erdogan S, Sahin E, Erat S, Nural Y. Polysubstituted pyrrolidines linked to 1,2,3-triazoles: Synthesis, crystal structure, DFT studies, acid dissociation constant, drug-likeness, and anti-proliferative activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
The Antiproliferative Effects of Flavonoid MAO Inhibitors on Prostate Cancer Cells. Molecules 2020; 25:molecules25092257. [PMID: 32403270 PMCID: PMC7249060 DOI: 10.3390/molecules25092257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer (PCa) patients commonly experience clinical depression. Recent reports indicated that monoamine oxidase-A (MAO-A) levels elevate in PCa, and antidepressant MAO-Is show anti-PCa properties. In this work, we aimed to find potential drugs for PCa patients suffering from depression by establishing novel anti-PCa reversible monoamine oxidase-A inhibitors (MAO-AIs/RIMA); with an endeavor to understand their mechanism of action. In this investigation, twenty synthesized flavonoid derivatives, defined as KKR compounds were screened for their inhibitory potentials against human MAO-A and MAO-B isozymes. Meanwhile, the cytotoxic and antiproliferative effects were determined in three human PCa cell lines. MAO-A-kinetics, molecular docking, SAR, cell morphology, and cell migration were investigated for the most potent compounds. The screened KKRs inhibited MAO-A more potently than MAO-B, and non-toxically inhibited LNCaP cell proliferation more than the DU145 and PC3 cell lines, respectively. The results showed that the three top MAO-AI KKRs compounds (KKR11, KKR20, and KKR7 (IC50s 0.02-16 μM) overlapped with the top six antiproliferative KKRs against LNCaP (IC50s ~9.4 μM). While KKR21 (MAO-AI) and KKR2A (MAO-I) were ineffective against the PCa cells. Furthermore, KKR21 and KKR11 inhibited MAO-A competitively (Kis ≤ 7.4 nM). Molecular docking of the two compounds predicted shared hydrophobic and distinctive hydrophilic interactions-between the KKR molecule and MAO-A amino acid residues-to be responsible for their reversibility. The combined results and SAR observations indicated that the presence of specific active groups-such as chlorine and hydroxyl groups-are essential in certain MAO-AIs with anti-PCa effects. Additionally, MAO-A inhibition was found to be associated more with anti-PCa property than MAO-B. Distinctively, KKR11 [(E)-3-(3,4-dichlorophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one] exhibited anti-metastatic effects on the DU145 cell line. The chlorine substitution groups might play vital roles in the KKR11 multiple actions. The obtained results indicated that the flavonoid derivative KKR11 could present a novel candidate for PCa patients with depression, through safe non-selective potent inhibition of MAOs.
Collapse
|