1
|
Azizi N, Saadat M, Edrisi M. Facile synthesis of FeCeO x nanoparticles encapsulated carbon nitride catalyst for highly efficient and recyclable synthesis of substituted imidazoles. Sci Rep 2023; 13:17474. [PMID: 37838814 PMCID: PMC10576832 DOI: 10.1038/s41598-023-44747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Herein, we developed a novel composite called FeCeOx@g-C3N4 through a combination of sonication, sintering, and hydrothermal techniques to implement the principles of green chemistry by utilizing reusable nanocomposites in one-pot reactions. To gain a comprehensive understanding of the catalyst's structure, composition, and morphology, various characterization methods were employed. These included FT-IR analysis to examine chemical bonds, SEM and TEM imaging to visualize the catalyst's surface and internal structure, TGA to assess thermal stability, EDS for elemental composition analysis, and XRD to determine crystal structure. The FeCeOx@g-C3N4 nanocatalyst demonstrated remarkable efficacy in the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazole. Noteworthy features of this catalyst included high percentage yield, mild reaction conditions, short reaction time, and an efficient and straightforward procedure. Furthermore, the FeCeOx@g-C3N4 composite exhibited excellent recyclability and reusability. It could be recycled and reused up to four times without a significant decline in catalytic activity.
Collapse
Affiliation(s)
- Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Mostafa Saadat
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Mahtab Edrisi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| |
Collapse
|
2
|
Tatar I, Uysal S, Yilmaz S, Tarikogullari AH, Ballar Kirmizibayrak P, Soyer Z. Design, synthesis, and biological evaluation of some novel naphthoquinone-glycine/β-alanine anilide derivatives as noncovalent proteasome inhibitors. Chem Biol Drug Des 2023; 101:1283-1298. [PMID: 36762979 DOI: 10.1111/cbdd.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
A series of novel noncovalent glycine/β-alanine anilide derivatives possessing 2-chloronaphthoquinone structure as a pharmacophoric unit were designed, synthesized, and evaluated for their antiproliferative and antiproteasomal activities against MCF-7 cell line, in vitro. According to biological activity results, all the target compounds showed antiproliferative activity in the range of IC50 = 7.10 ± 0.10-41.08 ± 0.14 μM and most of them exhibited inhibitory efficacy with varying ratios against the three catalytic subunits (β1, β2, and β5) presenting caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities of proteasome. The antiproteasomal activity evaluations revealed that compounds preferentially inhibited the β5 subunit compared with β1 and β2 subunits of the proteasome. Among the compounds, compounds 7 and 9 showed the highest antiproliferative activity with an IC50 value of 7.10 ± 0.10 and 7.43 ± 0.25 μM, respectively. Additionally, compound 7 displayed comparable potency to PI-083 lead compound in terms of β5 antiproteasomal activity with an inhibition percentage of 34.67 at 10 μM. This compound showed an IC50 value of 32.30 ± 0.45 μM against β5 subunit. Furthermore, molecular modeling studies of the most active compound 7 revealed key interactions with β5 subunit. The results suggest that this class of compounds may be beneficial for the development of new potent proteasome inhibitors.
Collapse
Affiliation(s)
- Irem Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sirin Uysal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sinem Yilmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, İzmir, Turkey.,Department of Bioengineering, Faculty of Engineering, University of Alanya Alaaddin Keykubat, Antalya, Turkey
| | - Ayse H Tarikogullari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | - Zeynep Soyer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| |
Collapse
|
3
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Cao Y, Tu Y, Fu L, Yu Q, Gao L, Zhang M, Zeng L, Zhang C, Shao J, Zhu H, Zhou Y, Li J, Zhang J. Metabolism guided optimization of peptidomimetics as non-covalent proteasome inhibitors for cancer treatment. Eur J Med Chem 2022; 233:114211. [PMID: 35218994 DOI: 10.1016/j.ejmech.2022.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
A series of novel non-covalent peptidomimetic proteasome inhibitors possessing bulky group at the C-terminus and N-alkylation at the N-terminus were designed with the aim to increase metabolic stabilities in vivo. All the target compounds were screened for their inhibitory activities against human 20S proteasome, and most analogs exhibited notable potency compared with the positive control bortezomib with IC50 values lower than 10 nM, which also displayed potent cytotoxic activities against multiple myeloma (MM) cell lines and human acute myeloid leukemia (AML) cells. Furthermore, whole blood stability and in vivo proteasome inhibitory activity experiments of selected compounds were conducted for further evaluation, and the representative compound 43 (IC50 = 8.39 ± 2.32 nM, RPMI-8226: IC50 = 15.290 ± 2.281 nM, MM-1S: IC50 = 9.067 ± 3.103 nM, MV-4-11: IC50 = 2.464 ± 0.713 nM) revealed a half-life extension of greater than 9-fold (329.21 min VS 36.79 min) and potent proteasome inhibitory activity in vivo. The positive results confirmed the reliability of the metabolism guided optimization strategy, and the analogs discovered are potential leads for exploring new anti-MM drugs.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yutong Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, 312000, China
| | - Qian Yu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Mengmeng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Metria Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Metria Medica, Chinese Academy of Sciences, Guangdong, 528400, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| |
Collapse
|
5
|
Lü Z, Li X, Li K, Ripani P, Shi X, Xu F, Wang M, Zhang L, Brunner T, Xu P, Niu Y. Nitazoxanide and related thiazolides induce cell death in cancer cells by targeting the 20S proteasome with novel binding modes. Biochem Pharmacol 2022; 197:114913. [PMID: 35032461 DOI: 10.1016/j.bcp.2022.114913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 11/02/2022]
Abstract
Nitazoxanide and related thiazolides are a novel class of anti-infectious agents against protozoan parasites, bacteria and viruses. In recent years, it is demonstrated thatthiazolides also can induced cell cycle arrest and apoptotic cell death in cancer cells. Due to their fast proliferating nature, cancer cells highly depend on the proteasome system to remove aberrant proteins. Many of these aberrant proteins are regulators of cell cycle progression and apoptosis, such as the cyclins, BCL2 family members and nuclear factor of κB (NF-κB). Here, we demonstrate at both molecular and cellular levels that the 20S proteasome is a direct target of NTZ and other thiazolides. By concurrently inhibiting the multiple catalytic subunits of 20S proteasome, NTZ promotes cell cycle arrest and triggers cell death in colon cancer cells, either directly or a sensitizer to other anti-tumor agents, especially doxorubicin. We further show that the binding mode of NTZ in the β5 subunit of the 20S proteasome is different from that of bortezomib and other existing proteasome inhibitors. These findings provide new insights in the design of novel small molecular proteasome inhibitors as anti-tumor agents suitable for solid tumor treatment in an oral dosing form.
Collapse
Affiliation(s)
- Zirui Lü
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Xiaona Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Kebin Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Paola Ripani
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Mopei Wang
- Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China
| | - Liangren Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China.
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China.
| |
Collapse
|
6
|
Tahir T, Shahzad MI, Tabassum R, Rafiq M, Ashfaq M, Hassan M, Kotwica-Mojzych K, Mojzych M. Diaryl azo derivatives as anti-diabetic and antimicrobial agents: synthesis, in vitro, kinetic and docking studies. J Enzyme Inhib Med Chem 2021; 36:1509-1520. [PMID: 34238110 PMCID: PMC8274517 DOI: 10.1080/14756366.2021.1929949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the present study, a series of azo derivatives (TR-1 to TR-9) have been synthesised via the diazo-coupling approach between substituted aromatic amines with phenol or naphthol derivatives. The compounds were evaluated for their therapeutic applications against alpha-glucosidase (anti-diabetic) and pathogenic bacterial strains E. coli (gram-negative), S. aureus (gram-positive), S. aureus (gram-positive) drug-resistant strain, P. aeruginosa (gram-negative), P. aeruginosa (gram-negative) drug-resistant strain and P. vulgaris (gram-negative). The IC50 (µg/mL) of TR-1 was found to be most effective (15.70 ± 1.3 µg/mL) compared to the reference drug acarbose (21.59 ± 1.5 µg/mL), hence, it was further selected for the kinetic studies in order to illustrate the mechanism of inhibition. The enzyme inhibitory kinetics and mode of binding for the most active inhibitor (TR-1) was performed which showed that the compound is a non-competitive inhibitor and effectively inhibits the target enzyme by binding to its binuclear active site reversibly.
Collapse
Affiliation(s)
- Tehreem Tahir
- Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mirza Imran Shahzad
- Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rukhsana Tabassum
- Department of Chemistry, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Ashfaq
- Department of Chemistry, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology & Biotechnology, The University of Lahore (Defense Road Campus), Lahore, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|
7
|
Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design. Int J Mol Sci 2019; 20:ijms20215326. [PMID: 31731563 PMCID: PMC6862029 DOI: 10.3390/ijms20215326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Drug discovery now faces a new challenge, where the availability of experimental data is no longer the limiting step, and instead, making sense of the data has gained a new level of importance, propelled by the extensive incorporation of cheminformatics and bioinformatics methodologies into the drug discovery and development pipeline. These enable, for example, the inference of structure-activity relationships that can be useful in the discovery of new drug candidates. One of the therapeutic applications that could benefit from this type of data mining is proteasome inhibition, given that multiple compounds have been designed and tested for the last 20 years, and this collection of data is yet to be subjected to such type of assessment. This study presents a retrospective overview of two decades of proteasome inhibitors development (680 compounds), in order to gather what could be learned from them and apply this knowledge to any future drug discovery on this subject. Our analysis focused on how different chemical descriptors coupled with statistical tools can be used to extract interesting patterns of activity. Multiple instances of the structure-activity relationship were observed in this dataset, either for isolated molecular descriptors (e.g., molecular refractivity and topological polar surface area) as well as scaffold similarity or chemical space overlap. Building a decision tree allowed the identification of two meaningful decision rules that describe the chemical parameters associated with high activity. Additionally, a characterization of the prevalence of key functional groups gives insight into global patterns followed in drug discovery projects, and highlights some systematically underexplored parts of the chemical space. The various chemical patterns identified provided useful insight that can be applied in future drug discovery projects, and give an overview of what has been done so far.
Collapse
|
8
|
Yu J, Liu J, Li D, Xu L, Hong D, Chang S, Xu L, Li J, Liu T, Zhou Y. Exploration of novel macrocyclic dipeptide N-benzyl amides as proteasome inhibitors. Eur J Med Chem 2019; 164:423-439. [DOI: 10.1016/j.ejmech.2018.12.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
|