1
|
Zheng Y, Zhang R, Chen M, Zhou Q, Wu Y, Xue W. Design, Synthesis, and Antibacterial Evaluation of Novel Isoindolin-1-ones Derivatives Containing Piperidine Fragments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12434-12444. [PMID: 38775141 DOI: 10.1021/acs.jafc.3c09928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A series of novel isoindoline-1-one derivatives containing piperidine moiety were designed and synthesized using natural compounds as raw materials, and their biological activities were tested for three bacterial and three fungal pathogens. These derivatives exhibited good against phytopathogenic bacteria activities against Pseudomonas syringae pv actinidiae (Psa) and Xanthomonas axonopodis pv.citri (Xac). Some compounds exhibited excellent antibacterial activities against Xanthomonas oryzae pv oryzae (Xoo). The dose of Y8 against Xoo (the maximum half lethal effective concentration (EC50) = 21.3 μg/mL) was better than that of the thiediazole copper dose (EC50 = 53.3 μg/mL). Excitingly, further studies have shown that the molecular docking of Y8 with 2FBW indicates that it can fully locate the interior of the binding pocket through hydrogen bonding and hydrophobic interactions, thereby enhancing its anti-Xoo activity. Scanning electron microscopy (SEM) studies revealed that Y8 induced the Xoo cell membrane collapse. Moreover, the proteomic results also indicate that Y8 may be a multifunctional candidate as it affects the formation of bacterial Xoo biofilms, thereby exerting antibacterial effects.
Collapse
Affiliation(s)
- Yuguo Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemical of Guizhou University, Huaxi District Guiyang 550025, China
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Renfeng Zhang
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Mei Chen
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Qing Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemical of Guizhou University, Huaxi District Guiyang 550025, China
| | - Yongjun Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemical of Guizhou University, Huaxi District Guiyang 550025, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemical of Guizhou University, Huaxi District Guiyang 550025, China
| |
Collapse
|
2
|
Acharya A, Yadav M, Nagpure M, Kumaresan S, Guchhait SK. Molecular medicinal insights into scaffold hopping-based drug discovery success. Drug Discov Today 2024; 29:103845. [PMID: 38013043 DOI: 10.1016/j.drudis.2023.103845] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
In both academia and the pharmaceutical industry, innovative hypotheses, methodologies and technologies that can shorten the drug research and development, leading to higher success rates, are vital. In this review, we demonstrate how innovative variations of the scaffold-hopping strategy have been used to create new druggable molecular spaces, drugs, clinical candidates, preclinical candidates, and bioactive agents. We also analyze molecular modulations that enabled improvements of the pharmacodynamic (PD), physiochemical, and pharmacokinetic (PK) properties (P3 properties) of the drugs resulting from these scaffold-hopping strategies.
Collapse
Affiliation(s)
- Ayan Acharya
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Mukul Yadav
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Mithilesh Nagpure
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sanathanalaxmi Kumaresan
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India; National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sankar K Guchhait
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
3
|
Design, synthesis and biological evaluation of novel 4-aminopiperidine derivatives as SMO/ERK dual inhibitors. Bioorg Med Chem 2022; 74:117051. [DOI: 10.1016/j.bmc.2022.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
|
4
|
Fu L, Chen S, He G, Chen Y, Liu B. Targeting Extracellular Signal-Regulated Protein Kinase 1/2 (ERK1/2) in Cancer: An Update on Pharmacological Small-Molecule Inhibitors. J Med Chem 2022; 65:13561-13573. [PMID: 36205714 DOI: 10.1021/acs.jmedchem.2c01244] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular signal-regulated protein kinase 1/2 (ERK1/2), the only known substrate of MEK1/2, is located downstream of the RAS-RAF-MEK-ERK (MAPK) pathway and is associated with the abnormal activation and poor prognosis of cancer. To date, several small-molecule inhibitors of RAS, RAF, and MEK have been reported to make rapid advances in cancer therapy; however, acquired resistance still occurs, thereby weakening the therapeutic efficacy of these inhibitors. Recently, selective inhibition of ERK1/2 has been regarded as a potential cancer therapeutic strategy that can not only effectively block the MAPK pathway but also overcome drug resistance caused by upstream mutations in RAS, RAF, and MEK. Herein, we summarize the oncogenic roles, key signaling network, and the single- and dual-target inhibitors of ERK1/2 in preclinical and clinical trials. Together, these inspiring findings shed new light on the discovery of more small-molecule inhibitors of ERK1/2 as candidate drugs to improve cancer therapeutics.
Collapse
Affiliation(s)
- Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Gu He
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Yang GY, Dai JM, Li ZJ, Wang J, Yang FX, Liu X, Li J, Gao Q, Li XM, Li YK, Wang WG, Zhou M, Hu QF. Isoindolin-1-ones from the stems of Nicotiana tabacum and their antiviral activities. Arch Pharm Res 2022; 45:572-583. [DOI: 10.1007/s12272-022-01399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
|
6
|
Zhang N, Yu X, Zhang Y. Recent Advances of Thiamine in Organic Synthesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ning Zhang
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin 132022 People's Republic of China
- College of Chemistry Jilin University Changchun 130012 People's Republic of China
| | - Xue Yu
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin 132022 People's Republic of China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin 132022 People's Republic of China
| |
Collapse
|
7
|
Pan X, Pei J, Wang A, Shuai W, Feng L, Bu F, Zhu Y, Zhang L, Wang G, Ouyang L. Development of small molecule extracellular signal-regulated kinases (ERKs) inhibitors for cancer therapy. Acta Pharm Sin B 2022; 12:2171-2192. [PMID: 35646548 PMCID: PMC9136582 DOI: 10.1016/j.apsb.2021.12.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 01/09/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Xiaoli Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Moghadam ES, Mireskandari K, Abdel-Jalil R, Amini M. An approach to pharmacological targets of pyrrole family from a medicinal chemistry viewpoint. Mini Rev Med Chem 2022; 22:2486-2561. [PMID: 35339175 DOI: 10.2174/1389557522666220325150531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Pyrrole is one of the most widely used heterocycles in the pharmaceutical industry. Due to the importance of pyrrole structure in drug design and development, herein, we tried to conduct an extensive review of the bioactive pyrrole based compounds reported recently. The bioactivity of pyrrole derivatives varies, so in the review, we categorized them based on their direct pharmacologic targets. Therefore, readers are able to find the variety of biologic targets for pyrrole containing compounds easily. This review explains around seventy different biologic targets for pyrrole based derivatives, so, it is helpful for medicinal chemists in design and development novel bioactive compounds for different diseases. This review presents an extensive meaningful structure activity relationship for each reported structure as much as possible. The review focuses on papers published between 2018 and 2020.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Katayoon Mireskandari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Santos SS, Gonzaga RV, Scarim CB, Giarolla J, Primi MC, Chin CM, Ferreira EI. Drug/Lead Compound Hydroxymethylation as a Simple Approach to Enhance Pharmacodynamic and Pharmacokinetic Properties. Front Chem 2022; 9:734983. [PMID: 35237565 PMCID: PMC8883432 DOI: 10.3389/fchem.2021.734983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxymethylation is a simple chemical reaction, in which the introduction of the hydroxymethyl group can lead to physical–chemical property changes and offer several therapeutic advantages, contributing to the improved biological activity of drugs. There are many examples in the literature of the pharmaceutical, pharmacokinetic, and pharmacodynamic benefits, which the hydroxymethyl group can confer to drugs, prodrugs, drug metabolites, and other therapeutic compounds. It is worth noting that this group can enhance the drug’s interaction with the active site, and it can be employed as an intermediary in synthesizing other therapeutic agents. In addition, the hydroxymethyl derivative can result in more active compounds than the parent drug as well as increase the water solubility of poorly soluble drugs. Taking this into consideration, this review aims to discuss different applications of hydroxymethyl derived from biological agents and its influence on the pharmacological effects of drugs, prodrugs, active metabolites, and compounds of natural origin. Finally, we report a successful compound synthesized by our research group and used for the treatment of neglected diseases, which is created from the hydroxymethylation of its parent drug.
Collapse
Affiliation(s)
- Soraya S. Santos
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | - Rodrigo V. Gonzaga
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | - Cauê B. Scarim
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (LAPDESF), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual de São Paulo “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil
| | - Jeanine Giarolla
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | | | - Chung M. Chin
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (LAPDESF), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual de São Paulo “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil
- Centro de Pesquisa Avançada Em Medicina (CEPAM), Faculdade de Medicina, União Das Faculdades Dos Grande Lagos (UNILAGO), São José Do Rio Preto, Brazil
| | - Elizabeth I. Ferreira
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
- *Correspondence: Elizabeth I. Ferreira,
| |
Collapse
|
10
|
Hu H, Liu Y, Tan S, Xie XX, He J, Luo F, Wang L. Anlotinib Exerts Anti-Cancer Effects on KRAS-Mutated Lung Cancer Cell Through Suppressing the MEK/ERK Pathway. Cancer Manag Res 2020; 12:3579-3587. [PMID: 32547195 PMCID: PMC7250708 DOI: 10.2147/cmar.s243660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/01/2020] [Indexed: 02/05/2023] Open
Abstract
Background With a high frequency of 30%, KRAS mutations in patients with non-small cell lung cancer (NSCLC) often lead to their poor response to most anti-cancer therapies. As a multi-target tyrosine kinase inhibitor, Anlotinib shows clinical efficacy against several types of cancer. However, its effects on KRAS mutant NSCLC and the underlying molecular mechanisms remain unclear. Materials and Methods Cell counting Kit-8 assay, colony formation assay, flow cytometry analysis, wound healing scratch assay, Transwell assay and xenograft mouse model were used to evaluate the anti-cancer effects of Anlotinib. The potential molecular mechanisms were determined by immunohistochemistry (IHC) and Western blotting. Results Anlotinib inhibited proliferation of KRAS mutant lung cancer cells and induced apoptosis in vitro. In addition, the migration and invasion abilities of these cells were also decreased after treatment with Anlotinib. It significantly suppressed tumor growth in vivo and prolonged the survival of the xenograft-bearing mice, which correlated to lower expression levels of Ki67 in the tumor tissues. Mechanistically, Anlotinib downregulated MEK and ERK as well as their phosphorylated forms in the KRAS mutant lung cancer cells. Conclusion Anlotinib inhibits the growth of KRAS mutant lung cancer cells partly via the suppression of the MEK/ERK pathway. Our findings provide novel insights into treating recalcitrant KRAS mutated NSCLC.
Collapse
Affiliation(s)
- Haoyue Hu
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yanyang Liu
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Songtao Tan
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiao Xiao Xie
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jun He
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, People's Republic of China
| | - Feng Luo
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Wang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
11
|
Chen H, Qiao C, Miao TT, Li AL, Wang WY, Gu W. Synthesis and biological evaluation of novel N-(piperazin-1-yl)alkyl-1 H-dibenzo[ a, c]carbazole derivatives of dehydroabietic acid as potential MEK inhibitors. J Enzyme Inhib Med Chem 2020; 34:1544-1561. [PMID: 31448648 PMCID: PMC6720511 DOI: 10.1080/14756366.2019.1655407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this paper, a series of novel 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid bearing different N-(piperazin-1-yl)alkyl side chains were designed, synthesised and evaluated for their in vitro anticancer activities against three human hepatocarcinoma cell lines (SMMC-7721, HepG2 and Hep3B). Among them, compound 10g exhibited the most potent activity against three cancer cell lines with IC50 values of 1.39 ± 0.13, 0.51 ± 0.09 and 0.73 ± 0.08 µM, respectively. In the kinase inhibition assay, compound 10g could significantly inhibit MEK1 kinase activity with IC50 of 0.11 ± 0.02 µM, which was confirmed by western blot analysis and molecular docking study. In addition, compound 10g could elevate the intracellular ROS levels, decrease mitochondrial membrane potential, destroy the cell membrane integrity, and finally lead to the oncosis and apoptosis of HepG2 cells. Therefore, compound 10g could be a potent MEK inhibitor and a promising anticancer agent worthy of further investigations.
Collapse
Affiliation(s)
- Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Chao Qiao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Ting-Ting Miao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| |
Collapse
|