1
|
Fischer F, Temml V, Schuster D. Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction. Molecules 2025; 30:2183. [PMID: 40430355 PMCID: PMC12114199 DOI: 10.3390/molecules30102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Pesticides are essential in agriculture for protecting crops and boosting productivity, but their widespread use may pose significant health risks. Farmworkers face direct exposure through skin contact and inhalation, which may lead to hormonal imbalances, neurological disorders, and elevated cancer risks. Moreover, pesticide residues in food and water may affect surrounding communities. One of the lesser investigated issues is immunotoxicity, mostly because the chronic effects of compound exposure are very complex to study. As a case study, this work utilized pharmacophore modeling and virtual screening to identify pesticides that may inhibit Janus kinases (JAK1, JAK2, JAK3) and tyrosine kinase 2 (TYK2), which are pivotal in immune response regulation, and are associated with cancer development and increased infection susceptibility. We identified 64 potential pesticide candidates, 22 of which have previously been detected in the human body, as confirmed by the Human Metabolome Database. These results underscore the critical need for further research into potential immunotoxic and chronic impacts of the respective pesticides on human health.
Collapse
Affiliation(s)
| | | | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Research and Innovation Center for Regenerative Medicine and Novel Therapies, Paracelsus Medical University, 5020 Salzburg, Austria; (F.F.); (V.T.)
| |
Collapse
|
2
|
Emmerich TD, Taylor-Chilton EJ, Caballero E, Hushcha I, Dickens K, Stasik I, Alder J, Saavedra-Castano S, Berenschot E, Tas NR, Susarrey-Arce A, Martinez-Gonzalez L, Oknianska A, Zwain T, Martinez A, Hayes JM. Structure-Based Discovery Targeting GSK-3α Reveals Potent Nanomolar Selective 4-Phenyl-1 H-benzofuro[3,2- b]pyrazolo[4,3- e]pyridine Inhibitor with Promising Glioblastoma and CNS-Active Potential in Cellular Models. J Med Chem 2025; 68:8679-8693. [PMID: 40198746 DOI: 10.1021/acs.jmedchem.5c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Glycogen synthase kinase-3 (GSK-3) is linked with multiple CNS conditions, including glioblastoma (GBM). Compared to the GSK-3β isoform, structure-based inhibitor design targeting GSK-3α is limited. Virtual screening was employed to identify GSK-3α inhibitors with CNS-active potential. Using a GSK-3α homology model, an optimized protocol with three-dimensional (3D)-pharmacophore filtering and Glide-SP docking was used to screen the ZINC20 biogenic subset. From 14 compounds selected for binding assay validation, three novel hit compounds were identified, with 1 (4-phenyl-1H-benzofuro[3,2-b]pyrazolo[4,3-e]pyridine scaffold) exhibiting nanomolar activity against GSK-3α/β (IC50s ∼ 0.26 μM). Selectivity profiling (12 homologous kinases) revealed selectivity for GSK-3α/β and protein kinase A (PKA). Compound 1 was more potent against three GBM cell lines (cell viability IC50s = 3-6 μM at 72 h) compared to benchmark GSK-3 inhibitor, 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), and nontoxic to human astrocytes. It demonstrated CNS-active potential in an all-human in vitro blood-brain barrier GBM model, good in vitro metabolic stability, excellent predicted oral bioavailability and represents a promising lead compound for development.
Collapse
Affiliation(s)
- Thomas D Emmerich
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Eleanor J Taylor-Chilton
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Elena Caballero
- Centro de Investigaciones Biologicas, CSIC, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| | - Iryna Hushcha
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Kathryn Dickens
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Izabela Stasik
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Jane Alder
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Santiago Saavedra-Castano
- Department of Chemical Engineering, MESA+ Institute and TechMed Centre, University of Twente, P.O. Box 217, Enschede 7500AE, The Netherlands
| | - Erwin Berenschot
- Department of Chemical Engineering, MESA+ Institute and TechMed Centre, University of Twente, P.O. Box 217, Enschede 7500AE, The Netherlands
| | - Niels R Tas
- Department of Chemical Engineering, MESA+ Institute and TechMed Centre, University of Twente, P.O. Box 217, Enschede 7500AE, The Netherlands
| | - Arturo Susarrey-Arce
- Department of Chemical Engineering, MESA+ Institute and TechMed Centre, University of Twente, P.O. Box 217, Enschede 7500AE, The Netherlands
| | - Loreto Martinez-Gonzalez
- Centro de Investigaciones Biologicas, CSIC, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| | - Alina Oknianska
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Tamara Zwain
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Ana Martinez
- Centro de Investigaciones Biologicas, CSIC, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| | - Joseph M Hayes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
3
|
Zhao R, Yin F, Fredimoses M, Zhao J, Fu X, Xu B, Liang M, Chen H, Liu K, Lei M, Laster KV, Li Z, Kundu JK, Dong Z, Lee MH. Targeting FGFR1 by β,β-dimethylacrylalkannin suppresses the proliferation of colorectal cancer in cellular and xenograft models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155612. [PMID: 38669968 DOI: 10.1016/j.phymed.2024.155612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) continues to be a major global health challenge, ranking as a top cause of cancer-related mortality. Alarmingly, the five-year survival rate for CRC patients hovers around a mere 10-30 %. The disruption of fibroblast growth factor receptor (FGFRs) signaling pathways is significantly implicated in the onset and advancement of CRC, presenting a promising target for therapeutic intervention in CRC management. Further investigation is essential to comprehensively elucidate FGFR1's function in CRC and to create potent therapies that specifically target FGFR1. PURPOSE This study aims to demonstrate the oncogenic role of FGFR1 in colorectal cancer and to explore the potential of β,β-dimethylacrylalkannin (β,β-DMAA) as a therapeutic option to inhibit FGFR1. METHODS In this research, we employed a comprehensive suite of techniques including tissue array, kinase profiling, computational docking, knockdown assay to predict and explore the inhibitor of FGFR1. Furthermore, we utilized kinase assay, pull-down, cell proliferation tests, and Patient derived xenograft (PDX) mouse models to further investigate a novel FGFR1 inhibitor and its impact on the growth of CRC. RESULTS In our research, we discovered that FGFR1 protein is markedly upregulated in colorectal cancer tissues, suggesting a significant role in regulating cellular proliferation, particularly in patients with colorectal cancer. Furthermore, we conducted a computational docking, kinase profiling analysis, simulation and identified that β,β-DMAA could directly bind with FGFR1 within ATP binding pocket domain. Cell-based assays confirmed that β,β-DMAA effectively inhibited the proliferation of colon cancer cells and also triggered cell cycle arrest, apoptosis, and altered FGFR1-mediated signaling pathways. Moreover, β,β-DMAA effectively attenuated the development of PDX tumors in mice that were FGFR1-positive, with no notable toxicity observed. In summary, our study highlights the pivotal role of FGFR1 in colorectal cancer, suggesting that inhibiting FGFR1 activity could be a promising strategy for therapeutic intervention. We present strong evidence that targeting FGFR1 with β,β-DMAA is a viable approach for the management of colorectal cancer. Given its low toxicity and high efficacy, β,β-DMAA, as an FGFR1 inhibitor, warrants further investigation in clinical settings for the treatment of FGFR1-positive tumors.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000, China
| | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | | | - Jianhua Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Xiaorong Fu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Beibei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Mengrui Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN55912, USA
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou 450000, China
| | - Mingjuan Lei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | | | - Zhi Li
- Department of General Surgery, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Joydeb Kumar Kundu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton AB T6G 2R3, Canada
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000, China.
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou 450000, China; College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea.
| |
Collapse
|
4
|
Zhao H, Han R, Wang Z, Xian J, Bai X. Colorectal Cancer Stem Cells and Targeted Agents. Pharmaceutics 2023; 15:2763. [PMID: 38140103 PMCID: PMC10748092 DOI: 10.3390/pharmaceutics15122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since their discovery, cancer stem cells have become a hot topic in cancer therapy research. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent characteristics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here, we introduced the origin, biomarker proteins, identification, cultivation and research techniques of CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and propose potential therapies.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| | - Ruining Han
- Obstetric Department, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China;
| | - Zhankun Wang
- Emergency Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China;
| | - Junfang Xian
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
| | - Xiaosu Bai
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| |
Collapse
|
5
|
Magariños MP, Gaulton A, Félix E, Kiziloren T, Arcila R, Oprea TI, Leach AR. Illuminating the druggable genome through patent bioactivity data. PeerJ 2023; 11:e15153. [PMID: 37151295 PMCID: PMC10162037 DOI: 10.7717/peerj.15153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/10/2023] [Indexed: 05/09/2023] Open
Abstract
The patent literature is a potentially valuable source of bioactivity data. In this article we describe a process to prioritise 3.7 million life science relevant patents obtained from the SureChEMBL database (https://www.surechembl.org/), according to how likely they were to contain bioactivity data for potent small molecules on less-studied targets, based on the classification developed by the Illuminating the Druggable Genome (IDG) project. The overall goal was to select a smaller number of patents that could be manually curated and incorporated into the ChEMBL database. Using relatively simple annotation and filtering pipelines, we have been able to identify a substantial number of patents containing quantitative bioactivity data for understudied targets that had not previously been reported in the peer-reviewed medicinal chemistry literature. We quantify the added value of such methods in terms of the numbers of targets that are so identified, and provide some specific illustrative examples. Our work underlines the potential value in searching the patent corpus in addition to the more traditional peer-reviewed literature. The small molecules found in these patents, together with their measured activity against the targets, are now accessible via the ChEMBL database.
Collapse
Affiliation(s)
| | - Anna Gaulton
- EMBL-EBI, Hinxton, United Kingdom
- Exscientia, Oxford, United Kingdom
| | | | | | | | - Tudor I. Oprea
- Translational informatics Division, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, United States
| | | |
Collapse
|
6
|
Narayan S, Raza A, Mahmud I, Koo N, Garrett TJ, Law ME, Law BK, Sharma AK. Sensitization of FOLFOX-resistant colorectal cancer cells via the modulation of a novel pathway involving protein phosphatase 2A. iScience 2022; 25:104518. [PMID: 35754740 PMCID: PMC9218363 DOI: 10.1016/j.isci.2022.104518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
The treatment of colorectal cancer (CRC) with FOLFOX shows some efficacy, but these tumors quickly develop resistance to this treatment. We have observed increased phosphorylation of AKT1/mTOR/4EBP1 and levels of p21 in FOLFOX-resistant CRC cells. We have identified a small molecule, NSC49L, that stimulates protein phosphatase 2A (PP2A) activity, downregulates the AKT1/mTOR/4EBP1-axis, and inhibits p21 translation. We have provided evidence that NSC49L- and TRAIL-mediated sensitization is synergistically induced in p21-knockdown CRC cells, which is reversed in p21-overexpressing cells. p21 binds with procaspase 3 and prevents the activation of caspase 3. We have shown that TRAIL induces apoptosis through the activation of caspase 3 by NSC49L-mediated downregulation of p21 translation, and thereby cleavage of procaspase 3 into caspase 3. NSC49L does not affect global protein synthesis. These studies provide a mechanistic understanding of NSC49L as a PP2A agonist, and how its combination with TRAIL sensitizes FOLFOX-resistant CRC cells.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Asif Raza
- Department of Pharmacology, Penn State University College of Medicine, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - Iqbal Mahmud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nayeong Koo
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mary E. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State University College of Medicine, Penn State Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Cai R, Zhou Q, Hou T, Li B, Liu Y, Li H, Gao Y, Zhu L, Luo J. Facile construction of the all-bridge-position-functionalized 2,4,6,8-tetraazaadamantane skeleton and conversion of its N-functionalities. Org Chem Front 2022. [DOI: 10.1039/d2qo00427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unusual protocol of a “one-pot” three-step strategy to build the 2,4,6,8-tetraazaadamantane skeleton was developed. 17 products were obtained in 19–46% yields, and the N-benzyl groups were transferred to nitroso, acetyl, benzoyl and nitro groups.
Collapse
Affiliation(s)
- Rongbin Cai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qi Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tianjiao Hou
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bing Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yunzhi Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuan Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Suslov EV, Ponomarev KY, Volcho KP, Salakhutdinov NF. Azaadamantanes, a New Promising Scaffold for Medical Chemistry. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:1133-1154. [PMID: 34931112 PMCID: PMC8675118 DOI: 10.1134/s1068162021060236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022]
Abstract
Azaadamantanes are nitrogen-containing analogs of adamantane, which contain one or more nitrogen atoms instead of carbon atoms. This substitution leads to several specific chemical and physical properties. The azaadamantane derivatives have less lipophilicity compared to their adamantane analogs, which affects both their interaction with biological targets and bioavailability. The significant increase in the number of publications during the last decade (2009-2020) concerning the study of reactivity and biological activity of azaadamantanes and their derivatives indicates a great theoretical and practical interest in these compounds. Compounds with pronounced biological activity have been already discovered among azaadamantane derivatives. The review is devoted to the biological activity of azaadamantanes and their derivatives. It presents the main methods for the synthesis of di- and triazaadamantanes and summarizes the accumulated data on studying the biological activity of these compounds. The prospects for the use of azaadamantanes in medical chemistry and pharmacology are discussed.
Collapse
Affiliation(s)
- E. V. Suslov
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - K. Yu. Ponomarev
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - K. P. Volcho
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - N. F. Salakhutdinov
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Silva VR, Santos LDS, Dias RB, Quadros CA, Bezerra DP. Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond) 2021; 41:1275-1313. [PMID: 34791817 PMCID: PMC8696218 DOI: 10.1002/cac2.12235] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide. The modern concept of cancer biology indicates that cancer is formed of a small population of cells called cancer stem cells (CSCs), which present both pluripotency and self-renewal properties. These cells are considered responsible for the progression of the disease, recurrence and tumor resistance. Interestingly, some cell signaling pathways participate in CRC survival, proliferation, and self-renewal properties, and most of them are dysregulated in CSCs, including the Wingless (Wnt)/β-catenin, Notch, Hedgehog, nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), peroxisome proliferator-activated receptor (PPAR), phosphatidyl-inositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR), and transforming growth factor-β (TGF-β)/Smad pathways. In this review, we summarize the strategies for eradicating CRC stem cells by modulating these dysregulated pathways, which will contribute to the study of potential therapeutic schemes, combining conventional drugs with CSC-targeting drugs, and allowing better cure rates in anti-CRC therapy.
Collapse
Affiliation(s)
- Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, Bahia, 41253-190, Brazil.,Bahia State University, Salvador, Bahia, 41150-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| |
Collapse
|
10
|
Fan Q, Li L, Wang TL, Emerson RE, Xu Y. A Novel ZIP4-HDAC4-VEGFA Axis in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13153821. [PMID: 34359722 PMCID: PMC8345154 DOI: 10.3390/cancers13153821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Despite tremendous research efforts, epithelial ovarian cancer (EOC) remains one of the most difficult cancers to detect early and treat successfully for >5-year survival. We have recently shown that ZIP4, a zinc transporter, is a novel cancer stem cell (CSC) marker and a therapeutic target for EOC. The current work focuses on developing new strategies to target ZIP4 and inhibit its CSC activities in EOC. We found that cells expressing high levels of ZIP4 were supersensitive to a group of inhibitors called HDACis. One of the major targets of these inhibitors is a protein called HDAC4. We revealed the new molecular bases for the ZIP4-HDAC4 axis and tested the efficacies of targeting this axis in the lab and in mouse models. Our study provides a new mechanistic-based targeting strategy for EOC. Abstract We have recently identified ZIP4 as a novel cancer stem cell (CSC) marker in high-grade serous ovarian cancer (HGSOC). While it converts drug-resistance to cisplatin (CDDP), we unexpectedly found that ZIP4 induced sensitization of HGSOC cells to histone deacetylase inhibitors (HDACis). Mechanistically, ZIP4 selectively upregulated HDAC IIa HDACs, with little or no effect on HDACs in other classes. HDAC4 knockdown (KD) and LMK-235 inhibited spheroid formation in vitro and tumorigenesis in vivo, with hypoxia inducible factor-1 alpha (HIF1α) and endothelial growth factor A (VEGFA) as functional downstream mediators of HDAC4. Moreover, we found that ZIP4, HDAC4, and HIF1α were involved in regulating secreted VEGFA in HGSOC cells. Furthermore, we tested our hypothesis that co-targeting CSC via the ZIP4-HDAC4 axis and non-CSC using CDDP is necessary and highly effective by comparing the effects of ZIP4-knockout/KD, HDAC4-KD, and HDACis, in the presence or absence of CDDP on tumorigenesis in mouse models. Our results showed that the co-targeting strategy was highly effective. Finally, data from human HGSOC tissues showed that ZIP4 and HDAC4 were upregulated in a subset of recurrent tumors, justifying the clinical relevance of the study. In summary, our study provides a new mechanistic-based targeting strategy for HGSOC.
Collapse
Affiliation(s)
- Qipeng Fan
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut St. R2-E380, Indianapolis, IN 46202, USA;
| | - Lihong Li
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 600 North Wolfe St., Baltimore, MD 21287, USA;
| | - Tian-Li Wang
- Department of Gynecology, Oncology, and Pathology, Johns Hopkins Medical Institutions, 1550 Orleans Street, Baltimore, MD 21231, USA;
| | - Robert E. Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indiana University Health Pathology Laboratory, 350 W. 11th Street, Room 4010, Indianapolis, IN 46202, USA;
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut St. R2-E380, Indianapolis, IN 46202, USA;
- Correspondence: ; Tel.: +1-(317)-274-3972
| |
Collapse
|
11
|
Yang H, Xie S, Liang B, Tang Q, Liu H, Wang D, Huang G. Exosomal IDH1 increases the resistance of colorectal cancer cells to 5-Fluorouracil. J Cancer 2021; 12:4862-4872. [PMID: 34234856 PMCID: PMC8247374 DOI: 10.7150/jca.58846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/30/2021] [Indexed: 11/05/2022] Open
Abstract
Chemoresistance challenges the clinical treatment of colorectal cancer and requires an urgent solution. Isocitrate dehydrogenase 1 (IDH1) is a key enzyme involved in glucose metabolism that mediates the malignant transformation of tumors. However, the mechanisms by which IDH1 is involved in colorectal cancer cell proliferation and drug resistance induction remain unclear. In this study, we found that IDH1 was highly expressed in human colorectal cancer tissues and could be used to indicate a high-grade tumor. In vitro gene overexpression and knockdown were used to determine whether IDH1 promoted the proliferation of the colorectal cancer cell line HCT8 and resistance to 5-Fluorouracil (5FU). Further studies have shown that the 5FU-resistant cell line, HCT8FU, secreted exosomes that contained a high level of IDH1 protein. The exosomal IDH1 derived from 5FU-resistant cells enhanced the resistance of 5FU-sensitive cells. Metabolic assays revealed that exosomes derived from 5FU-resistant cells promoted a decrease in the level of IDH1-mediated NADPH, which is associated with the development of 5FU resistance in colorectal cancer cells. Therefore, exosomal IDH1 may be the transmitter and driver of chemoresistance in colorectal cancer and a potential chemotherapy target.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Sha Xie
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Qiqi Tang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Huanchen Liu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Dongliang Wang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
12
|
Levkov IV, Kysil AI, Biitseva AV, Shilin SV, Saffon-Merceron N, Yegorova TV, Voitenko ZV. Synthesis of 2-(methoxymethyl)isoindolin-1-imine derivatives via an unusual Delépine reaction. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Sanad MF, Shalan AE, Bazid SM, Abu Serea ES, Hashem EM, Nabih S, Ahsan MA. A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 2019; 9:31021-31029. [PMID: 35529359 PMCID: PMC9072570 DOI: 10.1039/c9ra05669f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
There is no doubt that cancer is now one of the most formidable diseases in the world; despite all the efforts and research, common treatment routes, including chemotherapy, photodynamic therapy, and photothermal therapy, suffer from different limitations in terms of their efficiency and performance. For this reason, different strategies are being explored to improve the efficiency of the traditional drugs reported to date. In this study, we have redirected the function of one of these drugs (5-fluorouracil, 5-FU) by combining it with a graphene-gold nanocomposite in different molar ratios that has been exceedingly used for biological research development. The high activity of the graphene-gold material enables it to produce reactive oxygen and ions, which display good anticancer and antioxidant activity through the scavenging of the DPPH, SOD and GP x radicals; in addition, different characterizations have been used to confirm the structure and morphology of the obtained samples. Highly potent cytotoxicity against the MCF-7 cells was achieved with the drug combination containing the nanocomposite. All the results, including those obtained via cytometry, indicate that the combination of 5% graphene-gold nanocomposites with 5-FU exhibits a higher antitumor impact and more drug stability than pure 5-FU.
Collapse
Affiliation(s)
- Mohamed Fathi Sanad
- Basic Science Departments, Modern Academy for Engineering and Technology Maadi Egypt
- The University of Texas at El Paso 500 W University Ave El Paso TX 79968 USA
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P.O. Box 87 Helwan Cairo 11421 Egypt
| | - Shereen Magdy Bazid
- Departments of Biochemistry, Faculty of Science, Mansoura University Mansoura Egypt
| | - Esraa Samy Abu Serea
- Chemistry & Biochemistry Department, Faculty of Science, Cairo University Cairo Egypt
| | - Elhussein M Hashem
- Chemistry Department, Faculty of Science, Ain-Shams University Abbasia Cairo Egypt
| | - Shimaa Nabih
- Basic Science Departments, Modern Academy for Engineering and Technology Maadi Egypt
| | - Md Ariful Ahsan
- The University of Texas at El Paso 500 W University Ave El Paso TX 79968 USA
| |
Collapse
|