1
|
Zhe X, Ma H, Zhang W, Ding R, Hao F, Gao Y, Uri G, Jiri G, Jiri G, Liu D. Scriptaid Improves Cashmere Goat Embryo Reprogramming by Affecting Donor Cell Pluripotency Molecule NANOG Expression. Animals (Basel) 2025; 15:1022. [PMID: 40218415 PMCID: PMC11988105 DOI: 10.3390/ani15071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Currently, the efficiency of somatic cell nuclear transfer (SCNT) technology is relatively low, primarily owing to reprogramming abnormalities in donor cells or reconstructed embryos. Using histone deacetylase inhibitor (HDACi) to artificially alter the epigenetic modifications of donor cells and improve the reprogramming ability of reconstructed embryos is effective in improving nuclear transfer efficiency. In this study, we used Albas cashmere goat cells as donor cells, treated them with Scriptaid, and constructed embryos using SCNT. The results suggest that donor cell treatment with Scriptaid significantly increased the cellular histone acetylation modification level, perturbed the expression of the pluripotency molecule NANOG, altered the reprogramming ability of embryos, and increased the developmental rate of SCNT-reconstructed embryos. Scriptaid inhibited donor cell proliferation, induced apoptosis, and blocked the G0/G1 phase of the cell cycle. These results provide a new research direction for improving SCNT efficiency and a new perspective in the fields of regenerative medicine, agriculture, and animal husbandry.
Collapse
Affiliation(s)
- Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Hairui Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Wenqi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Rui Ding
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Yuan Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
- Alxa League Animal Quarantine Technology Service Center, Inner Mongolia, Alxa 750300, China
| | - Gumara Uri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Gellegen Jiri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Garangtu Jiri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| |
Collapse
|
2
|
Khatun S, Prasad Bhagat R, Dutta R, Datta A, Jaiswal A, Halder S, Jha T, Amin SA, Gayen S. Unraveling HDAC11: Epigenetic orchestra in different diseases and structural insights for inhibitor design. Biochem Pharmacol 2024; 225:116312. [PMID: 38788962 DOI: 10.1016/j.bcp.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Histone deacetylase 11 (HDAC11), a member of the HDAC family, has emerged as a critical regulator in numerous physiological as well as pathological processes. Due to its diverse roles, HDAC11 has been a focal point of research in recent times. Different non-selective inhibitors are already approved, and research is going on to find selective HDAC11 inhibitors. The objective of this review is to comprehensively explore the role of HDAC11 as a pivotal regulator in a multitude of physiological and pathological processes. It aims to delve into the intricate details of HDAC11's structural and functional aspects, elucidating its molecular interactions and implications in different disease contexts. With a primary focus on elucidating the structure-activity relationships (SARs) of HDAC11 inhibitors, this review also aims to provide a holistic understanding of how its molecular architecture influences its inhibition. Additionally, by integrating both established knowledge and recent research, the review seeks to contribute novel insights into the potential therapeutic applications of HDAC11 inhibitors. Overall, the scope of this review spans from fundamental research elucidating the complexities of HDAC11 biology to the potential of targeting HDAC11 in therapeutic interventions.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Rinki Prasad Bhagat
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Ritam Dutta
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata 700109, West Bengal, India
| | - Anwesha Datta
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Abhishek Jaiswal
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Swapnamay Halder
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata 700109, West Bengal, India.
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
3
|
Tan S, Li X. Small-Molecule Fluorescent Probes for Detecting HDAC Activity. Chem Asian J 2022; 17:e202200835. [PMID: 36117388 DOI: 10.1002/asia.202200835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Indexed: 11/05/2022]
Abstract
Histone deacetylases (HDACs) play critical roles in epigenetic modification. These enzymes can remove acetyl groups from the N-terminal lysine residues of histones, thereby regulating gene expression. Because of their great relevance to various diseases, numerous HDAC inhibitors have been developed. In this context, assays for HDAC activity are prerequisite. Due to the advantages of small-molecule fluorescent probes, researchers have developed many probes to detect HDAC activity for developing HDAC inhibitors. Based on the mechanism of action, two main types of small-molecule fluorescent probes are known. One type is based on binding affinity that are generally HDAC inhibitor-fluorophore conjugates. The other one is enzyme-activated probes, which act as HDAC substrates and show fluorogenic or ratiometric response after being deacetylated by HDACs.
Collapse
Affiliation(s)
- Shuyu Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
4
|
Tang C, Wang X, Jin Y, Wang F. Recent advances in HDAC-targeted imaging probes for cancer detection. Biochim Biophys Acta Rev Cancer 2022; 1877:188788. [PMID: 36049581 DOI: 10.1016/j.bbcan.2022.188788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Histone Deacetylases (HDACs) are abnormally high expressed in various cancers and play a crucial role in regulating gene expression. While HDAC-targeted inhibitors have been rapidly developed and approved in the last twenty years, noninvasive monitoring and visualizing the expression levels of HDACs in tumor tissues might help to early diagnosis in cancer and predict the response to HDAC-targeted cancer therapy. In this review, we summarize the recent advancements in the development of HDAC-targeted probes and their applications in cancer imaging and image-guided surgery. We also discuss the design strategies, advantages and disadvantages of these probes. We hope that this review will provide guidance for the design of HDAC-targeted imaging probes and clinical applications in future.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
5
|
Daśko M, de Pascual-Teresa B, Ortín I, Ramos A. HDAC Inhibitors: Innovative Strategies for Their Design and Applications. Molecules 2022; 27:molecules27030715. [PMID: 35163980 PMCID: PMC8837987 DOI: 10.3390/molecules27030715] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are a large family of epigenetic metalloenzymes that are involved in gene transcription and regulation, cell proliferation, differentiation, migration, and death, as well as angiogenesis. Particularly, disorders of the HDACs expression are linked to the development of many types of cancer and neurodegenerative diseases, making them interesting molecular targets for the design of new efficient drugs and imaging agents that facilitate an early diagnosis of these diseases. Thus, their selective inhibition or degradation are the basis for new therapies. This is supported by the fact that many HDAC inhibitors (HDACis) are currently under clinical research for cancer therapy, and the Food and Drug Administration (FDA) has already approved some of them. In this review, we will focus on the recent advances and latest discoveries of innovative strategies in the development and applications of compounds that demonstrate inhibitory or degradation activity against HDACs, such as PROteolysis-TArgeting Chimeras (PROTACs), tumor-targeted HDACis (e.g., folate conjugates and nanoparticles), and imaging probes (positron emission tomography (PET) and fluorescent ligands).
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
| | - Irene Ortín
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
- Correspondence: (I.O.); (A.R.)
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
- Correspondence: (I.O.); (A.R.)
| |
Collapse
|
6
|
Roopa, Priya B, Bhalla V, Kumar M, Kumar N. Fluorescent molecular probe-based activity and inhibition monitoring of histone deacetylases. Chem Commun (Camb) 2021; 57:11153-11164. [PMID: 34613324 DOI: 10.1039/d1cc04034k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive studies in recent decades have revealed that gene expression regulation is not limited to genetic mutations but also to processes that do not alter the genetic sequence. Post-translational histone modification is one of these processes in addition to DNA or RNA modifications. Histone modifications are essential in controlling histone functions and play a vital role in cellular gene expression. The reversible histone acetylation, regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is an example of such modifications. HDACs are involved in the deacetylation of histones and lead to the termination of gene expression. Although this cellular process is essential, upregulation of HDACs is found in numerous cancers. Therefore, research related to the activity and inhibition monitoring of HDACs is necessary to gain profound knowledge of these enzymes and evaluate the success of the therapeutic approach. In this perspective, methodology derived from fluorescent molecular probes is one of the preferable methods. Herein, we describe fluorescent probes developed to target HDACs by considering their activity and inhibition characteristics.
Collapse
Affiliation(s)
- Roopa
- Department of Chemical Sciences, IKG-Punjab Technical University, Kapurthala 144603, Punjab, India.
| | - Bhanu Priya
- Department of Chemical Sciences, IKG-Punjab Technical University, Kapurthala 144603, Punjab, India.
| | - Vandana Bhalla
- Department of Chemistry, UGC Center of Advanced Study-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Center of Advanced Study-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Naresh Kumar
- Department of Chemistry, SRM University, Delhi-NCR, Sonepat-131029, Haryana, India.
| |
Collapse
|
7
|
Zhang B, Xu Z, Zhou W, Liu Z, Zhao J, Gou S. A light-controlled multi-step drug release nanosystem targeting tumor hypoxia for synergistic cancer therapy. Chem Sci 2021; 12:11810-11820. [PMID: 34659720 PMCID: PMC8442699 DOI: 10.1039/d1sc01888d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/25/2021] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is a major obstacle for cancer therapy due to its association with cell proliferation, tumor distant metastasis, and treatment resistance. In this study, a hypoxia-activated bifunctional prodrug (CC5) was designed, synthesized and encapsulated by a photo-responsive ruthenium complex-derived polymer to yield a light-controlled multi-step drug release system (CC5-RuCa) for synergistic therapy against tumor hypoxia. Under NIR irradiation, CC5-RuCa not only generated ROS to kill the cancer cells in the exterior of the tumor but also released the prodrug CC5 with enhanced intratumoral penetration in the severe hypoxia region inside the tumor tissue. In vivo studies on MDA-MB-231 xenograft models revealed that CC5-RuCa with preferential accumulation in the tumor exhibited highly efficient tumor regression through the synergistic effect of photodynamic therapy and hypoxia-activated chemotherapy.
Collapse
Affiliation(s)
- Bin Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Zichen Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Wen Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
- Nanjing Junruo Institute of Biomedicine Nanjing 211100 China
| |
Collapse
|
8
|
Padilla-Coley S, Rudebeck EE, Smith BD, Pfeffer FM. Intracellular fluorescence competition assay for inhibitor engagement of histone deacetylase. Bioorg Med Chem Lett 2021; 47:128207. [PMID: 34146703 DOI: 10.1016/j.bmcl.2021.128207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
An intracellular fluorescence competition assay was developed to assess the capability of inhibitor candidates to engage histone deacetylase (HDAC) inside living cells and thus diminish cell uptake and staining by the HDAC-targeted fluorescent probe APS. Fluorescence cell microscopy and flow cytometry showed that pre-incubation of living cells with candidate inhibitors led to diminished cell uptake of the fluorescent probe. The assay was effective because the fluorescent probe (APS) possessed the required performance properties, including bright fluorescence, ready membrane diffusion, selective intracellular HDAC affinity, and negligible acute cytotoxicity. The concept of an intracellular fluorescence competition assay is generalizable and has broad applicability since it obviates the requirement to use the isolated biomacromolecule target for screening of molecular candidates with target affinity.
Collapse
Affiliation(s)
- Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Elley E Rudebeck
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
9
|
Hearn KN, Ashton TD, Acharya R, Feng Z, Gueven N, Pfeffer FM. Direct Amidation to Access 3-Amido-1,8-Naphthalimides Including Fluorescent Scriptaid Analogues as HDAC Inhibitors. Cells 2021; 10:1505. [PMID: 34203745 PMCID: PMC8232238 DOI: 10.3390/cells10061505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Methodology to access fluorescent 3-amido-1,8-naphthalimides using direct Buchwald-Hartwig amidation is described. The protocol was successfully used to couple a number of substrates (including an alkylamide, an arylamide, a lactam and a carbamate) to 3-bromo-1,8-naphthalimide in good yield. To further exemplify the approach, a set of scriptaid analogues with amide substituents at the 3-position were prepared. The new compounds were more potent than scriptaid at a number of histone deacetylase (HDAC) isoforms including HDAC6. Activity was further confirmed in a whole cell tubulin deacetylation assay where the inhibitors were more active than the established HDAC6 selective inhibitor Tubastatin. The optical properties of these new, highly active, compounds make them amenable to cellular imaging studies and theranostic applications.
Collapse
Affiliation(s)
- Kyle N. Hearn
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- STEM College, RMIT University, Melbourne, VIC 3000, Australia;
| | - Trent D. Ashton
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rameshwor Acharya
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Zikai Feng
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Frederick M. Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
10
|
Xie L, Li R, Zheng B, Xie Z, Fang X, Dai T, Wang X, Li L, Wang L, Cuny GD, Eriksen J, Tu D, Chen Z, Wang X, Chen X, Hu M. One-Step Transformation from Rofecoxib to a COX-2 NIR Probe for Human Cancer Tissue/Organoid Targeted Bioimaging. ACS APPLIED BIO MATERIALS 2021; 4:2723-2731. [PMID: 35014311 DOI: 10.1021/acsabm.0c01634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
COX-2 fluorescent probes are promising tools for cancer diagnosis. Such probes have been conventionally designed by conjugating a fluorophore to COX-2 inhibitors through lengthy synthetic processes. Herein, a type of fluorescent probe for COX-2 imaging has been developed using a single-step process from rofecoxib. In total, six rofecoxib analogues were designed using this unique strategy. Several analogues retained comparative COX-2 targeting activity of rofecoxib and also exhibited attractive fluorescent properties, which were investigated using a combination of experimental and theoretical approaches. The most potent analogue, 2a1, displayed strong fluorescent imaging of COX-2 in HeLa cells overexpressing COX-2 compared to Raw 264.7 cells and celecoxib-treated HeLa cells that expressed low levels of COX-2. Notably, our studies indicate that 2a1 can differentiate human cancer tissue from adjacent tissue with much brighter fluorescence either in histological section or cultured 3D organoids. These results illustrate the potential of 2a1 as a COX-2 near infrared fluorescent probe for human cancer imaging in clinical settings.
Collapse
Affiliation(s)
- Lijun Xie
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States.,Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, PR China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Biyun Zheng
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Zuoxu Xie
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Xuefen Fang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Tao Dai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Xinli Wang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jason Eriksen
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Zhuo Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Xiaozhong Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
11
|
Recent advances in small molecular modulators targeting histone deacetylase 6. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique isozyme in the HDAC family with various distinguished characters. HDAC6 is predominantly localized in the cytoplasm and has several specific nonhistone substrates, such as α-tubulin, cortactin, Hsp90, tau and peroxiredoxins. Accumulating evidence reveals that targeting HDAC6 may serve as a promising therapeutic strategy for the treatment of cancers, neurological disorders and immune diseases, making the development of HDAC6 inhibitors particularly attractive. Recently, multitarget drug design and proteolysis targeting chimera technology have also been applied in the discovery of novel small molecular modulators targeting HDAC6. In this review, we briefly describe the structural features and biological functions of HDAC6 and discuss the recent advances in HDAC6 modulators, including selective inhibitors, chimeric inhibitors and proteolysis targeting chimeras for multiple therapeutic purposes.
Collapse
|
12
|
Korzec M, Malarz K, Mrozek-Wilczkiewicz A, Rzycka-Korzec R, Schab-Balcerzak E, Polański J. Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides: The effect of ex vivo hydrolysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118442. [PMID: 32408229 DOI: 10.1016/j.saa.2020.118442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
A series of 3-amino-N-substituted-1,8-naphthalimides and their salicylic Schiff base derivatives were synthesized. The structure of the obtained compounds was confirmed using 1H and 13C NMR, FT-IR spectroscopy and elemental analysis and COSY and HMQC for the representative molecules. The photophysical (UV-Vis, PL) and biological properties of all of the prepared compounds were studied. It was found that the amine with the n-hexyl group in EtOH had the highest PL quantum yield (Ф = 85%) compared to the others. Moreover, the chelating properties of the azomethines with the n-hexyl group (1a, 1b, 1c) were tested against various cations (Al3+, Ba2+, Co2+, Cu2+, Cr3+, Fe2+, Fe3+, Mn2+, Ni2+, Pb2+, Sr2+ and Zn2+) in an acetonitrile, acetone and PBS/AC mixture. Compounds that contained the electron withdrawing groups (-Br, -I) had the ability to chelate most of the studied cations, while the unsubstituted derivative chelated only the trivalent cations such as Al3+, Cr3+ and Fe3+ in acetonitrile. The effect of the environment on the keto-enol tautomeric equilibrium was also demonstrated, especially in the case of the derivative with a bromine atom. The biological studies showed that the tested molecules had no cytotoxicity. Additionally, the ability to image intracellular organelles such as the mitochondria and endoplasmic reticulum was revealed. The crucial role of the hydrolysis of imines for cellular imaging was presented.
Collapse
Affiliation(s)
- Mateusz Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland.
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roksana Rzycka-Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Jarosław Polański
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
13
|
Rudebeck EE, Cox RP, Bell TDM, Acharya R, Feng Z, Gueven N, Ashton TD, Pfeffer FM. Mixed alkoxy/hydroxy 1,8-naphthalimides: expanded fluorescence colour palette and in vitro bioactivity. Chem Commun (Camb) 2020; 56:6866-6869. [PMID: 32432616 DOI: 10.1039/d0cc01251c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient and functional group tolerant route to access hydroxy 1,8-naphthalimides has been used to synthesise a range of mono- and disubstituted hydroxy-1,8-naphthalimides with fluorescence emissions covering the visible spectrum. The dialkoxy substituted compounds prepared possess high quantum yields (up to 0.95) and long fluorescent lifetimes (up to 14 ns). The method has been used to generate scriptaid analogues that successfully inhibit HDAC6 in vitro with tubulin acetylation assays confirming that these compounds are more effective than tubastatin.
Collapse
Affiliation(s)
- Elley E Rudebeck
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, 3216, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Huang M, Xie X, Gong P, Wei Y, Du H, Xu Y, Xu Q, Jing Y, Zhao L. A 18β-glycyrrhetinic acid conjugate with Vorinostat degrades HDAC3 and HDAC6 with improved antitumor effects. Eur J Med Chem 2019; 188:111991. [PMID: 31883490 DOI: 10.1016/j.ejmech.2019.111991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Semisynthetic 18β-glycyrrhetinic acid (GA) analogues bearing 1-en-2-cyano-3-oxo substitution on ring A have enhanced antitumor effects with reduced levels of HDAC3 and HDAC6 proteins. Aiming to inhibit both HDAC protein and activity, we developed a hybrid molecule by tethering active GA analogue methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) and Vorinostat (SAHA). We tested the proper hybrid approaches of GA with hydroxamic acid and turned out that GA conjugated with SAHA by a piperazine linker was the best. The conjugate (15) of CDODA-Me and SAHA linked through a piperazine group was a potent cytotoxic agent against cancer cells with apoptosis induction. Compound 15 was more effective than the simple combination of CDODA-Me and SAHA to induce apoptosis. Mechanistic studies revealed that 15 was less effective than SAHA to inhibit HDAC activity, but was more effective than CDODA-Me to decrease the levels of HDAC3 and HDAC6 proteins with upregulated levels of acetylated H3 and acetylated α-tubulin. Compound 15 represents a new HDAC3 and HDAC6 inhibitor by reducing protein levels.
Collapse
Affiliation(s)
- Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaorui Xie
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ping Gong
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yunfei Wei
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Heliang Du
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuanbo Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qihao Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongkui Jing
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
15
|
4-Amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) pH sensors as liposomal cellular imaging agents: The effect of substituent patterns on PET directional quenching. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1862-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Vergani B, Sandrone G, Marchini M, Ripamonti C, Cellupica E, Galbiati E, Caprini G, Pavich G, Porro G, Rocchio I, Lattanzio M, Pezzuto M, Skorupska M, Cordella P, Pagani P, Pozzi P, Pomarico R, Modena D, Leoni F, Perego R, Fossati G, Steinkühler C, Stevenazzi A. Novel Benzohydroxamate-Based Potent and Selective Histone Deacetylase 6 (HDAC6) Inhibitors Bearing a Pentaheterocyclic Scaffold: Design, Synthesis, and Biological Evaluation. J Med Chem 2019; 62:10711-10739. [DOI: 10.1021/acs.jmedchem.9b01194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barbara Vergani
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Giovanni Sandrone
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Mattia Marchini
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Chiara Ripamonti
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Edoardo Cellupica
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Elisabetta Galbiati
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianluca Caprini
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianfranco Pavich
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Giulia Porro
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Ilaria Rocchio
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Maria Lattanzio
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Marcello Pezzuto
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Malgorzata Skorupska
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Paola Cordella
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Paolo Pagani
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Pietro Pozzi
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Roberta Pomarico
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Daniela Modena
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Flavio Leoni
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Raffaella Perego
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianluca Fossati
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Christian Steinkühler
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Andrea Stevenazzi
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| |
Collapse
|
17
|
Pan-HDAC Inhibitors Promote Tau Aggregation by Increasing the Level of Acetylated Tau. Int J Mol Sci 2019; 20:ijms20174283. [PMID: 31480543 PMCID: PMC6747090 DOI: 10.3390/ijms20174283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Epigenetic remodeling via histone acetylation has become a popular therapeutic strategy to treat Alzheimer's disease (AD). In particular, histone deacetylase (HDAC) inhibitors including M344 and SAHA have been elucidated to be new drug candidates for AD, improving cognitive abilities impaired in AD mouse models. Although emerged as a promising target for AD, most of the HDAC inhibitors are poorly selective and could cause unwanted side effects. Here we show that tau is one of the cytosolic substrates of HDAC and the treatment of HDAC inhibitors such as Scriptaid, M344, BML281, and SAHA could increase the level of acetylated tau, resulting in the activation of tau pathology.
Collapse
|
18
|
Tang C, Du Y, Liang Q, Cheng Z, Tian J. A selenium-containing selective histone deacetylase 6 inhibitor for targeted in vivo breast tumor imaging and therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00383e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have developed a HDAC6-selective inhibitor, SelSA, which can be utilized as a target for the detection and treatment of ERα(+) breast cancer and TNBC. The biodistribution study showed that SelSA can specifically target the breast tumor and display potent antitumor effects in vivo. This result will help to better improve the treatment efficacy against breast cancer.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education
- School of Life Science and Technology
- Xidian University
- Xi’an
- China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging
- The State Key Laboratory of Management and Control for Complex Systems
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging
- The State Key Laboratory of Management and Control for Complex Systems
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS)
- Department of Radiology, and Bio-X Program
- Canary Center at Stanford for Cancer Early Detection
- Stanford University
- Stanford
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education
- School of Life Science and Technology
- Xidian University
- Xi’an
- China
| |
Collapse
|