1
|
Sullivan R, Hou J, Yu L, Wilk B, Sykes J, Biernaski H, Butler J, Kovacs M, Hicks J, Thiessen JD, Dharmakumar R, Prato FS, Wisenberg G, Luyt LG, Dhanvantari S. Design, Synthesis, and Preclinical Evaluation of a High-Affinity 18F-Labeled Radioligand for Myocardial Growth Hormone Secretagogue Receptor Before and After Myocardial Infarction. J Nucl Med 2024; 65:1633-1639. [PMID: 39266294 DOI: 10.2967/jnumed.124.267578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024] Open
Abstract
The peptide hormone ghrelin is produced in cardiomyocytes and acts through the myocardial growth hormone secretagogue receptor (GHSR) to promote cardiomyocyte survival. Administration of ghrelin may have therapeutic effects on post-myocardial infarction (MI) outcomes. Therefore, there is a need to develop molecular imaging probes that can track the dynamics of GHSR in health and disease to better predict the effectiveness of ghrelin-based therapeutics. We designed a high-affinity GHSR ligand labeled with 18F for imaging by PET and characterized its in vivo properties in a canine model of MI. Methods: We rationally designed and radiolabeled with 18F a quinazolinone derivative ([18F]LCE470) with subnanomolar binding affinity to GHSR. We determined the sensitivity and in vivo and ex vivo specificity of [18F]LCE470 in a canine model of surgically induced MI using PET/MRI, which allowed for anatomic localization of tracer uptake and simultaneous determination of global cardiac function. Uptake of [18F]LCE470 was determined by time-activity curve and SUV analysis in 3 regions of the left ventricle-area of infarct, territory served by the left circumflex coronary artery, and remote myocardium-over a period of 1.5 y. Changes in cardiac perfusion were tracked by [13N]NH3 PET. Results: The receptor binding affinity of LCE470 was measured at 0.33 nM, the highest known receptor binding affinity for a radiolabeled GHSR ligand. In vivo blocking studies in healthy hounds and ex vivo blocking studies in myocardial tissue showed the specificity of [18F]LCE470, and sensitivity was demonstrated by a positive correlation between tracer uptake and GHSR abundance. Post-MI changes in [18F]LCE470 uptake occurred independently of perfusion tracer distributions and changes in global cardiac function. We found that the regional distribution of [18F]LCE470 within the left ventricle diverged significantly within 1 d after MI and remained that way throughout the 1.5-y duration of the study. Conclusion: [18F]LCE470 is a high-affinity PET tracer that can detect changes in the regional distribution of myocardial GHSR after MI. In vivo PET molecular imaging of the global dynamics of GHSR may lead to improved GHSR-based therapeutics in the treatment of post-MI remodeling.
Collapse
Affiliation(s)
- Rebecca Sullivan
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Jinqiang Hou
- Lakehead University and Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Lihai Yu
- London Regional Cancer Program, London, Ontario, Canada
| | - Benjamin Wilk
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jane Sykes
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Heather Biernaski
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
| | - John Butler
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Michael Kovacs
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Justin Hicks
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jonathan D Thiessen
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | - Frank S Prato
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Gerald Wisenberg
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Leonard G Luyt
- London Regional Cancer Program, London, Ontario, Canada
- Departments of Chemistry, Oncology, and Medical Imaging, Western University, London, Ontario, Canada
| | - Savita Dhanvantari
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada;
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Zeng Q, Meng G, Zhao B, Lin H, Guan Y, Qin X, Yuan Y, Li Y, Wang Q. Peptide Drug Design Using Alchemical Free Energy Calculation: An Application and Validation on Agonists of Ghrelin Receptor. J Chem Inf Model 2024; 64:4863-4876. [PMID: 38836743 DOI: 10.1021/acs.jcim.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
With recent large-scale applications and validations, the relative binding free energy (RBFE) calculated using alchemical free energy methods has been proven to be an accurate measure to probe the binding of small-molecule drug candidates. On the other hand, given the flexibility of peptides, it is of great interest to find out whether sufficient sampling could be achieved within the typical time scale of such calculation, and a similar level of accuracy could be reached for peptide drugs. However, the systematic evaluation of such calculations on protein-peptide systems has been less reported. Most reported studies of peptides were restricted to a limited number of data points or lacking experimental support. To demonstrate the applicability of the alchemical free energy method for protein-peptide systems in a typical real-world drug discovery project, we report an application of the thermodynamic integration (TI) method to the RBFE calculation of ghrelin receptor and its peptide agonists. Along with the calculation, the synthesis and in vitro EC50 activity of relamorelin and 17 new peptide derivatives were also reported. A cost-effective criterion to determine the data collection time was proposed for peptides in the TI simulation. The average of three TI repeats yielded a mean absolute error of 0.98 kcal/mol and Pearson's correlation coefficient (R) of 0.77 against the experimental free energy derived from the in vitro EC50 activity, showing good repeatability of the proposed method and a slightly better agreement than the results obtained from the arbitrary time frames up to 20 ns. Although it is limited by having one target and a deduced binding pose, we hope that this study can add some insights into alchemical free energy calculation of protein-peptide systems, providing theoretical assistance to the development of peptide drugs.
Collapse
Affiliation(s)
- Qin Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangpeng Meng
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Bingyu Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haodian Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuqing Guan
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Xiaobin Qin
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Yu Yuan
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Yuanbo Li
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Lamba M, Singh PR, Bandyopadhyay A, Goswami A. Synthetic 18F labeled biomolecules that are selective and promising for PET imaging: major advances and applications. RSC Med Chem 2024; 15:1899-1920. [PMID: 38911154 PMCID: PMC11187557 DOI: 10.1039/d4md00033a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
The concept of positron emission tomography (PET) based imaging was developed more than 40 years ago. It has been a widely adopted technique for detecting and staging numerous diseases in clinical settings, particularly cancer, neuro- and cardio-diseases. Here, we reviewed the evolution of PET and its advantages over other imaging modalities in clinical settings. Primarily, this review discusses recent advances in the synthesis of 18F radiolabeled biomolecules in light of the widely accepted performance for effective PET. The discussion particularly emphasizes the 18F-labeling chemistry of carbohydrates, lipids, amino acids, oligonucleotides, peptides, and protein molecules, which have shown promise for PET imaging in recent decades. In addition, we have deliberated on how 18F-labeled biomolecules enable the detection of metabolic changes at the cellular level and the selective imaging of gross anatomical localization via PET imaging. In the end, the review discusses the future perspective of PET imaging to control disease in clinical settings. We firmly believe that collaborative multidisciplinary research will further widen the comprehensive applications of PET approaches in the clinical management of cancer and other pathological outcomes.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Prasoon Raj Singh
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Anupam Bandyopadhyay
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| |
Collapse
|
4
|
Protease-activated receptor 2 (PAR2)-targeting peptide derivatives for positron emission tomography (PET) imaging. Eur J Med Chem 2023; 246:114989. [PMID: 36527934 DOI: 10.1016/j.ejmech.2022.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The proteolytically-activated G protein-coupled receptor (GPCR) protease-activated receptor 2 (PAR2), is implicated in various cancers and inflammatory diseases. Synthetic ligands and in vitro imaging probes targeting this receptor have been developed with low nanomolar affinity, however, no in vivo imaging probes exist for PAR2. Here, we report the strategic design, synthesis, and biological evaluation of a series of novel 4-fluorobenzoylated PAR2-targeting peptides derived from 2f-LIGRLO-NH2 (2f-LI-) and Isox-Cha-Chg-Xaa-NH2 (Isox-) peptide families, where the 4-fluorobenzoyl moiety acts as the 19F-standard of an 18F-labeled probe for potential use in in vivo imaging. We found that several of the 4-fluorobenzoylated peptides from the 2f-LI-family exhibited PAR2 selectivity with moderate potency (EC50 = 151-252 nM), whereas several from the Isox-family exhibited PAR2 selectivity with high potency (EC50 = 13-42 nM). Our lead candidate, Isox-Cha-Chg-Ala-Arg-Dpr(4FB)-NH2 (EC50 = 13 nM), was successfully synthesized with fluorine-18 with a radiochemical yield of 37%, radiochemical purity of >98%, molar activity of 20 GBq/μmol, and an end of synthesis time of 125 min. Biodistribution studies and preliminary PET imaging of the tracer in mice showed predominantly renal clearance. This 18F-labeled tracer is the first reported PAR2 imaging agent with potential for use in vivo. Future work will explore the use of this tracer in cancer xenografts and inflammation models involving upregulation of PAR2 expression.
Collapse
|
5
|
Hexarelin Modulation of MAPK and PI3K/Akt Pathways in Neuro-2A Cells Inhibits Hydrogen Peroxide-Induced Apoptotic Toxicity. Pharmaceuticals (Basel) 2021; 14:ph14050444. [PMID: 34066741 PMCID: PMC8150489 DOI: 10.3390/ph14050444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Hexarelin, a synthetic hexapeptide, exerts cyto-protective effects at the mitochondrial level in cardiac and skeletal muscles, both in vitro and in vivo, may also have important neuroprotective bioactivities. This study examined the inhibitory effects of hexarelin on hydrogen peroxide (H2O2)-induced apoptosis in Neuro-2A cells. Neuro-2A cells were treated for 24 h with various concentrations of H2O2 or with the combination of H2O2 and hexarelin following which cell viability and nitrite (NO2−) release were measured. Cell morphology was also documented throughout and changes arising were quantified using Image J skeleton and fractal analysis procedures. Apoptotic responses were evaluated by Real-Time PCR (caspase-3, caspase-7, Bax, and Bcl-2 mRNA levels) and Western Blot (cleaved caspase-3, cleaved caspase-7, MAPK, and Akt). Our results indicate that hexarelin effectively antagonized H2O2-induced damage to Neuro-2A cells thereby (i) improving cell viability, (ii) reducing NO2− release and (iii) restoring normal morphologies. Hexarelin treatment also reduced mRNA levels of caspase-3 and its activation, and modulated mRNA levels of the BCL-2 family. Moreover, hexarelin inhibited MAPKs phosphorylation and increased p-Akt protein expression. In conclusion, our results demonstrate neuroprotective and anti-apoptotic effects of hexarelin, suggesting that new analogues could be developed for their neuroprotective effects.
Collapse
|
6
|
Bergmann R, Chollet C, Els-Heindl S, Ullrich M, Berndt N, Pietzsch J, Máthé D, Bachmann M, Beck-Sickinger AG. Development of a ghrelin receptor inverse agonist for positron emission tomography. Oncotarget 2021; 12:450-474. [PMID: 33747360 PMCID: PMC7939532 DOI: 10.18632/oncotarget.27895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Imaging of Ghrelin receptors in vivo provides unique potential to gain deeper understanding on Ghrelin and its receptors in health and disease, in particular, in cancer. Ghrelin, an octanoylated 28-mer peptide hormone activates the constitutively active growth hormone secretagogue receptor type 1a (GHS-R1a) with nanomolar activity. We developed novel compounds, derived from the potent inverse agonist K-(D-1-Nal)-FwLL-NH2 but structurally varied by lysine conjugation with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), palmitic acid and/or diethylene glycol (PEG2) to allow radiolabeling and improve pharmacokinetics, respectively. All compounds were tested for receptor binding, potency and efficacy in vitro, for biodistribution and -kinetics in rats and in preclinical prostate cancer models on mice. Radiolabeling with Cu-64 and Ga-68 was successfully achieved. The Cu-64- or Ga-68-NODAGA-NH-K-K-(D-1-NaI)-F-w-L-L-NH2 radiotracer were specifically accumulated by the GHS-R1a in xenotransplanted human prostate tumor models (PC-3, DU-145) in mice. The tumors were clearly delineated by PET. The radiotracer uptake was also partially blocked by K-(D-1-Nal)-FwLL-NH2 in stomach and thyroid. The presence of the GHS-R1a was also confirmed by immunohistology. In the arterial rat blood plasma, only the original compounds were found. The Cu-64 or Ga-68-NODAGA-NH-K-K-(D-1-NaI)-F-w-L-L-NH2 radiolabeled inverse agonists turned out to be potent and safe. Due to their easy synthesis, high affinity, medium potency, metabolic stability, and the suitable pharmacokinetic profiles, they are excellent tools for imaging and quantitation of GHS-R1a expression in normal and cancer tissues by PET. These compounds can be used as novel biomarkers of the Ghrelin system in precision medicine.
Collapse
Affiliation(s)
- Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,These authors contributed equally to this work
| | - Constance Chollet
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Leipzig, Germany.,These authors contributed equally to this work
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Leipzig, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Tumor Immunology, University Cancer Center, Carl Gustav Carus Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases, Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
7
|
Childs MD, Luyt LG. A Decade's Progress in the Development of Molecular Imaging Agents Targeting the Growth Hormone Secretagogue Receptor. Mol Imaging 2020; 19:1536012120952623. [PMID: 33104445 PMCID: PMC8865914 DOI: 10.1177/1536012120952623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The growth hormone secretagogue receptor 1a (GHSR), also called the ghrelin receptor, is a G protein-coupled receptor known to play an important metabolic role in the regulation of various physiological processes, including energy expenditure, growth hormone secretion, and cell proliferation. This receptor has been implicated in numerous health issues including obesity, gastrointestinal disorders, type II diabetes, and regulation of body weight in patients with Prader-Willi syndrome, and there has been growing interest in studying its mechanism of behavior to unlock further applications of GHSR-targeted therapeutics. In addition, the GHSR is expressed in various types of cancer including prostate, breast, and testicular cancers, while aberrant expression has been reported in cardiac disease. Targeted molecular imaging of the GHSR could provide insights into its role in biological processes related to these disease states. Over the past decade, imaging probes targeting this receptor have been discovered for the imaging modalities PET, SPECT, and optical imaging. High-affinity analogues of ghrelin, the endogenous ligand for the GHSR, as well as small molecule inhibitors have been developed and evaluated both in vitro and in pre-clinical models. This review provides a comprehensive overview of the molecular imaging agents targeting the GHSR reported to the end of 2019.
Collapse
Affiliation(s)
- Marina D Childs
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada.,Department of Medical Imaging, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Lalonde T, Fowkes MM, Hou J, Thibeault PE, Milne M, Dhanvantari S, Ramachandran R, Luyt LG. Single Amino Acid Replacement in G-7039 Leads to a 70-fold Increase in Binding toward GHS-R1a. ChemMedChem 2019; 14:1762-1766. [PMID: 31469937 DOI: 10.1002/cmdc.201900466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/28/2019] [Indexed: 12/29/2022]
Abstract
The growth hormone secretagogue receptor type 1a (GHS-R1a) is a class A rhodopsin-like G protein coupled receptor (GPCR) that is expressed in a variety of human tissues and is differentially expressed in benign and malignant prostate cancer. Previously, the peptidomimetic [1-Nal4 ,Lys5 (4-fluorobenzoyl)]G-7039 was designed as a molecular imaging tool for positron emission tomography (PET). However, this candidate was a poor binder (IC50 =69 nm), required a lengthy four-step radiosynthesis, and had a cLogP above 8. To address these challenges, we now report on changes targeted at the 4th position of G-7039. A 2-fluoropropionic acid (2-FPA) group was added on to Lys5 to determine the potential binding affinity of the [18 F]-2-FP radiolabeled analogue, which could be prepared by simplified radiochemistry. Lead candidate [Tyr4 ,Lys5 (2-fluoropropionyl)]G-7039 exhibited an IC50 of 0.28 nm and low picomolar activity toward GHS-R1a. Molecular docking revealed a molecular basis for this picomolar affinity.
Collapse
Affiliation(s)
- Tyler Lalonde
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,Imaging Program, Lawson Health Research Institute, 750 Base Line Road East, London, ON, N6C 2R5, Canada
| | - Milan M Fowkes
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,Imaging Program, Lawson Health Research Institute, 750 Base Line Road East, London, ON, N6C 2R5, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.,Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON, P7B 6V4, Canada
| | - Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, Medical Sciences Building, Room 216, London, ON, N6A 5C1, Canada
| | - Mark Milne
- London Regional Cancer Program, Lawson Health Research Institute, 800 Commissioners Road East, London, ON, N6A 5W9, Canada
| | - Savita Dhanvantari
- Imaging Program, Lawson Health Research Institute, 750 Base Line Road East, London, ON, N6C 2R5, Canada.,Department of Medical Biophysics, University of Western Ontario, Medical Sciences Building, Room M407, London, ON, N6A 5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, Medical Sciences Building, Room 216, London, ON, N6A 5C1, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,Imaging Program, Lawson Health Research Institute, 750 Base Line Road East, London, ON, N6C 2R5, Canada.,London Regional Cancer Program, Lawson Health Research Institute, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.,Department of Oncology, University of Western Ontario, 800 Commissioners Road East, London, ON, N6A 5W9, Canada
| |
Collapse
|
9
|
Abbas A, Yu L, Lalonde T, Wu D, Thiessen JD, Luyt LG, Dhanvantari S. Development and Characterization of an 18F-labeled Ghrelin Peptidomimetic for Imaging the Cardiac Growth Hormone Secretagogue Receptor. Mol Imaging 2018; 17:1536012118809587. [PMID: 30394854 PMCID: PMC6236854 DOI: 10.1177/1536012118809587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
One-third of patients with heart disease develop heart failure, which is diagnosed
through imaging and detection of circulating biomarkers. Imaging strategies reveal
morphologic and functional changes but fall short of detecting molecular abnormalities
that can lead to heart failure, and circulating biomarkers are not cardiac specific. Thus,
there is critical need for biomarkers that are endogenous to myocardial tissues. The
cardiac growth hormone secretagogue receptor 1a (GHSR1a), which binds the hormone ghrelin,
is a potential biomarker for heart failure. We have synthesized and characterized a novel
ghrelin peptidomimetic tracer, an 18F-labeled analogue of G-7039, for positron
emission tomography (PET) imaging of cardiac GHSR1a. In vitro analysis showed enhanced
serum stability compared to natural ghrelin and significantly increased cellular uptake in
GHSR1a-expressing OVCAR cells. Biodistribution studies in mice showed that tissue uptake
of the tracer was independent of circulating ghrelin levels, and there was negligible
cardiac uptake and high uptake in the liver, intestines, and kidneys. Specificity of
tracer uptake was assessed using ghsr −/− mice; both static and dynamic PET imaging revealed no difference in cardiac
uptake, and there was no significant correlation between cardiac standardized uptake
values and GHSR1a expression. Our study lays the groundwork for further refinement of
peptidomimetic PET tracers targeting cardiac GHSR1a.
Collapse
Affiliation(s)
- Ahmed Abbas
- 1 Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Lihai Yu
- 2 Department of Chemistry, Western University, London, Ontario, Canada
| | - Tyler Lalonde
- 2 Department of Chemistry, Western University, London, Ontario, Canada
| | - Derek Wu
- 3 Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Jonathan D Thiessen
- 1 Department of Medical Biophysics, Western University, London, Ontario, Canada.,4 Imaging Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Leonard G Luyt
- 2 Department of Chemistry, Western University, London, Ontario, Canada.,4 Imaging Research, Lawson Health Research Institute, London, Ontario, Canada.,5 Department of oncology, Western University, London, Ontario, Canada
| | - Savita Dhanvantari
- 1 Department of Medical Biophysics, Western University, London, Ontario, Canada.,3 Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,4 Imaging Research, Lawson Health Research Institute, London, Ontario, Canada.,6 Metabolism/Diabetes, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|